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A relatively long circular cylindrical shell sti!ened by periodically deployed sti!eners is
found in many practical applications such as the aircraft fuselage. For the sound
transmission analysis of such a system, not only structural interactions between the shell and
sti!eners but also vibro-acoustic interactions between the structure and acoustic media have
to be considered. By idealizing the system as an in"nitely long cylinder subjected to a plane
wave incidence, an exact solution is obtained for the "rst time for this type of problem. In the
analysis, the solution is obtained in a series form by expanding the system responses in terms
of the space harmonics of the sti!ener spacing. Characteristics of the system responses and
e!ects of important design parameters are studied using the transmission losses calculated
from the analysis.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Cylindrical shells sti!ened by periodically deployed sti!eners are found in many practical
systems of interest such as in the aircraft fuselage or marine structures. Analysis of such
a system for sound transmission calculation becomes very complicated because of the
presence of sti!eners and the need to model structural, and structure}acoustic coupling
e!ects. Mead et al. [1}3] solved free and forced vibration problems of #at panels with
periodic sti!eners using the space harmonic method. In their work, responses of the
structure to acoustic excitations were obtained by ignoring the e!ect of the structural
response on the acoustic system. The analysis necessary to calculate the sound transmission
through a sti!ened structure becomes more complicated because the interactions between
the structure and acoustic media have to be included in the system analysis. Analytical or
numerical studies are found on the structural responses of periodically sti!ened structures
[4}9], and periodically sti!ened cylindrical shells [10}22], or sound transmissions through
cylindrical shells [23}26]; however, no reported work is found that obtained analytical
solutions for the sound transmission through sti!ened shells.

Mead and his collaborators [1}3, 7] investigated the structural responses of periodically
sti!ened structures by superposing travelling wave solutions described in terms of the
harmonics of each period of the sti!ened structures, which were called the space harmonics
[2]. They studied characteristics of the free and forced vibration responses of the
periodically sti!ened structures to the convective acoustic pressure "eld. This space
harmonics method is adopted in this work to model the structural part of the system.

Structural responses of sti!ened cylindrical shells are studied by some researchers, mostly
by numerical methods. Mecitog\ lu and his colleagues [11] studied free vibrations of
a sti!ened shallow shell using an approach within the frame of Love's equation for elastic
022-460X/02/130431#26 $35.00/0 � 2002 Elsevier Science Ltd.
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shells and also by using the "nite element method [12]. He also studied free vibration
problems by using a simpli"ed shell theory within the context of Donnell}Mushtari theory
[13]. Egle and Sewall [14] studied the vibration of orthogonally sti!ened cylindrical shells
with discrete axial sti!eners by using the Ritz method. Bushnell [15] compared various
analytical models to analyze vibration problems of sti!ened shells. Mead and Bardell [16]
studied free vibrations of a thin cylindrical shell with discrete axial and circumferential
sti!eners. Mustafa and Ali [17, 18] determined the frequencies of ring sti!ened, stringer
sti!ened and orthogonally sti!ened shells by using super shell "nite elements.
Sivasubramonian et al. [19] studied the free vibration characteristics of a longitudinally
sti!ened curved panel by using the "nite element method. Lam and Hua [20] investigated
the in#uence of boundary conditions on the frequency characteristics of a rotating conical
shell by using the Galerkin method. Markus\ and Mead [21, 22] presented the study on
harmonic wave propagation in thick circular orthotropic cylinders and a three-layered
composite thick cylinder, which was carried out within the framework of the complete
three-dimensional theory of elasticity by using Bessel and special Frobenius series.

Sound transmissions through various types of cylindrical shells, which however were not
sti!ened, have been studied by many investigators [23}36] including the authors [33}36].
In the authors' previous studies, exact solutions were obtained for the sound transmissions
through cylindrical shells of various cross-sectional structures including a single-walled
shell [33], double-walled shell [34], and double-walled shells with a core of porous
layer [35]. In this study, the basic modelling and analysis schemes to consider the
structure}acoustic coupling e!ect are adopted from the authors' previous studies [33}36],
while the space harmonic expansion method developed by Mead et al. [2] is employed to
model the e!ects of periodic sti!eners.

