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In two recent papers (Adhikari and Woodhouse 2001 Journal of Sound and <ibration 243,
43}61; 63}88), methods were proposed to identify viscous and non-viscous damping models
for vibrating systems using measured complex frequencies and mode shapes. In many cases,
the identi"ed damping matrix becomes asymmetric, a non-physical result. Methods are
presented here to identify damping models which preserve symmetry of the system. Both
viscous and non-viscous models are considered. The procedure is based on a constrained
error minimization approach and uses only experimentally identi"ed complex modes and
complex natural frequencies together with, for the non-viscous model, the mass matrix of the
system. The methods are illustrated by numerical examples.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The nature of damping forces is one of the least understood areas of structural dynamics. In
recent papers [1, 2], the authors have proposed methods to identify viscous and certain
non-viscous damping models based on measured complex frequencies and mode shapes.
Two general conclusions emerge from these studies.

1. Whenever the "tted damping model (whether viscous or non-viscous) is not close to
the true damping model of the system, the identi"ed coe$cient matrix becomes asymmetric.

2. Once the poles and residues of transfer functions are obtained, several damping
models can be "tted equally accurately. In other words, more than one damping model can
reproduce a given measured set of transfer functions.

An asymmetric "tted damping matrix is a non-physical result: for example, a viscous
damping matrix is symmetric from the form of Rayleigh's dissipation function [3] (Chapter 5).
Thus, result 1 above may be regarded as an indication of the fact that the selected model is
incorrect. On the other hand, result 2 indicates that if one's interest is only in reconstructing
the transfer functions within a given frequency band, then it does not matter even if a wrong
damping model is assumed. This is a justi"cation of a kind for the widespread use of the
viscous damping model. However, if a correct model of the underlying physical mechanism
and distribution of damping is required, this is not a su$cient justi"cation. A wrong model
is likely to give misleading results, and may not predict correctly the e!ect of a structural
modi"cation. Motivated by these facts, in this paper we consider "tting of viscous and
exponential damping models so that symmetry of the "tted model is preserved.

As in the two earlier papers, the analysis in this paper is restricted to linear systems with
light damping. The method of damping identi"cation developed in this paper is based on
0022-460X/02/130477#14 $35.00/0 � 2002 Elsevier Science Ltd.
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complex modes of the system. The theory of complex modes in viscously and non-viscously
damped systems is brie#y discussed in section 2. Based on "rst order perturbation results,
a method for the identi"cation of a symmetry-preserving viscous damping model using
complex modes and natural frequencies is outlined in section 3. In section 4, this method is
extended to identify the coe$cients of an exponential damping model with a single
relaxation parameter. The methods are illustrated by numerical examples.

2. THEORY OF COMPLEX MODES

2.1. VISCOUSLY DAMPED SYSTEMS

The equations of motion for free vibration of a viscously damped linear discrete system
withN degrees of freedom can be written as (a list of nomenclature is given in Appendix A)

MyK (t)#Cy� (t)#Ky(t)"0, (1)

where M, C and K are theN�Nmass, damping and sti!ness matrices, respectively, and y(t)
is the vector of the generalized co-ordinates. The eigenvalues and eigenvectors, denoted by
�
�
and z

�
, respectively, are in general complex. Use of "rst order perturbation theory [3, 4],

gives the expressions for the complex eigenvalues and eigenvectors as
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where �
�
and x

�
are the undamped natural frequencies and mass-normalized mode shapes

and C�
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�
are the elements of the modal damping matrix.

