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1. INTRODUCTION

Accelerometers represent some of the most widely used sensors in structural systems. This is
because displacement and velocity information can be obtained directly by integration
which is preferred to di!erentiation because of noise issues [1]. In addition, transient
(shock) motions can be picked up easily, and destructive forces in machinery are more
closely related to acceleration than they are to displacement and velocity [2]. A number of
studies have attempted to implement acceleration feedback indirectly (via integration and
estimation) or in other methodologies [3}8]. Most of the studies did not try to design
acceleration-based feedback controllers based on full-state feedback control schemes. In
traditional state-space techniques, acceleration data are integrated to obtain position and
velocity information. However, when a limited number of accelerometers are attached to
a structure (normally a distributed system), position and velocity information, if integrated,
is only obtained at the point where the accelerometer is attached. The total state that is
distributed throughout the whole structure cannot be obtained by simply integrating the
measured acceleration information. Therefore, an observer is usually built to estimate the
other missing states. However, there exist several problems in designing a state estimator
with acceleration measurements. These issues will be explained in detail later.
In this study, a direct full-state-derivative feedback control scheme is developed using the
&&reciprocal state-space'' (RSS) methodology which was informally introduced in 1997 by
Tseng and Yedavalli [9]. The RSS framework hinges on mathematically switching the state
vector with the derivative of the state vector. Thus, the controller and estimators utilize the
derivative of the state vector, instead of the state vector itself. RSS was simulated for an
aircraft roll maneuver control problem by Kwak and co-workers [10, 11]. A simulation was
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also accomplished in the RSS for vibration dissipation of aircraft landing gear components
[12]. In this paper, the theoretical basis is explained and experimentally validated for the
"rst time. The framework is novel because it enables one to implement full-state feedback
control with a state-derivative estimator using acceleration information directly. Additional
novelty lies in the fact that this is the "rst time that the linear quadratic regulator (LQR)
controller design scheme, with non-standard performance indices, is applied to the
state-derivative feedback controller and estimator. Finite element modelling, orthogonal
modal co-ordinate transformations, and modal reduction techniques are also used to build
the actual model.

2. RECIPROCAL STATE-SPACE FRAMEWORK

The dynamics of a structural system can be expressed in the form of a "nite dimensional,
multivariable, &&matrix second order (MSO)'' di!erential equation through the well-known
"nite element method [10, 11, 13}17] as shown in equation (1) [10, 11, 14}17]:

MqK#CqR #Kq"Bf, (1)

where Mn�n , Cn�n and Kn�n are the mass, damping, and sti!ness matrices respectively.
Bn�n is an actuator distribution matrix. qn�1 and fm�1 are the generalized co-ordinate and
the external forcing vector respectively. In order to design controllers and estimators for
various systems, the matrix second order system can be converted into standard "rst order
state-space framework:
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where x"[q qR ]� and u"f. Full-state feedback control in the &&state space'' is then written
as

xR "Ax#Bu, u"!¸x. (3, 4)

The closed-loop system is then given as

xR "(A!B¸)x. (5)

When examining equations (2)}(5), from the point of view of vibration control, the state
variable, x, consists of only displacement and velocity terms. In many structural
applications, however, accelerometers are the sensors of choice. This can present problems
for direct measurement. For example, when an accelerometer is attached at the tip of
a cantilevered beam as shown in Figure 1. The measured data from the accelerometer
represent only the tip acceleration. This means that only the tip velocity and displacement
can be obtained by integrating the data. Therefore, one may need to build an observer in
order to obtain full-state information. A typical observer presents its own problems as
elucidated in this simple demonstration. The equations for a typical "rst order state
observer are given in equations (6)} (9):

xL� "AxL #Bu#F(y(t)!yL (t)), (6)

y(t)"Cx, yL (t)"CxL , u"!¸xL . (7}9)



Figure 1. (a) Finite element model of the cantilevered beam. (b) A beam bending element.
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From equation (7), it is easily seen that there is no acceleration information because the state
x contains only velocity and displacement information. Therefore, the observability matrix
[18] is singular because the output matrix C is empty. As a result, this system cannot be
observable. Let us now examine the same problem from the perspective of output feedback.
Traditionally, the output feedback control technique has been used for acceleration-based
measurements. Output feedback control, however, is more cumbersome and impractical
[19]. The control input and closed-loop system for an output feedback controller are
given as

u"!¸y"!¸Cx, xR "(A!BKC)x. (10, 11)

The major di$culty with output feedback stems from the fact that the dimension of the
output feedback gain ¸ is m�p, while that of state feedback gain is m�n. Since p is
generally less than n, one can manipulate fewer scalar control gains in output feedback
design than in state feedback design. Therefore, pole placement, eigenstructure assignment,
and optimal control design are in general more di$cult to accomplish that using state
feedback. For example, in optimal output feedback control, three non-linear coupled
equations shown in equations (12)}(14) need to be solved in order to "nd the optimal
feedback gain(s):

