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The dynamic loading on a multi-lane continuous bridge deck due to vehicles moving on
top at a constant velocity is investigated. The bridge is modelled as a multi-span continuous
orthotropic rectangular plate with line rigid intermediate supports. The vehicle is simulated
as a two-axle three-dimensional vehicle model with seven degrees of freedom according to
the H20-44 vehicle design loading (AASHTO LRFD Bridge Design Specifications 1998
American Association of State Highway and Transportation Officials [1]). The dynamic
behavior of the bridge deck under single and several vehicles moving in different lanes is
analyzed using the orthotropic plate theory and modal superposition technique. The
dynamic loading is studied in terms of the dynamic impact factor of the bridge deck. The
impact factor is found varying in an opposite trend as the dynamic responses for the different
loading cases under study.

© 2002 Elsevier Science Ltd.

1. INTRODUCTION

Dynamic loading on bridges caused by moving vehicles on top is an important factor
in the design and structural evaluation of the bridges, and many research results have
been published in the last few decades. There are three methods to simulate the
dynamic interaction between the bridge and vehicles. The iterative method [2-9] solved
the two uncoupled sets of equation for the bridge and vehicles separately by an iterative
procedure to satisfy the geometrical compatibility conditions and equilibrium conditions
of the interaction forces between the bridge and vehicle. The second method
constructs the coupled equations of equilibrium using a modal superposition method
in a Lagrangian formulation, and direct time integration is used to solve the coupled
equations [10]. Yang et al. [11] developed a vehicle-bridge interaction element for
the dynamic analysis of the bridge under moving vehicles. The interaction element consists
of a bridge element and the suspension units of the vehicle resting on top of the
element.

Generally, the dynamic loading obtained above is incorporated into the structural design
in the form of a dynamic amplification factor, defined as the ratio of the maximum dynamic
response to the maximum static response. The impact factor is influenced by many
variables, such as the dynamic properties of the bridge and the vehicle, the road surface
roughness and the surface condition of the approach, the number of travelling vehicles and
their transverse positions, and vehicle braking or acceleration on top of the bridge. Cantieni
[12] studied the vehicle-bridge interaction in his field tests. Hwang and Nowak [13]
developed a procedure for calculation of the dynamic load and it is subsequently used in the
development of a reliability based design code. The dynamic response of a single span
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multi-girder bridge deck under a single vehicle and two vehicles moving with different
speeds is studied by Wang et al. [3] using grillage beam theory. Huang et al. [2] extended
this method to analyze the impact factor of continuous multigirder bridges due to moving
vehicles. Chatterjee et al. [5] simplified the continuous bridge deck as a continuous
Euler-Bernoulli beam with torsional vibration, and a quarter truck model is used in the
simulations. Yang et al. [ 14] discussed the effects of the speed parameter, the vehicle/bridge
frequency ratio, and damping of the bridge and road roughness on the impact factors. The
influencing parameters on the dynamic behavior of a three-dimensional bridge are studied
by Kou and Dewolf [15] using the finite-element method.

This paper investigates the dynamic loading on a multi-lane continuous bridge due to
vehicles moving on top of the bridge deck. The bridge is modelled as a multi-span
continuous orthotropic rectangular plate with intermediate line rigid supports. The
analytical vehicle is simulated as a two-axle three-dimensional vehicle model with seven
degrees of freedom according to the H20-44 vehicle design loading in AASHTO [1]. The
dynamic behavior of the bridge under several moving vehicles is analyzed using orthotropic
plate theory and modal superposition technique. The effects of multi-lane loading from
multiple vehicles on the dynamic impact factor of the bridge are discussed. The impact
factor is found varying in an opposite trend as the dynamic responses for the different
loading cases under study.

2. DYNAMIC BEHAVIOR OF BRIDGE DECK UNDER MOVING VEHICLES

2.1. ASSUMPTIONS
The following assumptions are made for the formulation of the problem.

(1) The bridge is treated as a continuous rectangular orthotropic plate with simple
supports at its two ends (x = 0, a), and the other two opposite edges are free (y = 0, b)
as shown in Figure 1. A linear elastic behavior is assumed, and the effects of shear
deformation and rotary inertia are neglected.

(2) The intermediate line supports of the bridge are assumed as linear rigid and they are
orthogonal to the free edges of the plate.

(3) The model for the H20-44 truck loading comprises three rigid masses which
represent the truck body, front and rear wheel/axle set, respectively, as shown in
Figure 2.

(4) Since the horizontal dimension of the bridge deck is much larger than its thickness,
the thin plate assumption is made.