2. FORMULATION OF THE SYSTEM EQUATION

A schematic illustration is shown for a cylindrical shell with periodically deployed
sti!eners in one direction (z direction in this case) in Figure 1. The system is simpli"ed by
three assumptions that have been typically used to calculate the transmission losses (TLs) of
relatively long cylindrical structures [23}36], which are that the cylinder is in"nitely long,
the input wave is a plane wave travelling on the plane parallel to the x}z plane with an
incidence angle �, and the inside cavity is anechoic. This model approximates the sound
transmission problem into the aircraft cabin [25}31] or the reciprocal of the sound
transmission from the hermetic cylindrical machineries running in the anechoic chamber
[36]. As shown in Figure 1, the sti!ener is modelled by a combination of the lumped mass
M, translational spring K

�
and rotational spring K

�
. Either experimental or numerical

methods, may be used to "nd these spring rates. For example, an FE analysis may be used
to "nd the ratios of the vertical force and displacement and the angular moment and
displacement that may be used as the spring rates. The shell is characterized by its radius R,
wall thickness h, in vacuo bulk mass density �

�
, in vacuo bulk Young's modulus E

�
and the

Poisson ratio �
�
. The acoustic media on the outside and the inside of the shell are de"ned by

the density and speed of sound: ��
�
, c

�
� inside and ��

�
, c

�
� outside. Since the structure is

spatially periodic, the virtual work done by only one bay element (including supports) needs
to be considered.

2.1. ASSUMED SOLUTIONS

Considering the periodic nature of the structure [1}3] and the assumed mode of the
cylindrical shell [37], the shell displacements can be expressed in terms of a series of space



Figure 1. Schematic representation of a sti!ened shell.
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harmonics as follows:
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In equations (1)}(3), w
�
(z, �, t), u

�
(z, �, t) and v

�
(z, �, t) are the displacements of the shell

in the transverse, longitudinal directions and circumferential directions, n is the
circumferential mode numbers, m is the space harmonic numbers, ¸ is the spacing of
sti!eners, and � is the characteristic propagation constant de"ned as
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!j�, (4)
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where k
��

"k
�
sin(�), k

�
"	/c

�
, and � is the phase attenuation coe$cient. Expanding the

solutions in terms of space harmonics as in equations (1)}(3) is assuming that each
subsection of the shell will have the same type of motion with phase delays [2].

The input harmonic plane wave p� shown in Figure 1 can be described in the cylindrical
co-ordinate system as [38]
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where p
�
is the amplitude of the incident wave, j"�!1, n"0, 1, 2, 3,2, J

�
is the Bessel

function of the "rst kind of order n, 

�
"1 for n"0 and 


�
"2 for n"1, 2, 3,2,

k
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cos(�). It is easily seen that k
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�
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��
.

The waves radiated from the shell to the outside p	
�
and into the cavity p


�
will have the

same periodic characteristics as the structural wave in the shell, therefore can be represented
as
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where k
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"�k�
�
!k�

��
, k

�
"	/c

�
and H�

�
and H�

�
are the Hankel functions of the "rst and

second kind of order n respectively. The former represents the incoming wave and the
second the outgoing wave.

2.2. BOUNDARY CONDITIONS AT THE STRUCTURE}ACOUSTIC INTERFACES

The modal amplitudes of the re#ected and transmitted acoustic waves can be related to
the modal amplitudes of #exural wave in the shell by applying the boundary conditions on
the internal and external shell surfaces (i.e., r"R). The conditions are from the continuity of
the transverse velocities, which are [39]
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Substituting the assumed solutions into equation (1) and equations (5)}(7) into equation (8)
yields the relationship between the modal amplitudes of the re#ected wave and the modal
amplitudes of #exural wave in the shell as
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where ( )�"d/dr.

Similarly, substituting the equations into equation (9) yields the relationship between the
modal amplitudes of the transmitted wave on the shell, and the modal amplitudes of the
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#exural wave in the shell are identi"ed as
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At each circumferential mode n, the relationship between the modal amplitudes of the
re#ected waves on the shell and the modal amplitudes of the #exural wave in the shell is
identi"ed from equation (10) as
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Notice that �/¸:k
�
(	) is assumed to obtain equation (12a) from equation (10) for m"0

case, which will be a very close approximation because the phase attenuation coe$cient � is
small and the equation is derived for one span of the structure.

From equation (11), the relationship between the modal amplitudes of the transmitted
waves on the shell and the modal amplitudes of #exural wave in the shell is identi"ed as
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2.3. EQUATIONS OF MOTION OF THE SYSTEM

The equations of motion of the system can be derived based on the principle of virtual
work following the procedure used by Mead et al. [1}3], which states that the virtual
displacements applied on the system should not do any work.