0"SA
�
#A�

�
S#C�¸�R �̧C#Q, (12)

0"PA
�
#A�

�
P#X, X"E �x(0)x�(0)�, (13)

¸"R��B�SPC�(CPC�)��. (14)
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Steven and Lewis [19] suggested several numerical approaches to obtain the optimal gain
¸. However, there is no guarantee for convergence.
In this study, a new control design technique named full-state-derivative control based on

the RSS framework [9}12, 20] is introduced to overcome these problems as shown in
equations (15) and (16):

x"GxR #Hu, u"!¸xR , (15, 16)

where

G"A��, H"!A��B. (17, 18)

Note that the eigenvalues of the system matrix G in the reciprocal state space are the
reciprocal of those in the standard state-space framework. Thus, the stability conditions for
both the reciprocal state space and the standard state-space frameworks are the same. Now,
a state-derivative observer in the RSS is written as

xL "GxL� #Hu#F(y(t)!yL (t)) (19)

y(t)"CxR , yL (t)"CxL� , u"!¸xL� . (20}22)
TABLE 1

Comparison of standard state space and RSS for acceleration measurements

Standard state space RSS

xR "Ax#Bu x"GxR #Hu
Framework u"!¸x u"!¸xR

State feedback State-derivative feedback

xL "GxL� #Hu#F(y(t)!yL (t))
xL� "AxL #Bu#F (y(t)!yL (t))y(t)"Cx y(t)"CxR

Observer yL (t)"CxL yL (t)"CxL�
u"!¸xL u"!¸xL�

No acceleration information in the Acceleration information in the
state x (unobservable) state-derivative xR (observable)

Performance J"��
�
(x�Qx#u�Ru) dt J"��

�
(xR �QxR #u�Ru) dt

index Minimize the states Minimize the state derivatives
y"Cx� u"¸xR
u"!¸y ¸ :m�n

Feedback
¸ :m�p n*p

Output feedback State-derivative feedback
Optimal
control 0"SA

�
#A�

�
S#C�¸�R¸�C#Q

(LQR) Control 0"PA
�
#A�

�
P#X, X"E �x(0)x�(0)� 0"SG#G�S!SHR��H�S#Q

gain ¸"R��B�SPC� (CPC�)�� ¸"R��H�S
Complex coupled equations; Simple algebraic Riccati

equation;
Impractical Practical

Closed loop A
�
"A!BKC x"(G!H¸)xL� "G

�
xL�
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As shown in equation (20), the state derivative xR , which has acceleration information, can be
used directly in the state-derivative estimator in the RSS. Moreover, according to references
[9}12, 20], most controller design techniques in the state-space framework like pole
placement and LQR can be directly applied to the RSS framework. The closed-loop system
in the RSS framework is given as

x"(G!H¸)xL� "G
�
xL� , (23)

whereG
�
is a closed-loop systemmatrix. The overall comparison of the standard state-space

framework and the RSS is shown in Table 1.

3. OPTIMAL CONTROL DESIGN USING NON-STANDARD PERFORMANCE INDICES

In the RSS framework, the state derivatives, not the states themselves, are directly
controlled. In other words, the state derivatives are minimized in an optimal fashion, when
RSS is applied to optimal control. The state-derivative performance index to be minimized
is written as

J
�R
"�

�

�

xR �xR dt. (24)

By adding a control performance index, one gets the non-standard form

J"�
�

�

(xR �Qx� #u�Ru) dt. (25)

This non-standard performance index makes the state-derivative feedback controller design
easy when compared to the standard output feedback in the state-space framework. It is
shown that output feedback control is more complicated than state feedback control
[18}20]. However, if we use the RSS framework, "nding an optimal output feedback gain
¸ becomes quite straightforward. The control input in the RSS shown in equation (22) is
given as

u"!¸xR . (26)

In this framework, the closed-loop system becomes

x"(G!H¸)xR "G
�
xR . (27)

Finding the ¸ which minimizes J in this new system description is much easier because we
can use the standard parameter optimization methodology to "nd the gains involved in the
Lyapunov matrix. By substituting equation (26) into equation (25), the performance index
can be expressed as

J"�
�

�

[xR �QxR #(¸xR )�R(¸xR )] dt"�
�

�

xR �(Q#¸�R¸)xR dt. (28)

Suppose that one can "nd a constant, positive-semi-de"nite matrix S which satis"es
[18, 21]

�
�t

(x�Sx)"!xR �(Q#¸�R¸)xR . (29)
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Since x"G
�
xR ,

�
�t

(x�Sx)"xR �(SG
�
#G�

�
S)xR . (30)