Figure 1. Model of the continuous bridge deck.
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Figure 2. Idealization of two-axle vehicle. (a) Elevation; (b) cross-sectional view at front axle.

2.2. VIBRATION OF THE BRIDGE DECK

From the vibrational theory of thin plate, the strain energy of the continuous orthotropic
plate in Cartesian co-ordinates is

1
Ue = JJ\J\E O'l'SidV

|4
1 0*w\? 0%*w 0*w 02w\ ? 0*w \?
o (Y s v+ Dy )Y L (WY g, (2 1
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where D,, D,, D, are the rigidity constants of the orthotropic plate; v,,, v, are the Poisson
ratio of the orthotropic material. For the bridge deck with material orthotropy and an
equivalent uniform plate thickness h, D, = E h*/12(1 — v,,v,,), D, = E,h*/12(1 — v,v,,),
D, = G,h*/12, in which E,, E, are Young’s moduli in the x and y directions, respectively,
G,, is the shear modulus. These rigidities can be determined by the method of Bakht and
Jaeger [16].

The kinetic energy of the system is expressed as

Pt () as o

S

where p is the mass density of plate material, and w is the vertical deflection.
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The work done by the damping of the plate and moving loads are as follows:

ow
W= — || cowerds
c J‘J(’bw at )

N

W, = J J S FIS(x — £()3(y — (D) S, 3)

where ¢, is the damping coefficient of the plate; F/™ is the ith interaction force between
the vehicular wheel and the bridge. (£;(¢), $;(t)) is the location of the interaction force F™.
When the vehicle is moving along one lane, j;(t) is a constant. d(x), 6(y) are the Dirac
functions.

Based on modal superposition, the dynamic deflection w(x, y, t) can be described as

Wi .0 = Y Wi el @

i=0

where W,(x, y) is the vibration mode shape of the plate and ¢;(¢) is the corresponding modal
amplitude. When equation (4) is substituted into equations (1)—(3), the equations of motion
for the bridge are

M,Q + C,Q + K,Q = W,Fi", (%)

where M, C,, K, are the mass, damping and stiffness matrices of the bridge, respectively
(Appendix A); F™ is the vector of interaction force under the wheels of the moving vehicles.
Q, Q are the first and second derivatives of Q and Q is the vector of modal amplitudes.

2.3. MODAL ANALYSIS OF THE BRIDGE DECK

For free vibration of the plate, the vertical displacement may be expressed as
w(x, , 1) = W(x, y)e', (6)

where o is the natural frequency of vibration and j = ./—1. Assuming the variables in
W (x, y) are separable, the mode shape function W(x, y) can be expressed in terms of a series
as

W(x,y) =23 Aun @) Pu(y), )

where ¢,,(x) and ,(y) are the assumed admissible functions along the x and y directions
respectively, while A,, are the unknown coefficients. A set of series consisting of
a combination of beam eigenfunctions and polynomials has been selected as the admissible
functions of the line-supported plates by Zhou [17]. Here we take ¢,,(x) to be the
eigenfunctions of the continuous multi-span Euler-Bernoulli beam, and ,(y) are the
eigenfunctions of the single-span Euler-Bernoulli beam satisfying the free boundary
conditions. Substituting equation (7) into equations (6), (1)-(3), and taking the first
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derivative of the Rayleigh’s quotient with respect to each coefficient 4,,, would lead to the
eigenvalue equations in matrix form as follows:

Ky — szb)A =0, (8)
where

A= {A119A129-~~5A1N: A213~--:AMN}T;
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and M, N are the number of admissible functions in x and y directions respectively. ¢,(x),
@(x) are the second and first derivatives of ¢, (x); ¥, (y), ¥,(y) are the second and first
derivatives of ,(y).

The natural frequencies w and coefficients 4,,, can be determined from equation (8). Then
the mode shape functions of the continuous orthotropic plate are also determined from
equation (7). Since the admissible functions are eigenfunctions of the Euler-Bernolli beam,
the mode shape functions of the continuous orthotropic plate satisfy the orthogonality
relationships. It should be noted that this approach is much more simple and direct than the
existing methods by Zhou [17] and Marchesiello et al. [8].