2.2. NON-VISCOUSLY DAMPED SYSTEMS

A general linear damping model can be described by convolution integrals of the
generalized co-ordinates over appropriate kernel functions. This leads to the equations of
motion of free vibration:

MyK (t)#�
�

��

G (t!�) y� (�) d�#Ky(t)"0. (4)

Here G(t) is theN�Nmatrix of kernel functions. It is also assumed that G(t) is a symmetric
matrix so that reciprocity holds. In the special case when G(t)"C�(t), where �(t) is the
Dirac delta function, equation (4) reduces to the equations of motion with viscous damping
(1). By using "rst order perturbation theory again [4], the complex eigenvalues and
eigenvectors can be expressed in a way similar to that for viscously damped systems:
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are the elements of the frequency-dependent damping matrix at

the jth natural frequency and G(�) is the Fourier transform G(t).
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3. IDENTIFICATION OF A SYMMETRIC VISCOUS DAMPING MATRIX

3.1. THEORY

In reference [1], a method was proposed to identify a viscous damping matrix from
measured complex frequencies and modes by using a Galerkin-type error minimization
approach. This method does not guarantee symmetry of the identi"ed damping matrix. In
a numerical simulation study, it was observed that in many cases the identi"ed viscous
damping matrix becomes asymmetric. This is a non-physical result since the viscous
damping matrix by its de"nition (through the Rayleigh dissipation function) is symmetric.
For this reason we now develop a method such that the identi"ed damping matrix is always
symmetric. A constrained optimization method based on Lagrange multipliers is used
(see, e.g., Chapter 4 of reference [5]).

Consider �)
�
and z;

�
for all j"1, 2,2, m to be the measured complex natural frequencies

and modes. Here, z;
�
3�� where N denotes the number of measurement points on the

structure and the number of modes considered in the study is m. In general mON, and
usually N*m. Denote the complex modal matrix as

Z< "[z;
�
, z;

�
,2, z;

�
]3�N�m. (7)

If the measured complex mode shapes are consistent with a viscous damping model then
from equation (2), the real part of each complex natural frequency gives the undamped
natural frequency

�(
�
"R(�)

�
). (8)

Similarly from equation (3), the real part of the complex modes immediately gives the
corresponding undamped modes and the usual mass}orthogonality relationship will be
automatically satis"ed. Write

Z< "U< #iV< , (9)

where

U< "[u;
�
, u;

�
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,2, v(

�
]3�N�m (10)

are, respectively, the matrices of real and imaginary parts of the measured complex modes.
Now in view of equation (3), expand the imaginary part of z;

�
as a linear combination of u;

�
:
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The aim now is to calculate the constants B
��

so that the error in representing v;
�
by the

above sum is minimized while the resulting damping matrix remains symmetric. Note that
the k"j term has been included in the sum, although in equation (3) this term was absent.
This is done to simplify the mathematical formulation to be followed, and has no e!ect on
the result. The interest lies in calculating C�

��
from B�

��
through the relationship given by the

second part of the equation (11), which for k"j gives C�
��

"0. The diagonal terms C�
��
are

instead obtained from the imaginary part of the complex natural frequencies:
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For symmetry of the identi"ed damping matrix C, it is required that C� is symmetric, that is
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��
. (13)

Upon using the relationship given by the second part of equation (11), this condition reads
as
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Simpli"cation of equation (14) yields
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For further calculation, it is convenient to cast the above set of equations in a matrix form.
Consider B3�m�m to be the matrix of unknown constants B

��
and de"ne

�) "diag(�(
�
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�
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�
)3�m�m (16)

to be the diagonal matrix of the measured undamped natural frequencies. From equation
(15) for all k, j"1, 2,2, m (including k"j for mathematical convenience),

�) B#B��) "0. (17)

This equation must be satis"ed by the matrix B in order to make the identi"ed viscous
damping matrix C symmetric. The error from representing v;

�
by the series sum (11) can be

expressed as
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It is now desired to minimize the above error subject to the constraints given by equation
(15). The standard inner product norm of �

�
is selected to quantify the error. Upon

introducing Lagrange multipliers �
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the objective function may be constructed as
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To obtain B
��

by the error minimization approach set
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"0, ∀r, s"1,2, m. (20)

On substituting �
�
from equation (18) one has
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The above set of equations can be represented in a matrix form as

WB#�
�
[�) �#�) ��]"D, (22)

where

W"U< �U< 3�m�m, D"U< �V< 3�m�m, (23)
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and �3�m�m is the matrix of �
��
. Note that both B and � are unknown, so there are in

total 2m� unknowns. Equation (22) together with the symmetry condition (17) provides 2m�

equations. Thus, both B and � can be solved exactly provided that their coe$cientmatrix is
not singular or badly scaled.

