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1. INTRODUCTION

The frequency}wave number (FWN) spectrum method developed during the past 20 years
has been conceived as a powerful solution procedure, by which both structural vibrations
and wave propagations may be analyzed [1}3]. Shear, extensional and #exural wave
propagations in shells and framework structures were studied by Nilson, developing
mathematical models [4]. Wave absorption and vibration modal control in a #exible girder
and travelling waves control of plate-beam mixed and large space structures were
investigated by Flotow, applying wave motion theory [5]. 2-D stress wave propagations in
solids with various boundary conditions were analyzed by Rizzi and Doyle, using the
frequency spectrummethod [6]. Periodicity and sound amplitude}frequency characteristics
of wave propagation in periodically sti!ened structures were investigated by Chapman,
performing real experiments for the "rst time [7]. In view of the current research activities,
however, wave propagations, sound radiation and vibration control of thin shells of
revolution often used in industries has not been fully investigated by 2-D wave number
domain approach, maximum entropy spectrum principle and related experiments.
A method that combined the frequency domain method with the wave number analysis is
presented and applied for the analysis of wave propagations in thin shells of revolution.
Dynamic responses of the shells in certain excitations are analyzed by 1- and 2-D FWN
spectra methods to obtain some key information on wave propagation in the shell.

2. EXPERIMENTAL ANALYSIS

Suppose that M acceleration sensors are arranged in a 1-D base array to measure
vibration signals in the wave "eld. Provided that the number of sampling points is taken as
N, acceleration signals measured by the sensors can be expressed in discrete form as

�a (i, n)� (i"0,2,M!1, n"0,2 ,N!1). (1)

By the Fourier transform of equation (1) "rst, the acceleration spectrum may be written as

A (i, f )"
���
�
���

a(i, n) e!j2�Fn/N (i"0,2,M!1, F"0, 1, 2,2 ,N!1) (2)
0022-460X/02/120367#06 $35.00/0 � 2002 Elsevier Science Ltd.



368 LETTERS TO THE EDITOR
in which f"F/N�t and �t is sampling time interval. Thus, the estimation of the space series
A (i, f ) by maximum entropy spectrum yields the FWN spectrum of the form

S (k
�
, f )"

dP
�

�1#��
���

�
�
e!j (2�K

�
/2M�) r ��

(K
�
"0, 1, 2,2 ,M�!1) (3)

in which k
�
"2�K

�
/2M�d,M� is the total number of spectra, d is sampling space interval in

the x direction, P
�
and �

�
are, respectively, power and "ltering coe$cient of prediction

errors. Formulas for calculating those parameters may be found in reference [4]. The angle
of incidence of the waves may be rewritten in terms of wave velocity c as

�"cos���
k
�
k �"cos���

K
�

2M�
c

fd� . (4)

In order to determine the direction of wave propagation, an M
�
�M

�
matrix of

acceleration sensors in the x and y directions is "xed on the shell. Similarly, by applying
Fourier transform to the time domain responses of acceleration a (x, y, t ) measured at those
sensing points, the frequency domain responses of acceleration can be written as

A (i, l, f
�
)"

���
�
���

a (i, l, n) e!j2�Fn/N (i"1, 2,2 ,M
�
, l"1, 2,2,M

�
,

F"0, 1, 2,2 ,N!1). (5)

A series of space spectra A (i, l, f
�
) which forms asM

�
�M

�
matrix is obtained. This matrix

of acceleration spectra is estimated by the 2-D maximum entropy spectrum principle and
then the 2-D FWN spectrum S (k

�
, k

�
, f ) at f

�
can be derived and plotted. According to

components of the wave number k
�
and k

�
corresponding to the spectrum apexes, the

direction of wave propagation � and wave number k at the spectrum apex can be
determined and, further, the wave velocity c and wave type can be obtained.
The same method developed above may be applied for the solution of excited response

problems of structures. Suppose that there is an acceleration response a
�
(x, y, t) of the shell

under the speci"ed excitation p (t ) acting on the shell at point Q and the corresponding
powers P ( f ) and A

�
(x, y, f ) to the excitation and acceleration signals, respectively, may be

derived by the Fourier transform. Accordingly, the transfer function of the shell may be
directly expressed in terms of A

�
(x, y, f ) and P ( f ) as follows:

H
�
(x, y, f )"

A
�
(x, y, f )

P ( f )
. (6)

Further, by applying equation (5), the transfer function in equation (6) can be rewritten in
the discrete form

H
�
(i, l, f )"

A
�
(i, l, f )

P ( f )
, (i"1,2 ,M

�
, l"1,2,M

�
). (7)

By estimation of the maximum entropy spectrum again for the transfer functionsH
�
(i, l, f ),

the 2-D FWN spectrum H
�
(k

�
, k

�
, f ) is then derived, which represents information of

acceleration travelling propagation of the measured system from the excitation point Q at
frequency f in the direction �.
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3. NUMERICAL EXAMPLES AND DISCUSSION

As shown in Figure 1, the tail part of the shell of revolution attached to an underwater
vehicle maybe treated as one section of a slightly conic shell, having total length
¸"600 mm, the big end of diameter �

�
and the small end of diameter �

�
and is applied by

an excited force P on point Q 100 mm from the small end.
A matrix of 8�8 sensing points with intervals of 25 mm in both the axial and

circumferential directions is distributed symmetrically along both right and left sides from
the top generatrix and closed at a distance of B"50 mm to the big end of the shell for
measuring impact and excited vibrations. Co-ordinates of circumferential wave numberK

�
and circumferential wave number k

�
are related to each other in the following form:

k
�
"

2�K
�

2M
�
d
�

, (8)

in which M
�
is the total number of circumferential 1-D FWN spectra and d

�
denotes the

distance between sampling points in the circumferential direction. Co-ordinates of axial
wave number K

�
and axial wave number k

�
are related to each other in the following form:

k
�
"

2�K
�

2M
�
d
�

, (9)

whereM
�
is the total number of axial 1-D FWN spectra and d

�
denotes a distance between

the measuring points on the shell in the axial direction. Numerical results for the 1-D
frequency}wave number spectrum of the shell are plotted in Figure 2.
2-D FWN spectra of the measured vibration signals are shown in Figure 3 for the shell

with an input of vibration energy. The "rst four natural frequencies of the shell are 962)5,
1400)0, 1912)5, and 4812)5 Hz respectively. Components of wave number in the axial and
circumferential directions, k

�
and k

�
, are associated with frequency f and wave velocity c to

obey a quadratic equation of circle of the form

k�
�
#k�

�
"�

2�f
c �

�
. (10)

As seen from equation (10), for a given frequency and identical type of waves, the wave
numbers and then the velocities of the same type of waves propagating in an isotropic solid
Figure 1. Geometry and test arrangement of the shell of revolution.



Figure 2. 1-D numerical results of FWNS for the shell of revolution.

Figure 3. Numerical results of 2-D FWN spectrum for the shell of revolution: (a) the "rst eigenfrequency
962)5 Hz; (b) the second eigenfrequency 1400)0 Hz; (c) the third eigenfrequency 1912)5Hz; (d) the fourth
eigenfrequency 4812)5 Hz.
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media are identical. Also, apexes of the same type of waves are distributed on a circle in the
2-D FWN spectrum. When the shell is excited, three kinds of travelling waves appear in the
structure, which are, respectively, #exible, shear and extensional waves. The number of



TABLE 1

=ave propagation characteristics for the shell of revolution

Eigenfrequency

Wave numbers
(rad/m)

Wave velocities
(m/s)

Travelling wave
direction (deg)

Maximum
spectrum
value

(Hz) k
�

k
�

k
�

c
�

c
�

c
�

�
�

�
�

�
�

(mm/s�)

962)5 101)3 64)1 59)9 94)3 64)4 24)12
1400)0 124)0 99)7 70)9 88)2 11)8 16)07
1912)5 93)2 74)9 47)0 128)9 160)4 255)7 74)5 22)31
4812)5 112)7 75)6 26)2 268)3 400)0 1154)7 56)7 23)57
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#exible waves is the largest but its velocity is the lowest; the number of extensional waves is
the smallest and its velocity is the fastest; and the number and velocity of shear waves are
intermediate in comparison with those of #exible and extensional waves. In the 2-D FWN
spectrum, therefore, wave apexes distributed in the external area correspond to #exible
waves, the ones located in the internal area are extensional waves and those appearing in
the middle are shear waves. As shown in Figure 3, #exible and shear waves can be easily
recognized except extensional waves, because those acceleration sensors are placed on the
shell in the radial direction so that the out-of-plane vibration signals can be tested
appropriately. Actually, the sensors cannot work to measure transient responses of the
in-plane vibration measures of the shell. Numerical results are given in Table 1 in average
for the number k, velocity c and propagation direction � of the main travelling waves in the
tail part of the shell.
At the frequency of 962)5Hz, the principal travelling waves are shear and the maximum

spectrum value is 24)12 originally in Table 1. For the shell there exist originally three types
of travelling waves at 1400)0Hz, shear and #exible waves of which are distributed on an
inconspicuous ellipse of a little dispersion. At the frequency of 1912)5 Hz, three types of
waves in the shell are found to be of great energy with the maximum spectrum value 22)31 in
Table 1. At the frequency of 4812)5 Hz, a number of spectrum apexes are distributed
obviously on a circle in Figure 3.

4. CONCLUDING REMARKS

Based on the frequency}wave number (FWN) spectrum method, the 1-D and 2-D
experimental investigations have been made on the transient responses and wave
propagations in the tail part of the shell of revolution attached to an underwater vehicle.
Much information on wave propagation characteristics such as number, vehicle, type and
direction of the waves in the shell is obtained. From the 1-D FWN spectrum results
computed by the present data process treatment, four apexes of spectrum can be found,
corresponding to the four eigenfrequencies of the shell structure, and from the 2-D FWN
spectrum results, three types of wave, #exural, shear and extensional waves are obviously
observed, propagating in the shell at the four eigenfrequencies. According to the
characteristics of these wave propagations, #exural, shear and extensional waves appear in
an order of frequency for the wave velocity, but in a descending order of frequency for the
wave number. The testing results and experimental treatment presented herein are of
practical importance for the design of underwater vehicle structures with fairly good passive
control and depression of wave and sound radiations. Further investigation on the pattern
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of reinforcement and its e!ect on the eigenfrequencies and vibration depression of the shells
of revolution is required for an optimal arrangement of axial sti!eners and circumferential
stringers.
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