2.4. VEHICLE MODEL

The mathematical model for the H20-44 truck is shown in Figure 2. The model is similar
to that employed by Marchesiello et al. [8]. The vehicular body is assigned three degrees of
freedom, corresponding to the vertical displacement (y), rotation about the transverse axis
(pitch or 0,), and rotation about the longitudinal axis (roll or 0,). Each wheel/axle set is
provided with two degrees of freedom in the vertical and roll directions (V,1, Vaz, Oa1, 0a2)-
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Therefore, the total number of independent degrees of freedom is seven. The equations of
motion of the vehicle are derived using Lagrange’s formulation as follows:

M,Z + C,Z + K,Z = Fi", (10)

where F/™ is the interaction force vector applied on the vehicle; M,, C,, K, are, respectively,
the mass, damping and stiffness matrices of the vehicle system and Z is the vector of the
vehicle degrees of freedom (Appendix A).

2.5. VEHICLE-BRIDGE INTERACTION

The vehicle-bridge interaction forces for a single vehicle can be written as follows:
Fi =K1 (Va1 — 3841041 — wy — dy) + Ciy1(Yar — %Sméu — Wy — dl),

Fo =Ky (yar + %Sdl Ot — Wy —dy) + Cpya(Var + %S.n éal — W, — dz),
) ] (11
Fs= Kty3(ya2 - %Sdzeaz — w3 —d3) + Cty3(.)>a2 - %Sdzeuz — W3 —d3),

Fu=Kiya(yaz + 2802002 — wa — dy) + Ciya(Yaz + 3842022 — Vo — d4),

where {K,,;,i =1, 2,3, 4} are the stiffness of the tyres; {C,y;, i = 1,2, 3,4} are the damping
coefficients of the tyres. S;;, S4, are the wheel spacing of the front and rear axles
respectively.

w; = W()el(t)’ ﬁi(t)’ t)’ di = d()ei(t)ﬂ j}l(t))> = 15 2’ 37 47 (12)

where d(x, y) is the surface roughness of the bridge deck; (X;(¢), y;(¢)) is the location of the ith
tyre at time t. As the vehicle moves along one lane, y,(t) = yo + Sa1/2, V2(t) = yo — S41/2,
P3(t) = yo + Sa2/2, P4(t) = yo — Sa2/2, and y is the transverse co-ordinate of the centerline
of the lane.

The dynamic responses of the bridge deck under moving vehicles can be calculated from
equations (5), (10) and (11) using an iterative method (such as the Newmark method) or the
algorithm by Henchi et al. [10].

2.6. ROAD ROUGHNESS OF THE BRIDGE PAVEMENT

The randomness of the road surface roughness can be represented with a periodic
modulated random process. In ISO-8608 [ 18] specifications, the road surface roughness is
related to the vehicle speed by a formula between the velocity power spectral density (PSD)
and the displacement PSD. The general form of the displacement PSD of the road surface
roughness is given as

Sa(f) = Sa(fo)(f/fo) " (13)

where f,(= 0-1cycles/m) is the reference spatial frequency; o is an exponent of the PSD, and
f is the spatial frequency (cycles/m). Equation (13) gives an estimate on the degree of
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roughness of the road from the S,(fy) value. This classification is made by assuming
a constant vehicle velocity PSD, taking « equals to 2. The ISO specification also gives the
power spectral densities for different classes of roads.

Based on this ISO specification, the road surface roughness in the time domain can be
simulated by applying the inverse fast Fourier transformation on S,(f) as follows [10]:

r(x) = % VA4S(fi)Af cosnfix + 0;), (14)

where f; = iAf is the spatial frequency; Af = 1/NA4; A4 is the distance interval between
successive ordinates of the surface profile; N is the number of data points, and 6; is a set of
independent random phase angle uniformly distributed between 0 and 27.

2.7. PROCEDURE OF IMPLEMENTATION

The coupled equations of motion of the bridge-vehicle system presented in equations (5)
and (10) are subjected to the compatibility constraints on the interaction forces and the
displacements of the two subsystems. The procedure to solve the problem is implemented as
follows:

Step 1: Calculate the mode shapes and natural frequencies of the multi-span bridge deck

(1) Determine the assumed admissible functions ¢,,(x) and ¥,(y) in equation (7).

(2) Calculate the natural frequencies w and the coefficients A4,,, from equation (8). The
mode shapes are determined by equation (7).

Step 2: Determine the mass, stiffness and damping matrices of both the vehicle and the
bridge deck.

Step 3: Calculate the road surface roughness function d(x) from equation (14) according
to the selected road class in ISO-8608 [18].

Step 4: The responses of the bridge and vehicle are calculated by the Newmark Method.
The time step, parameters of Newmark Method and the error for convergence are
determined before the iteration. Set the initial values Q, and Z,.

Step 5: Determine the initial vehicle position on the bridge deck.