Then, one may rewrite equations (29) and (30) as

0"SG
�
#G�

�
S!¸�R¸#Q (31)

or

0"SG#G�S!SHR��H�S#Q. (32)

The above equation is the RSS version of the well-known algebraic Ricatti equation. The
corresponding feedback gain is expressed as

¸"R��H�S. (33)
Figure 2. Frequencies and mode shapes of FEM: (a) mode 1 (7)6638 Hz); (b) mode 2 (45)1662 Hz). WAM/95/00.
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4. ILLUSTRATIVE EXAMPLE

In this section, a new observer based, RSS controller design scheme for vibration
dissipation of a cantilevered aluminium beam with piezoelectric actuators and an
accelerometer at the tip is presented (Figure 1). The dimensions of the beam and the PZT
actuators are 43)18 cm�4)445 cm�0)165 cm and 7)62 cm�3)81 cm�0)025 cm respectively.
The fundamental frequency of the beam is experimentall(y measured at 7)58 Hz. The "nite
element model (FEM) procedure is employed to analyze the dynamics of the system. The
model consists of &&39'' multi-layered composite two-node bending elements as shown in
Figure 1. Figure 2 shows the mode shapes and frequencies of the FEM. The fundamental
frequency of the FEM is determined to be 7)65 Hz which matches well with the
experimental result.

4.1. FINITE ELEMENT MODEL

The FEM procedure for piezoelectric actuators attached to composite structures is
shown in references [22}25]. For actuator designs, the variational method and virtual work
are applied. The actuator distribution matrix can be written as

K
��

"!�
�

�

>b
�
d
��
h
�
[N�]�[N

�
] dx, (34)

where the structural and electrical shape functions [N] and [N
�
] are given in reference [12].

The "nal equation of motion of the system is written as

(M
�
#M

�
)qK#(K

�
#K

�
)q"K

��
E

�
, (35)

where

M
�
"�

�
A

� �
�

�

[N]�[N] dx, M
�
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�
A

��
�

�

[N]�[N] dx, (36, 37)

K
�
"E

�
I
� �

�

�

[N�]�[N�] dx, K
�
"E

�
I
��

�

�

[N�]�[N�] dx. (38, 39)

�, A, E, I, b, h, and d
��

are the mass density, the cross-sectional area, Young's modulus, the
moment of inertia, the width, the distance from the mid-plane and the piezoelectric constant
respectively. The subscripts s and p are denoted as the structure and the piezoelectric
material respectively. The measurement equation is expressed as

E
	
"K

�
�
q, (40)

where

K
�
�

"[0 0 2 a
�
] (41)

and a
�
is the sensitivity of the accelerometer. Since the size of system shown in equation (35)

is too large (60�60) and the "rst mode is the only one that we are concerned with, system
size reduction is required.

4.2. MODEL REDUCTION IN ORTHOGONAL MODAL CO-ORDINATES

The dimension of the discretized continuous system shown in equation (35) depends on
the number of elements and the degrees of freedom of each element. For most physical



550 LETTERS TO THE EDITOR
systems, the dimensions are usually large. A large system size, however, is not desirable from
a computational perspective. In addition, we are interested in a limited number of dominant
modes. Thus, a system size reduction technique is required. In order to reduce the system
size, a modal co-ordinate transformation is applied [13]. The modal equation of motion of
the system can be obtained with a similarity transformation that diagonalizes the integrated
sti!ness matrix [14]. Let

q"¹	, (42)

where ¹"[t
�
t
�
t
�
2t

�
] and t

�
is the eigenvector of the system given in equation (42).

The eigenvectors t
�
are mutually orthogonal with respect to the mass, M, and sti!ness,

K, matrices; 	 is the modal co-ordinate. Introducing equation (42) into equation (35)
yields

	K#C�	R #�	"F�E�
, y"K

�
�	
	, (43, 44)

where C� is the modal damping matrix and

	"[	
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�

	
�

2 	
�
]�, ¹�(M

�
#M

�
)¹"I, (45, 46)

�"¹��(K
�
#K

�
)¹"diag(


�
, 


�
,2, 


�
), (47)

F�"¹�K
��
, K

�
��
"K

�
�
¹. (48, 49)

The eigenvalues 

�
are real numbers. Now, the system size can be reduced by truncating the

higher modes. After the system size is reduced, the system is transformed to the RSS
Figure 3. Simulation diagram in Simulink.
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framework. The RSS representation of the reduced model is expressed as

�
	
	� �"�

!���C�
I

!���

0 ��
	�
	K �#�

!���K
���

0 �E�
, (50)

y"[0, K
�
��

]�
	�
	K �, x(t)"GxR (t)#Hu(t), y(t)"CxR (t). (51}53)