Love's equations [37] are used to describe the equations of motion of the cylindrical shell
in the axial, circumferential and transverse directions. They are
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where K
�
and D

�
are the membrane and bending sti!ness of the shell de"ned as [37]
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where 

�
is the shell loss factor [40]. Because the inertia terms are represented in the

D'Alembert equivalent forces in equations (14)}(16), the equations represent the equivalent
forces acting on a shell of unit axial and circumferential length in three directions.

From the assumed displacements in equations (1)}(3), the virtual displacement can be
expressed as any one of the sets of three displacements in the transverse, circumferential and
longitudinal directions, described as
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Because complex algebra is used, the conjugate forms of the virtual displacements are
multiplied with the equivalent forces to calculate the virtual work.

The virtual work done by the cylindrical shell alone (without sti!eners) is obtained "rst.
The work done by each virtual displacement is obtained by integrating the product of
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the virtual displacement (conjugate form) and the equivalent force in the corresponding
direction. The work done by the longitudinal virtual displacement is obtained as
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The work done by the circumferential virtual displacement becomes
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The work done by the transverse virtual displacement becomes

��
�


"�w* �� ��

�

R �
�

�

�
�
���

�
�

����

u�
���

D
��

�#2m�
¸ �

�

#

D
�

R�
�
��

�#2m�
¸ �

�
n�

!j
K

�
R

�
��

�#2m�
¸ �

�e!j[(�#2m�)/¸]z e!j[(�#2p�)/¸]z cos[n�] cos[q�] dzd�

#�
��

�

R �
�

�

�
�
���

�
�

����

v�
���

!

D
�

R�
�
��

�#2m�
¸ �

�
n

#

D
�
(1!�

�
)

R� �
�#2m�

¸ �
�
n!

D
�

R�
n	#

K
�

R�
n

�e!j[(�#2m�)/¸]z e!j[(�#2p�)/¸]z cos[n�] cos[q�] dzd�

#�
��

�

R �
�

�

�
�
���

�
�

����

w�
���

D
�
�
�

R� �
�#2m�

¸ �
�
n�

#

2D
�
(1!�

�
)

R� �
�#2m�

¸ �
�
n�

#

D
�

R�
n�#

K
�

R�
!�

�
h	�

e!j[(�#2m�)/¸]z ej[(�#2p�)/¸]z

�cos[n�] cos[q�] dzd�

!�
��

�

R �
�

�

p
�

�
�

����



�
(!j)�J

�
(k

��
R)e!j (�/L)z

#

�
�
���

�
�

����

p	
���

H�
�
(k

��
R)e!j[(�#2m�)/¸]z

!

�
�
���

�
�

����

p

���

H�
�
(k

��
R)e!j[(�#2m�)/¸]z

ej[(�#2p�)/¸]z cos[n�] cos[q�]dz d�� .
(22)



PERIODICALLY STIFFENED CYLINDRICAL SHELLS 439
The virtual work done by the translational spring is obtained as
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All three virtual displacements contribute to the work done by the rotational spring,
therefore,

��
�
"jK

��
�#2p�

¸ � (u��(0, �, t)�u*��#v�
�
(0, �, t)�v*

��
#w�

�
(0, �, t)�w*

��
)

"�u*K
��

�#2p�
¸ � �

��

�

R
�
�
���

�
�

����

u�
����

�#2m�
¸ � cos[n�] cos[q�] d�

#�v*K
��

�#2p�
¸ � �

��

�

R
�
�
���

�
�

����

v�
����

�#2m�
¸ � sin[n�] sin[q�] d�

#�w*K
��

�#2p�
¸ � �

��

�

R
�
�
���

�
�

����

w�
����

�#2m�
¸ � cos[n�] cos[q�] d�. (24)

The virtual work done by the lumped mass becomes
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Notice that the co-ordinate of z"0 and r"R is taken to calculate the work done by the
springs and mass because only one set has to be considered.