Step 6: Calculate the excitation force on vehicle, F™, from equation (11) and Appendix
A, and solve for the motion of the vehicle, Z, at time ¢ from equation (10).

Step 7: Calculate the excitation force on the bridge, Fi™, from Appendix A, and solve for
the motion of the bridge, Q, at time ¢ from equation (5).

Step 8: Solve for the displacement of the bridge w(x, t) from equation (4).

Step 9: Repeat Steps 6-8 using the calculated Q and Z. Check the convergence of the
difference between the two successively calculated w(x, t); and w(x, t);+ 1,

[w(x, t);+1 — w(x, )]l < tolerance error.

Step 10: If convergence is not achieved, repeat Steps 6-9. If convergence is achieved,
repeat Steps 5-10 for the next time step.
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3. NUMERICAL SIMULATIONS

3.1. VERIFICATION OF THE PROPOSED METHOD

The bridge-vehicle system in Maechesiello et al. [8] is used to verify the theory and the
algorithm developed in the paper. No published results on an orthotropic plate can be
found for comparison, and this isotropic plate [8] is used instead. The bridge is simplified
into a continuous three-span isotropic plate with line intermediate rigid supports. The
vehicle body is rigid and subject to bounce, pitch and roll motions. The parameters of the
vehicle-bridge system are listed as follows:

ly=1,=13=264m,b=107m, h =095m, E = 1454 x 10'°N/m?, v = 03,
p =2375kg/m? S, =473m, a; = 067, a, =033, S;; =S; =205m, S,; =S,, = 141 m,
m. = 17000kg, m,; = 600kg, m,, = 1000kg, I, = 9 x 10*kgm?, I, = 1-3 x 10*kgm?,
I,; = 550kgm?, I,, = 600 kgm?,
Ksyl = KsyZ = 116 X 105 N/m, Ksy3 = K5y4 = 373 X 105 N/m,
K1 =Ky = 785x10°N/m, K,y3 = Ky = 1:57 x 10°N/m,
Csyl = Csy2 = 25 X 104N5/m, Csy3 = C5y4 = 35 X 104N5/m,
Ctyl = Cty2 = IOONS/m, Cty3 = C[y4 = ZOONS/m
1,; and I, are the torsional moments of inertia of the two axles, respectively; S,; and S,, are
the spacing of the suspensions of the front and rear axle, respectively; the subscript syi refers
to the ith suspension of the vehicle.
The natural frequencies of the continuous three-span isotropic plate are shown in

Table 1. The results obtained by the proposed method are very close to that obtained using
Zhou’s method [17], and are approximately equal to the results in Marchesiello et al. [8].

TaBLE 1

Natural frequencies for the three-span continuous bridge (Hz)

Marchesiello et al. [8]  Zhou’s method [17] Proposed method

Mode Beam model 9 x 5% 17 x 9* 9 x 5% 17 x 9% 9 x 5% 17 x 9*

1 471 479 477 490 4-88 4-90 4-88
2 6:04 6-19 617 6-30 6-28 6-29 627
3 8-82 911 9-09 9-26 9-20 9-21 9-18
4 — 1665 1665 1505 15-04 1504 1503
5 — 17-55 17-53 1600 1595 1595 1592
6 18-85 19-37 19-31 1821 17:97 17-98 1791
7 — 19-57 19-51 19-68 19-61 19-67 19-60
8 21-49 22:16 2210 22:59 22-40 22-44 22:37

Note: 9 x 5* denotes 9 number of eigenfunctions in ¢,,(x) and 5 number of eigenfunctions in i,(y), and so on.



DYNAMIC LOAD ON BRIDGE FROM VEHICLES 705

% 10" Displacement with different speeds

Displacement(m)

_5 1 1 1 1 1
0 0-5 1-0 1-5 2:0 25 30
Time (s)
Figure 3. Displacements at different vehicle speed: ——, 32-5m/s proposed; O, Marchesiello et al.; - -, 37-5m/s

proposed; x, Marchesielo et al.

This shows that the proposed method and algorithm to obtain the natural frequencies of the
continuous plate are correct.

Another check is made on the accuracy of the computed response time histories. The
vehicle moves along the edge with its right tyres at a distance 1-0 m from the right edge of
the bridge. The displacements at the middle of the first span when the vehicle is moving at
speeds of 32:5 and 37-5m/s are shown in Figure 3. The first 13 modes are used in the
calculation with a time step of 0-001s. Comparison between the results obtained by the
proposed method and those in Marchesiello et al. [8] show that the method and algorithm
proposed in the paper are accurate to analyze the dynamic responses of a continuous
multi-lane bridge deck under a moving vehicle.