A LQR with non-standard performance indices is employed to build a full-state-derivative
feedback controller and an observer. A state-derivative observer is also built to implement
the full-state-derivative feedback control. The controller and estimator of the system are
given by the following:

x"GxR #Hu, xL "GxL� #Hu#F(y(t)!yL (t)), (54, 55)

y(t)"CxR , yL (t)"CxL� , u"!¸xL� . (56}58)
Figure 4. Time responses for the displacements, impulse response at (200 V): (a) "rst mode and (b) second mode;
- - - -, open loop; **, closed loop; } ) }, estimates.
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For the LQR design technique, the non-standard performance indices to be minimized
for both controller and estimator are expressed as

J"�
�

�

[xR �QxR #u�Ru]dt, J


"�

�

�

[eR �Q


eR #y�R



y]dt, (59, 60)

where Q and Q


are positive semi-de"nite. R and R



are positive de"nite and e"[x!xL ].

The subscript e is denoted as the estimator. According to references [9, 19, 21], the LQR
state-derivative feedback gain and estimator gain are written as

¸"R��H�S, F�R��


C�S



. (61, 62)

The matrix S and S


can be obtained from the associated algebraic matrix Riccati equations

as shown in equation (32). The closed-loop system is written as

x"GxR !H¸xL� , xL "GxL� !H¸xL� #FCxR !FCxL� . (63, 64)
Figure 5. Time responses for the velocity, impulse response at (200 V): (a) "rst mode and (b) second mode; - - - -,
open loop; **, closed loop; } ) }, estimates.
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For implementation, the equations need to be reorganized in the form of standard
state-space representation after the optimal full-state-derivative gain is obtained. Equations
(63) and (64) are rewritten as

xR "G��x#G��H¸xL� "Ax!B¸xL� , xL � "P��xL !P��FCxR , (65, 66)

where P"G!H¸!FC. The simulation diagram of the equation is shown in Figure 3.
According to the "gure, the full-state-derivative feedback control scheme is clearly shown.
Since only the acceleration information is measured, the "rst column of theCmatrix is zero.
A full order estimator is built to obtain velocity estimates. The estimates of acceleration and
velocity information can be used as feedback signals in the RSS framework. Figures 4}6
show the impulse responses for displacement, velocity, and acceleration. According to
Figures 4}6, the RSS based controller and estimator with acceleration feedback can be used
to dissipate vibration of the system. The impulse input and control input are given in
Figure 7. For experimental implementation, the initial condition response is selected.
Figure 6. Time responses for the acceleration, impulse response at (200 V): (a) "rst mode and (b) second mode;
- - - -, open loop; **, closed loop; } ) }, estimates.



Figure 7. Inputs: (a) impulse input and (b) control input.

Figure 8. Actual experimental set-up.
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Figure 9. dSPACE diagram.

Figure 10. Experimental result (initial input): (a) tip acceleration, - - - -, open loop; **, closed loop; } ) },
estimates; and (b) control input.
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The actual experimental set-up of the vibration control system is shown in Figure 8.
A dSPACE data acquisition and control unit is employed. A low-pass "lter is used to
eliminate high-frequency digital noise. The dSPACE control diagram is given in Figure 9.
Figure 10 shows the actual tip acceleration of the beam for both open-loop and closed-loop
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cases and control input versus time. The dotted line shows the open-loop responses and the
solid line represents the closed-loop responses. According to the result, the controller in the
RSS absorbs the vibration in 0)5 s.

5. CONCLUSIONS AND FUTURE WORK

In this study, a full-state-derivative feedback control with state-derivative estimator using
an acceleration measurement is presented. The &&reciprocal state space'' (RSS) framework is
employed to implement the control. The framework is very attractive because acceleration
measurements can be directly fed back, which was not possible in the standard state-space
framework. This methodology is not meant to be a replacement for the standard state-space
formulation in all systems, but in systems where accelerometers are the only sensors used, it
can be quite useful. When accelerometers are used, the RSS technique has many advantages
over other standard state-space techniques. This is expected since there is a strong
relationship between the actual measurement and the state-derivative vector. This paper
does not present a methodology that will give better results for a particular system. It does,
however, present a methodology that will enable one to implement vibration control from
accelerometer data in a simpler fashion than what is currently available.
A PZT laminated cantilevered steel beam with one accelerometer was chosen to be

a model. The "nite element model procedure, orthogonal modal co-ordinate transformation
and modal reduction techniques were employed to complete the model. The LQR design
method with performance indices, formulated in the RSS framework, was used to design
both the controller and the estimator. Simulations and experimental implementation of the
full-state-derivative controller based on acceleration measurements are given. According to
the simulations and experiment, direct acceleration feedback can be used in the reciprocal
state space to achieve acceptable results.
In this study, the "rst mode is only considered as a simple example to validate the

methodology. Multiple vibration modes will be controlled in future. Controllers and
estimators also will be designed using pole placement and eigenstructure assignment
techniques in the RSS framework.
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