Because in this study � is not a quantity of interest, it is convenient to eliminate it.
Recalling that �) is a diagonal matrix, and taking the transpose of equation (22) yields

B�W�#�
�
[���) #��) ]"D�. (24)

Now postmultiplying equation (22) by �) , premultiplying equation (24) by �) and
subtracting one has
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or WB�) !�) B�W�"D�) !�) D�. (25)

In this way � has been eliminated. However, note that since the above is a rank-de"cient
system of equations it cannot be used to obtain B and the symmetry condition (17) must be
used. Rearranging equation (17) yields

B�"!�) B�) ��. (26)

Substituting B� into equation (25) and premultiplying by �) �� results in

�) ��WB�) #�) B�) ��W�"�) ��D�) !D�. (27)

Observe from equation (23) that W is a symmetric matrix. Now denote

Q"�) ��W"�) ��W�, P"�) ��D�) !D�. (28)

Upon using the above de"nitions, equation (27) reads as

QB�) #�) BQ"P. (29)

This matrix equation represents a set of m� equations and can be solved to obtain B (m�

unknowns) uniquely. To ease the solution procedure, de"ne the operation vec: �m�n
P��	

which transforms a matrix to a long vector formed by stacking the columns of the matrix in
a sequence one below another. It is known that [6] (see p. 25) for any three matrices
A3�k�m, B3�m�n, and C3�n�l, then vec (ABC)"(C��A) vec(B) where�denotes the
Kronecker product. Using this relationship and taking vec of both sides of equation (29), one
obtains

(�) � Q) vec(B)#(Q���) ) vec(B)"vec(P)

or [R] vec(B)"vec(P), (30)

where

R"(�) �Q)#(Q� ��) )3�m��m�. (31)

Since R is a square matrix, equation (30) can be solved to obtain

vec(B)"[R]�� vec(P). (32)

From vec (B), the matrix B can be easily obtained by the inverse operation. Obtaining B in
such a way will always make the identi"ed damping matrix symmetric. The coe$cients of
the modal damping matrix can be derived from
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Figure 1. Linear array of N spring}mass oscillators, N"30, m


"1 kg, k
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The preceding equation can be written in a matrix form as

C��) "B�) �!�) �B

or C�"B�) !�) �B�) ��. (34)

The diagonal terms of C�, however, must be calculated by using equation (12). Once C� is
obtained, the damping matrix in the original co-ordinates can be obtained by the inverse
co-ordinate transformation

C"[(U< �U< )��U< �]�C�[(U�U< )��U< �]. (35)

In summary, this procedure can be described by the following steps.

1. Measure a set of transfer functions H
��
(�) at a set of N grid points. Fix the number of

modes to be retained in the study, say m. Determine the complex natural frequencies
�)
�
and complex mode shapes z(

�
from the transfer function, for all j"1,2, m. Denote

by Z< "[z;
�
, z;

�
,2, z;

�
]3�N�m the complex mode shape matrix.

2. Set the &&undamped natural frequencies'' to �(
�
"R(�)

�
). Denote the diagonal matrix

�) "diag(�(
�
, �(

�
,2, �(

�
)3�m�m.

3. Separate the real and imaginary parts of Z< to obtain U< "R[Z) ] and V) "J[Z< ].
4. From these obtain the m�m matrices W"U< �U< , D"U< �V< , Q"�) ��W and

P"�) ��D�) !D�.
5. Now denote p"vec(P)3�m� and calculate R"(�) �Q)#(Q���) )3�m��m�.
6. Evaluate vec(B)"[R]�� p and obtain the matrix B.
7. From the B matrix obtain C�"B�) !�) �B�) �� and C�

��
"2J(�)

�
).

8. Finally, carry out the transformation C"[(U< �U)��U< �]�C�[(U< �U< )��U< �] to get the
damping matrix in physical co-ordinates.