3.2. MULTIPLE VEHICLES ON MULTI-LANE CONTINUOUS BRIDGE DECK

Not many studies have been done with multiple vehicles on top of a multi-lane bridge
deck. Humar and Kashif [19] simplified a slab-type bridge as a single span orthotropic
plate, and the effects of off-center vehicle and two vehicles on the bridge are discussed with
a one-quarter vehicle model. Effects of having multiple vehicles on a single span bridge deck
with two lanes have been presented by Yener and Chompooming [20]. Mabsout et al. [21]
have also studied the effect of multi-lanes on the wheel distribution in a steel girder bridge.

A continuous three span multi-girder bridge as shown in Figure 4 is used for this study.
There are four equal lanes over the total width of the bridge deck. The parameters of the
bridge deck are listed as follows:

Span lengths are 24, 30, 24 m for the first, second and third spans, respectively; distance
between two adjacent main girders is 2-743 m; distance between two adjacent diaphragms is
6m; deck slab thickness is 0-2m, b = 13-715m, p = 3000kg/m?, E, = 4-1682 x 10!° N/m?
E, = 29733 x 10'°N/m?, v,, = 0-3. For the steel I-beam: web thickness = 001111 m, web
height = 1-490m, flange width = 0-405 m, flange thickness = 0-018 m. For the diaphragms:
cross-sectional area = 0:001548 m?, I, =0707x 10" °m*, I, =2x10"°m* J=12x10""m*

The rigidities of the equivalent orthotropic plate can be calculated according to Bakht
and Jaeger [16] with D, = 2:415x 10° Nm, D, = 2-1807 x 10’ Nm, D,, = 1-1424 x 10 Nm.
The first 13 natural frequencies of the continuous bridge are 4-13, 4-70, 6:31, 6:86, 776, 8:20,
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Figure 4. Diagram of the bridge.

15-81, 16-39, 20-84, 22-29, 22-90, 24-31 and 24-86 Hz. The damping coefficients of the bridge
are taken as 0-02 for all the vibration modes. Road Classes A-D according to ISO-8608 [18]
and the case without roughness are used in the simulations. The parameters of the vehicle
are the same as those in section 3.1.

3.2.1. Dynamic loading from a single vehicle

The bending moment and shear force in the plate are calculated as

0w *w
Me=—\Pega T vl )

(15)

03w 0w
I/x = — |:Dx ﬁ + (nyDy + 4ny)W:|
The impact factor and wheel-load distribution factor are defined after Huang et al. [2] as
follows:

R
I,= (R—“ — 1> x100%, n=— (16)

S

where R,; and Rg are the absolute maximum response from the dynamic and static studies
respectively. Here Ry is obtained with the vehicle moving at a very low speed of 0-1 m/s with
0-1s for the time step in the calculation and no road surface roughness is included. M; is the
maximum bending moment of one beam at the section; M, = M /n; where M is the sum of
the bending moment of all beams at one section; n is the number of wheel loads in the
transverse direction.

Table 2 shows the static wheel load distribution, dynamic wheel load distribution and the
impact factor from bending moment, displacement and strain under different loading cases.
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TABLE 2
Load distribution factor(LDF) and impact factor(IMP) (for one vehicle load)

707

Span Load case  Beam-1 Beam-2 Beam-3 Beam-4 Beam-5
1 0-863 0-575 0-320 0-078 0-165
First 2 0-586 0-486 0-395 0-309 0-224
3 0-384 0-393 0-400 0-408 0415
1 0-874 0-567 0-319 0-087 0-153
Static LDF  Second 2 0-564 0-509 0-405 0-305 0-217
3 0-375 0-407 0-405 0-404 0-409
1 0-863 0-576 0-319 0-078 0-164
Third 2 0-587 0-487 0-394 0-309 0-224
3 0-384 0-393 0-400 0-408 0415
1 0-850 0-568 0-319 0-091 0-172
First 2 0-583 0-484 0-395 0-311 0-227
3 0-384 0-393 0-400 0-408 0-415
Dynamic 1 0-864 0-561 0-320 0-098 0-157
LDF Second 2 0-557 0-505 0-405 0-309 0-225
3 0-376 0-407 0-405 0-404 0-409
1 0-856 0-572 0-317 0-085 0-170
Third 2 0-586 0-486 0-394 0-309 0-224
3 0-384 0-393 0-400 0-408 0-415
1 2:54 2:87 376 2190 873
First 2 2-90 316 354 4-11 515
3 3-59 352 350 3-45 341
IMP (%) 1 291 313 4:47 16-60 661
(bending Second 2 2:48 2:92 375 514 7-51
moment) 3 4-00 370 366 363 356
1 507 513 533 15-87 9-63
Third 2 525 525 527 532 540
3 529 529 525 527 527
1 2-53 2-81 3-59 21-48 7-26
First 2 281 303 336 3-89 4-85
3 342 336 332 329 326
IMP (%) 1 3-56 4-04 4-83 14-41 641
(displace-  Second 2 345 3-34 397 511 7-12
ment) 3 4-19 390 3-89 390 3-86
1 4-50 4:51 4-55 17-21 10-89
Third 2 4-56 4-53 4-50 4-47 5-53
3 4-49 4-48 4-49 4-49 4-50
1 2-54 2:87 376 21-85 874
First 2 2-90 316 353 411 515
3 3-59 353 3-49 345 342
IMP (%) 1 291 313 4-46 16:61 658
(strain) Second 2 2-48 2:92 375 5-14 7-52
3 4-00 371 366 363 356
1 508 515 530 15-98 9-68
Third 2 525 525 527 530 540
3 527 526 526 527 526