The virtual work principle requires that
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Because of the orthogonal property of the trigonometric functions, integrating equations
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Because �u*, �v* and �w* in equations (27)}(28) are virtual displacements, which are
arbitrary, each coe$cient of the three virtual displacements should become zero for the
equations to be satis"ed. Thus, we obtain three equations of motion for each
n"0, 1, 2, 3,2, and for m, p, where p"0,$1,$2,$3,$4,2:
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This constitutes a set of simultaneous equations for u�
���

, v�
���

and w�
���

. Consideration of the
virtual work in any other shell element would yield an identical set of equations. Finite terms
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have to be taken to solve equations (29)}(31). In the actual calculation in this work, p"!5 to 5,
11 space harmonic terms were used after the convergence consideration. Also notice that the
series of m in equations (29)}(31) was also summed from m"!5 to 5 in this case. For the
purpose of easier explanation, the 3 term space harmonic solution case is explained. In this
case p"!1, 0, and 1, and the space mode is summed for m"!1, 0, 1. This yields nine
simultaneous equations for w�
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As shown in equations (1)}(3) and (5)}(7), the solutions are obtained in a double series of
the circumferential modes and space harmonic modes. The maximum space harmonics of
5 (i.e., m"!5}5) provided converged results for each n in this case, therefore this was
adopted for all studies in this work. Then, the maximum number of the circumferential
mode n was decided on after checking the convergence trend of the solution as the
maximum n changes.

3. CALCULATION OF TRANSMISSION LOSS

The transmitted sound power per unit length of the shell in the interior cavity can be
de"ned as
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where Re� ) � and the superscript * in equations (33) and (34) represent the real part and the
complex conjugate of the argument respectively. And 
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n"1, 2, 3,2. The transmitted sound power is de"ned as
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The power transmission coe$cient is de"ned by
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, (36)



Figure 2. Comparison of the predicted averaged TLs between the sti!ened and the unsti!ened shells: 00,
W/sti!ener; ---------, W/O sti!ener.
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where =� is the incident power with an angle � per unit length of the shells in the axial
direction,

=�"
cos(�)p�

�
�
�
c
�

�2R. (37)

Then, a closed form for the power transmission coe$cient that is a function of the angle of
incidence (�) can be obtained by substituting equations (35) and (37) into equation (36) as
follows:
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�
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���
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c
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�
cos(�)p�
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. (38)

To estimate the random incidence TL, the TL is computed at a particular angle of
incidence. Then the TL averaged over all possible angles of incidence, �� , is found according
to the Paris formula [41] as

�� "2 �
�
���

�

�(�) sin � cos �d�, (39)

where �
���

is the limiting angle above which it is assumed that no sound is incident upon the
shell. Calculated TL obviously depends on the choice of the angle of incidence in the
analysis. This dependency can be removed by averaging TL over all possible incident
angles as mentioned earlier. In the calculations to be presented in this paper, the power
transmission coe$cient has been calculated in steps of 23 from 0 to 803, which was suggested
by Mulholland et al. [42], and then equation (39) has been evaluated numerically. Finally,
the averaged (or random incidence) TL is obtained as

¹¸avg"10 log
�� �

1

�N � . (40)

Figure 2 shows the random incidence TLs of the unsti!ened and sti!ened shells, compared
in a narrowband format when the mass e!ect of the sti!ener is neglected. The simulation



TABLE 1

Dimensions of the cylindrical shell and simulation conditions

K
�

(N/m)
1)0�10


�
�

(kg/m	)
7750 � 0&803

K
�

(Nm/rad)
1)0�10	

�
�

(kg/m	)
1)21

¸

(mm)
100

E
�

(Pa)
1)9�10��

�
�

(kg/m	)
1)21 � 13

�
�

0)3 c
�

(m/s)
343

R

(m)
0)1

h

(mm)
1)0

c
�

(m/s)
343 


�
0)1

M

(kg)
0

	/2�

(Hz)
10&3000 * *

Figure 3. Comparison of the predicted TLs between the sti!ened and the unsti!ened shells on which a plane
wave is incident with an angle of 453: 00, W/sti!ener; ---------, W/O sti!ener.
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conditions used to obtain Figure 2 are listed in Table 1. The unsti!ened and sti!ened shells
for the single incident angle case for 453 are compared in terms of the TL in a narrowband
format as shown in Figure 3 when the mass e!ect of the sti!ener is also neglected. Figure
3 shows the sound transmission loss curve of the sti!ened shell and of the unsti!ened
counterpart, in which the in#uence of sti!ening can be clearly seen in the very low-frequency
range. It is interesting to observe that the e!ect of the sti!ening features is detrimental to the
sound transmission characteristics of the sti!ened shell in the frequencies ranging from 20 to
100 Hz when compared with an unsti!ened shell. It can be qualitatively explained by the
fact that free waves having wave number components of supersonic phase velocity can
propagate at frequencies below the unsti!ened shell critical frequency; these components
may cause the shell to be exited in a coincidental manner by incident sound waves at



Figure 4. Coe$cient covergence diagram for the cylindrical shell (R"0)1 m, t"1)0 mm) at 3000 Hz.
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frequencies below critical. In practice, the e!ect on sound transmission is as though the
critical frequency had been lowered by one or two octaves, the degree of change being
dependent upon the phase attenuation coe$cient, spacing and sti!ness (translational and
rotational) of the sti!eners [43].