3.2. NUMERICAL EXAMPLES

Numerical studies have been carried out using simulated systems identical to those used
in the earlier papers [1, 2]. Figure 1 shows the model systems together with the numerical
values used. The damping elements are associated between the 8th and 17th masses.
Damping shown in Figure 1(a) is described as &&locally reacting'' and that in Figure 1(b) is
called &&non-locally reacting''. The dissipative elements shown in Figure 1 are taken to be
linear non-viscous dampers so that the equations of motion are described by equations (4).
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The matrix of the damping functions is considered to be of the form

G(t)"g (t)C. (36)

Two damping models are used as considered in reference [1]: one with an exponential
kernel function and the other with a Gaussian kernel function. These models are determined
by two di!erent forms of g(t) [de"ned in equation (36)]:

� MODEL 1 (exponential),

g��	(t)"	
�
e!	

�
t ; (37)

� MODEL 2 (Gaussian),

g��	(t)"2�
	
�



e!	
�
t� . (38)

For both damping models a non-dimensional characteristic time constant is de"ned as

�"

�
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��	
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�




t g (t) dt, (39)

where ¹
��	

is the period of the highest undamped natural frequency. As noted in the earlier
papers, the value of � gives a convenient measure of &&width'': if it is close to zero the damping
behaviour will be near-viscous, and vice versa. Complex natural frequencies and modes of
the systems, calculated by using equations (5) and (6), are used to apply the identi"cation
method developed here.

3.2.1. Results

When � is small (�)0)1) both damping models show near-viscous behaviour. In
reference [1] it was shown that for this case the conventionally "tted viscous damping
matrix is symmetric. For this reason, results obtained by using the symmetry-preserving
identi"cation procedure developed in this paper approach the corresponding results
obtained by using the usual procedure.

When � is larger, the two non-viscous damping models depart from the viscous damping
model. For this case, one obtains an asymmetric "tted viscous damping matrix following
the procedure in reference [1]. It is interesting to see how these results change when the
symmetry-preserving method developed here is applied. Figure 2(a) shows the result of
running the symmetry-preserving "tting procedure for damping model 1 with locally
reacting damping and the full set of modes. The result of applying the usual viscous
damping identi"cation procedure corresponding to this case is shown in Figure 2(b). Upon
comparing Figures 2(b) and 2(a) it may be observed that the major features of Figure 2(b),
except asymmetry of the damping matrix, reappear in Figure 2(a). From the high non-zero
values along the diagonal it is easy to identify the spatial location of the damping. Also
observe that all non-zero o!-diagonal elements have positive values. This suggests that the
damping mechanism may be locally reacting.

In order to understand what result the symmetry-preserving "tting procedure yields
when damping is more non-viscous, consider now �"2 for damping model 1. Figure 3(a)
shows the "tted viscous damping matrix for the local case. The result corresponding to this
without using the symmetry-preserving method is shown in Figure 3(b). Again, from Figure



Figure 2. (a) Fitted viscous damping matrix for the local case, �"0)5, damping model 1; (b) "tted viscous
damping matrix without using the symmetry-preserving method for the local case, �"0)5, damping model 1.

Figure 3. (a) Fitted viscous damping matrix for the local case, �"2)0, damping model 1; (b) "tted viscous
damping matrix without using the symmetry-preserving method for the local case, �"2)0, damping model 1.
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3(a) the spatial distribution of damping can be guessed, but the accuracy is reduced as the
"tted model di!ers signi"cantly from the actual damping model.

Now consider non-local damping models. Figure 4(a) shows the "tted symmetric viscous
damping matrix for �"0)5 using the non-local damping model for damping model 2. The
corresponding result obtained without the symmetry-preserving method is shown in Figure
4(b). On comparing these two "gures, one clearly observes the improvement of "tting for the
case of Figure 4(a). The spatial distribution of the damping is revealed quite clearly and
correctly. The non-local nature of the damping is hinted at by the strong negative values on
either side of the main diagonal of the matrix.