The Loading Cases from a single vehicle are shown in Figure 5(a). Figure 6 shows the time
histories of the bending moments, strains, shear forces and displacements at middle of the
second span of beam-1 from Load Cases 1-3. Figure 7 shows the bending moments at
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Figure 5. Vehicle loading: (a) one vehicle loading; (b) two vehicles loading.
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Figure 6. Responses at middle of Span 2 of Beam-1 under different loading: (a) Bending moment; (b) strain;
(c) shear force; (d) displacement. ——, Load Case 1; - -, Load Case 2; ...., Load Case 3.

middle of each span of each beam under Load Case 1. The speed of the vehicle is 30 m/s, and
a time step of 0-001 s is used in the calculation. The road surface roughness is of Class B.
Figures 8 and 9 show the effects of moving speed and the road surface roughness on the
impact factors calculated at different points of the bridge deck under different loading cases.
The legends 1-3, 4-5, 6-9, 10-12 and 13-15 define the midpoints of the first, second and
third spans on beams 1-5 respectively. The following observations are obtained from these
figures and Table 2.

(1) The dynamic impact factor calculated at different locations on the bridge deck varies
in an opposite manner to that for the wheel load distribution factor. The former has



x 10* x 10*
2 - 3

0 50 100

DYNAMIC LOAD ON BRIDGE FROM VEHICLES 709

100 100

Vehicle position(m)

@

100
Vehicle position(m) Vehicle position(m)

Figure 7. Bending moment at middle of each beam under Load Case 1: (a) Beam-1; (b) beam-2; (c) beam-3;
(d) beam-5. ——, First span; - — —, second span; ..... , third span.

a large value whereas the latter has a small value at the same point, and vice
versa.

The impact factors obtained from different measurable variables, such as bending
moment, strain and displacement, are similar, and hence strains can be used in further
studies as they can be easily measured.

The bending moments in beams 1 and 2 are larger when the vehicle is close to them
while those in beams 4 and 5 are smaller. This is because the motion of the vehicle in
the outer lane excites the torsional modes which are significant to the responses.
The impact factors on the beams near to the path of the moving vehicle are smaller
than those in the beams further away. But the dynamic responses behave oppositely
as seen in Figure 6.

The impact factor is insensitive to the moving speed of the vehicle.

In Load Case 1, the impact factors on beams 4 and 5 are larger than those in the other
beams. The impact factors on beam 4 are largest in all the cases studied. This may be
due to the torsional mode excited in Load Case 1.

When the road surface roughness is increasing, the impact factors also increase
especially for the case under eccentric Load Case 1. The maximum impact factor is
225% as seen in Figure 9.
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Figure 8. Effects of moving speed on impact factor: (a) effects under Load Case 1: —l—, 10 m/s; —&A—, 15 m/s;
—>—, 20 m/s; —¥—, 25 m/s; —@—, 30 m/s; —+—, 35 m/s; ,40 m/s. (b) effects under Load Case 3: —¢—,
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Figure 9. Effects of road-surface roughness on impact factor: (a) Effects under Load Case 1; (b) Effects under
Load Case 3: —4—, no roughness; —l—, Class A; —&—, Class B; —x—, Class C; —%—, Class D
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Figure 10. Responses at mid-point of Span 2 of Beam-1 under different loading. (a) Bending moment; (b) Strain;
(c) shear force; (d) displacement. ——, Load Case 4; - - —, Load Case 5; ----» Load Case 7.