4. CONVERGENCE OF THE SOLUTION

As one can see in equations (1)}(3) and (6)}(7), the solutions are obtained in series forms,
which requires that enough terms have to be used in the calculation to ensure the solutions
to converge. Once the solution converges at a given frequency, it can be assumed to
converge in all frequencies lower than that, because more terms are necessary to be used in
the calculation for a higher frequency. Therefore, the necessary number of circumferential
modes has to be determined at the highest frequency of interest. A simple algorithm can be
used to ensure the convergence of the solution in that the TL is calculated at the highest
frequency of interest, adding one term at a time. When the TLs calculated at two successive
calculations are within a pre-set error bound (0)01 dB in this work), the solution is
considered to have converged. The number of modes found in this way is used to calculate
TL at all other frequencies below this highest frequency of interest.

Figure 4 shows the calculated TL as the number of circumferential modes included (n)
increases, while the number of space harmonics is "xed as 11 (p"!5}5) at the driving
frequency of 3000 Hz. The same data shown in Table 1 are used for the sti!ened shell but the
incidence angle � taken as 453. From the "gure, it is known that at least six circumferential
modes (n"0}5) have to be used to obtain a converged solution at 3000 Hz. This leads to
a 66 term solution because 11 space harmonics and six circumferential modes are used. The
necessary number of terms will have to be determined by considering the highest frequency
of interest and the structural modes.

5. PARAMETER STUDIES

Studies of important design parameters are conducted for the sti!ened shell with the same
speci"cations listed in Table 1. TLs calculated for three di!erent incident angles (303, 453,



Figure 5. TL curves for the sti!ened shell with respect to the incidence angle:00, 303; ---------, 453; } ) } )}, 603.
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603) are shown in Figure 5, which indicate that the transmitted power slightly decreases (TL
increases) with increasing incidence angle �. Because the qualitative aspect of the solution
does not change for di!erent angles, the incident angle of 453 is used for all subsequent
calculations, which reduces the related computation time substantially compared to the
random incidence case.

5.1. PARAMETERS RELATED TO MODELLING

5.1.1. Phase attenuation coe.cient and shell loss factor

As shown in Figure 6, the TL of the sti!ened shell increases if the phase attenuation
coe$cient is increased, especially in the frequency range below 200 Hz. The attenuation
coe$cient seems to have little e!ect on the TL of the sti!ened shell above 200 Hz.

A comparison of the TLs of the sti!ened shells obtained for three di!erent loss factors for
the sti!ened shell and zero loss factor for the unsti!ened shell is shown in Figure 7. The
"gure shows that the loss factor plays an important role at every dip of the TL curve over
the frequency range. From the "gure, it is concluded that a damping treatment such as
a coating will not give rise to enhancement of the TL to a signi"cant extent as di!erent from
the sti!ened panel [43]. It is also inferred that the increase of the loss factor would not be
a solution to resolve the low TL characteristics in the low-frequency range of the sti!ened
shell as shown in Figure 7. Both the attenuation coe$cient and loss factor are typically
small, it is considered that arbitrary small values may be used. In the subsequent study,
�"13 as the phase attenuation coe$cient angle and 


�
"0)1 as the shell loss factor are

used in this work.

5.1.2. Sti+ener mass e+ects

TLs calculated for four di!erent sti!ener masses, which are 0, 10, 100, and 200% of the
mass of the shell of one period of the sti!ened shell, are plotted in Figure 8. The range of the
parameter was taken intentionally to be very wide to observe the e!ect. There is no



Figure 6. TL curves for the sti!ened shell with respect to phase attenuation: 00, �"03; ---------, �"13;
} ) } )}, �"103; } } } -, W/O sti!ener.

Figure 7. TL curves for the sti!ened shell with respect to loss factor: 00, 
"0; ---------, 
"0)1; } )} ) },

"0)2; } } } -, W/O sti!ener (
"0).
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signi"cant di!erence in the TL curves between the 0 and 10% cases; 10%will be a very large
sti!ener mass in relation to the shell mass in practice. Hence, it can be concluded that the
mass e!ect of the sti!ener will not have to be considered in the analysis.