Because the symmetry-preserving method uses a constrained optimization approach, the
numerical accuracy of the "tting procedure might be lower compared to that of
the procedure which does not employ the symmetry-preserving method. In order to
verify the numerical accuracy, we have reconstructed the transfer functions using the
complex modes obtained by using the "tted viscous damping matrix. Comparison between
a typical original and reconstructed transfer functionH

��
(�), for k"11 and j"24 is shown

in Figure 5, based on locally reacting damping using damping model 1. It is clear that the
reconstructed transfer function agrees well with the original one so that there seems no
reason to suggest that the new method introduces undue errros.



Figure 4. (a) Fitted viscous damping matrix for the non-local case, �"0)5, damping model 2; (b) "tted viscous
damping matrix without using the symmetry-preserving method for the non-local case, �"0)5, damping model 2.

Figure 5. Transfer functions for the local case, �"0)5, damping model 1, k"11, j"24; (**), exactH
��
; (} } }),

"tted H
��
.
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4. IDENTIFICATION OF NON-VISCOUS DAMPING

4.1. THEORY

Out of several non-viscous damping models, the exponential function can be argued to be
the most plausible [2, 7]. In this section, a method is described to "t an exponential model
to measured data such that the resulting coe$cient matrix remains symmetric. The mass
matrix of the structure is assumed known. Also suppose that the damping has only one
relaxation parameter, so that the matrix of the kernel functions is of the form

G(t)"g(t)C, where g(t)"	e���, (40)

where 	 is the relaxation parameter and C is the associated coe$cient matrix. In reference
[2], a method was proposed to obtain 	 and C from measured complex modes and
frequencies. This method may yield a C matrix which is not symmetric. In this section,
a method is developed which will always produce a symmetric C matrix.

Complex natural frequencies and mode shapes for systems with damping of the form (40)
can be obtained from equations (5) and (6). In view of the expression for damping given in
equation (40), it is easy to see that the term G�

��
(�

�
) appearing in these equations can be

expressed as

G�
��
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Upon using this expression in equation (5), the jth complex natural frequency is given by
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Similarly from equation (6) the jth complex mode can be expressed as
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Assume that

X< "[x;
�
, x;

�
,2, x;

�
]3�N�m (44)

is the matrix of undamped mode shapes and 	( is the relaxation parameter. In view of
equations (43) and (9) and considering that only mmodes are measured, separating real and
imaginary parts of u(

�
gives
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�
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and
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B
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�
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�
"

	L �
(	L �#�L �

�
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The unknown constants B
��

were de"ned earlier in equation (11). It may be noted that in
addition to B

��
, the relaxation constant 	( and the undamped modes x; k are also unknown.

Combining equations (45) and (46) one can write

x;
�
"u;

�
!

�;
�

	;
v;
�

∀j"1,2, m, (47)

or X< "U< !
1

	L
[V< �< ]. (48)

The relaxation constant 	L has to be calculated from equation (47). By using the
orthogonality properties of the eigenvectors it may be shown that

	(
�
"

�(
�
v; �
�
Mv;

�
v; �
�
Mu;

�

. (49)

The notation 	L
�
is used because for di!erent choices of j on the right-hand side one will, in

general, obtain di!erent values of 	( . In reference [2] it was shown that for practical
purposes, the value of 	( corresponding to the "rst mode is usually the most appropriate
choice.

To ensure symmetry of the identi"ed coe$cient matrix condition (13) must hold. For this
reason equations (15) and (17) are also applicable for this case. Now, the error from
representing v; j by the series sum (46) can be expressed as

�
�
"v;

�
!

�
�
���

f
�
B

��
x; k . (50)
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This error is to be minimized subject to the constraint in equation (15). The objective
function can be formed by using Lagrange multipliers, as was done in equation (19). To
obtain the unknown coe$cients B

��
using equation (20) one has

!2x; �
� �v; s!