3.2.2. Dynamic loading from multiple vehicles

Two vehicles moving in different lanes are studied in the simulations. The loading cases
are shown in Figure 5(b). Load Case 4 consists of two vehicles moving in the same direction.
Load Cases 5-7 consist of two vehicles moving in opposite directions. Figure 10 shows the
bending moments, strains, shear forces and displacements at midspan of span 2 of beam-1
under different loading cases. The speed of moving vehicles is 30 m/s, and the two vehicles
enter the bridge at the same time. The road surface roughness is of Class B. Time step in the
computation is 0-001 s. Figure 11 show the bending moments at middle of span 2 of beams 2,
3, 4 and 5 under the four loading cases. Table 3 shows the computed static and dynamic
load distribution factor and impact factor. The following observations are made from these
figures and Table 3.

(1) Tables 2 and 3 show that the impact factor generated from two vehicles is smaller
than that from a single vehicle.

(2) The impact factor also behaves oppositely when compared with the wheel load
distribution factor.

(3) The magnitude of bending moments in each beam is closely related to the transverse
location of the resultant of the vehicular loads on the bridge deck. It is large when the
resultant is close to the beam, and small when the force is further away from the beam.

(4) Loading No. 4 gives the largest impact factors in beam-5 which are 125-19, 120-82 and
92:60% at the middle of spans 1, 2 and 3 respectively. But the corresponding load
distribution factor and the responses in Figure 11 are small. This is similar to the
observation in point (6) made for a single vehicle in section 3.2.1 where the
contribution of torsional modes of the bridge deck is suspected. This indicates a point
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Figure 11. Bending moment at Beams 2 to 5 under different loading. (a) Beam-2; (b) beam-3; (c) beam-4;
(d) beam-5. ——, Load Case 4; - - —, Load Case 5; ----- , Load Case 7.

that is often mixed up in design. The magnitude of the dynamic impact factor is of no
significance if it is not related to the magnitude of stress or member capacity. A high
impact factor, in general, corresponds to very low stress level. And only impact factors
that relate to design situation are of importance.

(5) The impact factors differ significantly in the three spans under different loading. This
would indicate a need to have different impact factors for the three spans in the design
unless a conservative design is desired.

4. CONCLUSIONS

The design loading from vehicles moving on top of a three-dimensional continuous
bridge deck has been investigated. The proposed method for analyzing the problem is based
on a Lagrangian formulation of the vehicle-bridge system which is solved with the
orthotropic plate theory and modal superposition technique. Numerical simulations have
been performed to study the variation of dynamic impact factor and wheel load distribution
factor on the bridge deck, and the following conclusions are obtained.

(1) The transverse vehicle position has an important effect on the impact factor. The
impact factors in the beam that is far away from the path of the moving vehicle are
larger than those that are near. But it is the opposite with the responses and wheel
load distribution factor which are larger at points close to the moving vehicle.

(2) The high dynamic impact factors reported in this study correspond to low response
level in the bridge deck and hence low stress level. Therefore, these impact factors
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Load distribution factor(LDF) and impact factor(IM P) (for two vehicle loads)

Span  Load case Beam-1 Beam-2 Beam-3 Beam-4 Beam-5
4 1-604 11163 0771 0399 0062
. 5 0-896 0756 0-644 0-783 0921
First 6 1267 0858 0523 0625 0726
7 1-072 0-730 0-460 0734 1-005
4 1-593 1-176 0781 0-407 0043
. 5 0-757 0-815 0-809 0-806 0814
Static LDF  Second 6 1222 0973 0781 0-604 0-420
7 0-852 0-790 0-785 0791 0-782
4 1-607 11167 0769 0399 0059
A 5 0-895 0751 0-648 0-784 0922
Third 6 1268 0-857 0522 0626 0727
7 1-072 0-725 0-462 0-735 1:007
4 1-565 11138 0760 0-400 0138
, 5 0900 0-765 0-642 0-778 0916
First 6 1275 0-868 0519 0618 0-720
7 1-071 0-737 0-460 0-731 1-001
4 1558 11152 0775 0420 0095
Dynamic 5 0-754 0-810 0-808 0-808 0-820
LDF Second 6 1:201 0964 0-780 0614 0441
7 0-838 0-783 0-784 0797 0-798
4 1-584 11151 0760 0395 0110
. 5 0915 0772 0658 0-761 0-894
Third 6 1296 0881 0522 0-604 0697
7 1-094 0747 0-456 0719 0-985
4 2:66 2:93 3-50 527 12519
. 5 0-78 126 0-29 021 016
First 6 1-42 1-61 031 — 009 — 030
7 0-33 091 0-25 —012 —030
4 302 317 4-00 717 12082
IMP (%) 5 648 599 642 6-90 7-20
(displacement) ~ Second 6 494 593 688 839 11-60
7 514 627 6-84 7-55 8-61
4 467 4-68 470 591 92-60
. 5 622 6-93 534 0-88 061
Third 6 564 639 299 —073 034
7 4-81 5-86 114 012 — 015

should be taken with care as only when they are related to the design situation that
they would be of importance.
(3) The impact factors associated with multiple vehicles are smaller than those for single

vehicle.