5.2. STUDY OF DESIGN PARAMETERS

5.2.1. Materials

Figure 9 shows the TL curves obtained for systems of di!erent materials. Materials
chosen for the comparison are steel, aluminum and brass as shown in Table 2. The "gure



Figure 8. TL curves for the sti!ened shell with respect to sti!ener mass:00, 0%; ---------, 10%; } ) } ) }, 100%;
}} } -, 200%.

Figure 9. TL curves for the sti!ened shell with respect to shell material:00, aluminum; ---------, steel; } )} ) },
brass.
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shows that the steel is the most e!ective above 100 Hz, as expected because the sti!ness of
the steel is the largest. The "gure also shows that aluminum, which has the lowest sti!ness
and density, is the least e!ective in the frequency range above 100 Hz, which is again as
expected. Such a comparison may be used in practical design situations.

5.2.2. Shell thickness

As is seen in Figure 10, changing the thickness has a broadband e!ect on TL over the
entire range of the frequency. In general, TL increases by 6 dB as the thickness doubles
except in the very low-frequency range, which is well anticipated. In the low-frequency



TABLE 2

Material properties of the sti+ened shell

Steel Aluminum Brass

Density

(� :kg/m	)
7750 2700 8500

Young's modulus

(E: Pa)
1)9�10�� 0)71�10�� 1)04�10��

The Poisson ratio

(�)
0)3 0)33 0)37

Figure 10. TL curves for the sti!ened shell with respect to shell thickness:00, t"1 mm; ---------, t"2 mm;
} ) } )}, t"3 mm.
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range, the reduction is lower than 6 dB because it is controlled more by the membrane
sti!ness. In a practical situation, when the shell has to be designed only as thick as necessary
because of the weight constraint, this type of analysis will be very useful. For example, if
a target TL is known from the consideration of the noise level, a proper thickness of the shell
may be calculated correspondingly.

5.2.3. Sti+ener spacing

As shown in Figure 11, smaller sti!ener spacing has a much higher e!ect in the
low-frequency range. As the sti!ener spacing increases, the TL of the sti!ened shell
decreases especially in the low-frequency range, and eventually becomes close to that of the
unsti!ened shell as shown in Figure 11.

5.2.4. Sti+ness of the sti+ener

The e!ect of a larger sti!ener is also more bene"cial in the low-frequency range as shown
in Figure 12. It is also interesting that an increase of the sti!ener size does not contribute to



Figure 11. TL curves for the sti!ened shell with respect to sti!ener spacing: 00, ¸"10 mm; ---------,
¸"50 mm; } ) } ) }, ¸"100 mm; }} } -, W/O sti!ener.

Figure 12. TL curves for the sti!ened shell with respect to translational sti!ness of the sti!ener: 00� ,
K

�
"0 N/m; 00, K

�
"2)0�10� N/m; ---------, K

�
"1)0�10� N/m; } )} ), K

�
"2)0�10� N/m.
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higher TLs until the sti!ener size reaches a certain value (K
�
"2�10� N/m in this case).

This may be explained by considering that the e!ect of the increase of the translational
sti!ness becomes saturated after it exceeds the value that is su$cient to make the spring
virtually a "xed support.

6. CONCLUSIONS

Solutions for the vibro-acoustic responses of a periodically sti!ened cylindrical shell of
in"nite length are obtained analytically for the purpose of studying sound transmission
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characteristics of sti!ened shells. The system equation is derived by applying the virtual
energy method. Love's equations are used to describe the shell motion, and the coupling
e!ects between the shell and sti!ener, and the shell and acoustic media are fully considered
in the modelling. The motion of the shell and the re#ected and transmitted waves induced
by an incident plane wave are expanded in terms of the space harmonics in the solution
procedure, which was developed by Mead et al. [1}3]. Because the solution is obtained as
a truncated series, a convergence checking scheme is built into the solution procedure to
include enough modes to obtain converged solutions. It is considered to be the "rst exact
solution obtained for the sound transmission through sti!ened cylindrical shells, which
considers the full coupling e!ects between the structure and the acoustic media. Using the
solutions represented in the transmission losses, characteristics of the system are studied to
understand the e!ects of important modelling and design parameters and also to
demonstrate the practical application of the analysis.
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