�
�
���

f
�
B
��
x; k�#[�

��
#�

��
]�(

�
"0

or
�
�
���

(x; �
�
x;
�
) f

�
B
��

#

1

2
[�L

�
�
��
#�L

�
�

��
]"x; �

�
v;
�
; ∀r, s"1,2, m. (51)

The above set of equations can be combined in a matrix form and can be conveniently
expressed as

W1BF#�
�
[�< �#�< ��]"D1 (52)

in terms of the m�m matrices

W1"X< �X< , D1"X< �V< , and F"diag( f
�
, f

�
,2, f

�
). (53)

Equation (52) needs to be solved with the symmetry condition (17). To eliminate �,
postmultiplying equation (52) by �< and premultiplying its transpose by �< and subtracting
gives

W1BF�< !�< F�B�W�1 "D1�< !�< D�1 . (54)

Substitution of B� from equation (26) in the above equation and premultiplication by �< ��

yields

�< ��W1BF�< #F��< B�< ��W�1 "�< ��D1�< !D�1 . (55)

Observe from equation (53) that W1 is a symmetric matrix and F is a diagonal matrix. Now
denote

Q1"�< ��W1"�< ��W�1 , P1"�< ��D1�< !D�1 , H"F�< "F��< . (56)

Upon using the above de"nitions, equation (55) reads as

Q1BH#HBQ1"P1. (57)

This equation is similar to equation (29) obtained for the viscously damped case and can be
solved by using a similar procedure of taking vec of both sides. The procedures to be
followed after that to obtain the coe$cient matrix C are also closely similar to the viscously
damped case. In summary, the method can be implemented by the following steps.

1. Measure a set of transfer functions H
��
(�) at a set of N grid points. Fix the number of

modes to be retained in the study, say m. Determine the complex natural frequencies
�)
�
and complex mode shapes z; j from the transfer function, for all j"1,2, m. Denote by

Z< "[z; 1, z; 2,2, z; m]3�N�m the complex mode shape matrix.
2. Set the &&undamped natural frequencies'' to �(

�
"R(�)

�
). Denote the diagonal matrix

�< "diag(�(
�
, �(

�
,2, �(

�
)3�m�m.

3. Separate the real and imaginary parts of Z< to obtain U< "R[Z< ] and V< "J[Z< ].
4. Obtain the relaxation parameter 	("�(

�
v; �1Mv; 1/v; �1Mu; 1.

5. Calculate the diagonal matrix F"diag(	L �/	L �#�( �
�
)3�m�m.

6. Obtain the &&undamped modal matrix'' X< "U< !(1/	L )[V< �< ].
7. From these evaluate the m�m matrices W1"X< �X< , D1"X< �V< , Q1"�< ��W1,

P1"�< ��D1�< !D�1 and H"F�< .
8. Now denote p1"vec(P1)3�m� and calculate R1"(H�Q1)#(Q�1 �H)3�m��m� .



Figure 6. (a) Fitted coe$cient matrix of exponential model for the local case, �"0)5, damping model 2; (b) "tted
coe$cient matrix of the exponential model without using the symmetry-preserving method for the local case,
�"0)5, damping model 2.
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9. Evaluate vec (B)"[R1]��p1 and obtain the matrix B.
10. From the B matrix obtain C�

��
"(�L �

�
!�L �

�
)B

��
/�L

�
for kOj and C�

��
"2J(�)

�
).

11. Finally, carry out the transformation C"[(X< �X)��X< �]�C�[(X< �X< )��X< �] to get the
damping matrix in physical co-ordinates.

4.2. NUMERICAL EXAMPLES

The systems shown in Figure 1 are again used to illustrate the symmetry-preserving
"tting of exponential damping models as outlined in the last subsection. Two damping
models, given by equations (37), (38) are again considered. Recall that the relaxation
parameter has to be obtained from equation (49) and the symmetry-preserving method has
no e!ect on this. For this reason here we will discuss only "tting of the coe$cient matrix.

4.2.1. Results

It has been mentioned before that when � is small, the ordinary viscous damping
identi"cation method [1] and the symmetry-preserving viscous damping identi"cation
method (in section 3) yield the same result. In reference [2] it was further noted that for
small values of � the usual non-viscous and viscous damping identi"cation methods
produce similar results. This is because both the non-viscous damping models approach
a viscous damping model for small values of �. Since the viscous damping model is a special
case of the exponential damping model, the symmetry-preserving non-viscous damping
identi"cation method produces results like the three previous methods for small values of �,
and results need not be shown here.