(4) The road surface roughness is more important to the impact factors than the moving

speed of the vehicle.
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APPENDIX A: SYSTEM MATRICES

A.l. VEHICLE MODEL

7 = {yc: 01), Oy, Va1, a1, Va2, Oz }T,

Sdl Sdz
2

T
Fim = {O, 0,0, —Fy1 — Fiz, 5 (Fi1 — F2), — Fi3s — Fua, —~ (Fi3 — Ft4)} s
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Mv = diag{mCy 109 Its Mg1, Iula Mgz, IaZ}s Kv = {Kvijy Kvij = vai: i= 1,2a 975

] = 1927 . 77}7
4
Kvll = Ksyip Ku12 = (Ksyl + KsyZ)alsx - (Ksy3 + Ksy4)a2SXa
i=1
Sy1 Sy2
Kv13 = 7 (_Ksyl + KsyZ) + 7 (_Ksy3 + Ksy4)a Kvl4 - - (Ksyl + KsyZ),

S S
KvlS = %1 (Ksyl - KsyZ)y Kv16 = - Ksy3 - Ksy4> Kul7 = %2 (Ksy3 - Ksy4):

KUZZ = (Ksyl + KsyZ)a%Sazc + (Ksy3 + Ksy4)a%SJ2ca
KUZ3 = %(_Ksyl + KsyZ)alsxSyl + %(KsyS - Ksy4)a28xSy29
Kooa = — (Kgy1 + Kg2)a1Sx, Kizs = %(Ksyl — Ky2)a18:8y1,

K026 = (Ksy3 + Ksy4)a2Sx7 K7 =— %(Ksy?a - Ksy4)a2SxSy25

S,gl sz
Kv33 = T (Ksyl + Ksyz) + T (Ksy3 + Ksy4)>
S S2 S
K314 = %1 (Ksy1 — Kyy2), Kizs = — Tyl (Ksy1 + Kgy2), Koze = %2 (Ksys — Kyya),
S2,
K037 = - T (Ksy3 + Ksy4)a

S
Koss = (Kgy1 + Kgy2), Kpas = %1 (— Ksy1 + Kgy2), Kose = Koar =0,

S2
Kyss = % (Ksy1 + Kgy2), Kuse = Kys7 =0,
_ _ Sy2 _ _ S)%Z
KU66 = Ksy3 + Ksy4s Ku67 - 7 (Ksy3 Ksy4); Kv77 - T (Ksy3 + Ksy4)a

where Sy1, Sy are the spacing of suspensions in the front and rear axles, respectively; S, is
the axle spacing.

A.2. BRIDGE MODEL

Q = {QI(t)a QZ(t)a qu,,(t)}T’ W = {WI(X’ y)’ WZ(xs y)s cees WM,,(X’ y)}:
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M, is the number of mode shapes for the continuous orthotropic plate.

M, = prhWTW ds, C,= JJC;,WTW ds,

Wi(Xy (1), 1(1))  Wi(Xa(0), 2(0) -+ WX, (1), Dy, (1)
W, — Wi (X1(0), 1(1)) - Wa(Xa(2), 2(2) -+ WX, (0), Dy, (0)
War, (X1(2), §1(8)) Wiy, (X2(0), Pa(1) -+ Wiy, (K, (1), D, (1))

1
K, = HDXWJTW,;’ + 5 (Davye + Dy (WSTW, + W)

S

+ D,W,TW," + 4Dka’;TWx’;} ds,
A % ; AP Wa(y), Wiy = ; ; A @)W (),
Wi =3 Auu()Yn(y) (=1,2,...,M,)

Fj" = F, +F,, F,={F,,Fy, F3, Fy}",
Fg = {(mcal + mal)g/27 (mcal + mal)g/2> (mcaz + maZ)g/2> (mca2 + maZ)g/z)Ta

where K, is the force vector caused by the effect of gravitation.
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