When � is larger, the non-exponential damping model departs from the exponential
dampingmodel. As in the previous examples, we consider �"0)5. For this case, in reference
[2] it was observed that the identi"cation method proposed there results in an asymmetric
coe$cient matrix. The degree of asymmetry of the "tted coe$cients depends on how much
the original damping model deviates from the identi"ed exponential model. Speci"cally, it
was concluded that when variation of 	

�
with j calculated using equation (49) is large, then

the "tted coe$cient matrix is likely to be signi"cantly asymmetric. The aim now is to
understand how the proposed method overcomes this problem and what one could tell
from the identi"ed coe$cient matrix about the nature of damping. Figure 6(a) shows the
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"tted symmetric coe$cient matrix for the local case with damping model 2. The result
corresponding to this without using the symmetry-preserving method is shown in
Figure 6(b). Comparison of these two "gures demonstrates the advantage of the
symmetry-preserving method. The identi"ed coe$cient matrix is not only symmetric, but
also the correct spatial location of damping can be deduced from the peak along the
diagonal. As in the viscous case, predominantly positive values of the o!-diagonal entries of
the "tted coe$cient matrix indicate that damping is locally reacting. No signi"cant
degradation in resolution has occurred as a consequence of the symmetry constraint.

5. CONCLUSIONS

In this paper, a method has been proposed to preserve symmetry of an identi"ed damping
matrix. Both viscous and non-viscous damping models were considered. For "tting a
viscous damping model, only complex natural frequencies and mode shapes are required.
To "t a non-viscous model, in addition to the modal data, knowledge of the mass matrix is
also required. However, availability of the complete set of modal data is not a requirement
of these methods. The proposed methods utilize a least-squares error minimization
approach together with a set of constraints which guarantee symmetry of the "tted damping
matrix. It was shown that, for the cases when application of the usual damping
identi"cation methods described in references [1, 2] produces an asymmetric matrix, this
method not only "ts a symmetric matrix but also preserves all the other useful information
about the system's damping properties. If the aim of the analysis is to "t a reasonable model
of damping to the behaviour of a given structure, it seems that the symmetry-preserving
method should always be used. However, if the object is to "nd the &&correct'' damping
model, it should be borne in mind that departures from symmetry can give diagnostic
information to show when the assumed model is wrong [1, 2]. What has been done here is
to sweep that under the carpet, and the method should be used with caution.
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APPENDIX A: NOMENCLATURE

C viscous damping matrix
G(t) damping function matrix in the time domain
g(t) non-viscous damping functions
G(�) Fourier transform of damping function matrix G(t)
G�(�) frequency domain damping function matrix in the modal co-ordinates
H

��
(�) set of measured transfer functions

K sti!ness matrix
M mass matrix
N degrees of freedom of the system
m number of measured modes
t time
¹

��	
minimum time period for the system

x
�

jth mass-normalized undamped mode
x; jth measured undamped mode
X matrix containing x

�y(t) vector of the generalized co-ordinates
zj jth complex mode
z; j jth measured complex mode
Z< matrix containing z; j
u; j real part of z; j
U< matrix containing u; j
v; j imaginary part of z; j
V< matrix containing v;

��
�

jth undamped natural frequency
� diagonal matrix containing �

��
�

jth complex natural frequency of the system
�
�

error vector associated with jth complex mode
�� objective function
�
��

Lagrange multipliers
� matrix containing �

��

�

jth modal damping factor
	 relaxation parameter of the "tted damping model
	(
�

estimated relaxation parameter for jth mode
	
�

constant associated with exponential damping function
	
�

constant associated with Gaussian damping function
� characteristic time constant
� non-dimensional characteristic time constant
�(t) Dirac delta function
� Kronecker product
� space of complex numbers
� space of real numbers
R(z ) real part of (z )
J(z) imaginary part of (z )
(z) ) measured value of (z )
(z )� matrix transpose of (z )
(z )�� matrix inverse of (z )
(z� ) derivative of (z ) with respect to t
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