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1. INTRODUCTION

The elementary theory of longitudinal vibrations of slender bars demonstrates that a rod of
Young’s modulus E, density p, length L, whose diameter D is much smaller than L, with free
ends and under no external force, is able to vibrate according to normal modes whose
natural angular frequencies are w = Nn(E/p)'/?/L, where N = 1,2,3,.... If N is odd, the
modes corresponding to these frequencies are called symmetric because the vibrations are
symmetric with respect to the central cross-section; the vibration amplitude is therefore an
odd function of the variable z that denotes the position of a point in the rod. If N is even the
corresponding modes are called antisymmetric, the amplitude being an even function of z.
All the natural frequencies are integer multiples of the first harmonic. Therefore, when
a slender rod vibrates in the lowest natural mode (first symmetric s1), its frequency is equal
to half that corresponding to the following mode (first antisymmetric al).

A complex function, relating natural frequencies to slenderness L/D, is found when the
length of the rod is approximately equal to or smaller than its diameter, even if the rod is

vibrating axisymmetrically. The non-dimensional frequency 2 = nfD./p/G is often used in
order to simplify calculations, where f'is the ordinary frequency, measured in Hz, and G the
shear modulus. The parameter €2 varies in a complicated manner with both slenderness L/D
and the Poisson ratio, and even the natural frequencies of the first two modes become equal
for a value of L/D [1]. Therefore, different mode shapes can be obtained for the same
natural frequency. The present work is focused on the study of that phenomenon.
Preliminary results [2] concerning this problem are also included.

In the study performed, a numerical method has been used because there appears to be no
available analytical solution for free vibrations satisfying the boundary conditions. The Ritz
method is adequate, between the different methods applicable to the problem, to study
vibrations of simple geometric systems. As is well known, this method is based on
approximating the solution for the displacement of the points of the system by means of
series of functions. Specifically, we are going to follow a methodology already applied to
linear elastic cylinders [3]. In the referred work, a combination of power series was used as
an approximation function. As our interest is restricted to axisymmetric vibrations, the
displacement functions only have radial u and axial w components, which are functions of
time ¢, the distance ' to the revolution axis, and the distance z’ to the central cross-section.
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Upon changing ordinary co-ordinates to non-dimensional co-ordinates, r = 2r'/D and
z = 7'/L, the harmonic solution, corresponding to a shape mode, will be

u(r, z, t) = U(r, z) sin(wt + ¢) and w(r, z, t) = W(r, z) sin(wt + ¢), (1)

where ¢ is a constant that depends on the initial conditions.
We assumed for the amplitudes U and W polynomial functions:
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with i=1,2,3,...; j=0,1,2,...; p=0,1,2,...; ¢=0,1,2,...; where i=0 is not
considered to avoid singularities in the stresses and radial displacements at r =0. In
symmetric modes, j only takes even values and g odd values and in antisymmetric ones,
j takes odd values and g even values.

For an axisymmetric mode, the maximum strain energy functional is
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The Hamilton principle for harmonic motion implies that 0(V. — Twax)/0A4;; = 0 and
OVmax — Thnax)/0C,y =0, for all values of i, j, p and q. These conditions constitute
a homogenous set of linear algebraic equations in 4;;and C,,. The eigenvalues of this set are
the square of the non-dimensional frequencies (%) and the eigenvectors are the coefficients
of the polynomials. From Q2 the ordinary frequency f for a given cylinder may be deduced
as well as the vibration shape can be inferred from the coefficients.

The number of terms of an appropriate polynomial depends on the desired precision.
After completion of a convergence study, a fifth degree was selected for the polynomials,
which were calculated using a PC in a few minutes.

In this paper, the natural frequencies and the mode shapes associated with the lowest
modes of a cylinder are obtained by applying the above methodology. The objective is to
describe and analyze in considerable detail the two lowest modes of a short cylinder
vibrating axisymmetrically. The interest is mainly focused on the fact that such cylinders
can vibrate both symmetrically and antisymmetrically at the same frequency, i.e., there
exists a multiple frequency. The values of L/D for which the lowest modes vibrate at the
same frequency are found for aluminium and steel cylinders. A detailed description of the
vibration of such modes is provided. The obtained symmetric and antisymmetric theoretical
eigenvectors for the multiple frequency are compared with the displacement measured when
the samples are vibrating in conditions close to the multiple frequency.
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A solid cylinder has been chosen as an example due to its three-dimensional form.
For the axisymmetric vibration modes, the cylinder becomes two dimensional from the
mathematical point of view. It also has a multiple frequency. Besides it is easy to be
mechanized. In addition, the theoretical and experimental work presented can help to
interpret the cylinder vibration spectrum. The more cylinder vibrations are known, the
better the experimental results can be used for practical purposes. Thus, cylinder vibrations
have been widely treated in the literature. This study could be of interest in determining the
dynamic elastic properties of materials.

2. RESULTS OF THE NUMERICAL CALCULATION

Numerical results of the non-dimensional frequencies for both the first symmetric and
first antisymmetric modes have been obtained for aluminium samples of the Poisson ratio
0-330 and values for the quotient L/D between 0-1 and 2:0. The results are shown in
Figure 1, where circles refer to the symmetric mode and triangles to the antisymmetric one.
The crossing point of both curves takes place for a value of the slenderness of 0-764 and for
afrequency Q = 2-783. According to the modal theory, this frequency is called multiple with
a degree of multiplicity two, because the system can vibrate in two different modes with the
same frequency. We have calculated the functions U(r, z) and W (r, z) from the eigenvectors
and the amplitude vectors are shown in Figure 2 for the symmetric vibration sl and in
Figure 3 for the antisymmetric one al. There is little resemblance between Figure 2 and the
fundamental shape of vibration of a slender cylinder. Figure 3 reminds us of the elementary
mode of vibration of a circular plate. Actually, none of the two modes seem to match those
obtained from the elementary theory for slender rods and plates, which is not applicable to
bars of similar length and diameter. Note the difference between the two modes for the same
frequency.

The numerical calculation was repeated for a stainless-steel sample of the Poisson ratio
0-298. The frequencies of the first symmetric mode and the first antisymmetric one are equal
for a slenderness L/D = 0-786.

3. EXPERIMENTAL RESULTS

In order to verify the results of the aforesaid numerical calculation, a series of experiments
have been carried out. The procedure used to generate the vibration of the sample and the
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Figure 1. Calculated values of the non-dimensional frequency parameter Q = nfD./p/G, versus the slenderness
L/D of an aluminium cylinder of the Poisson ratio 0-330 for the first symmetric and antisymmetric modes.
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Figure 2. Vibration amplitude for the first symmetric mode. Z is the axis of revolution. The vibration shapes are
obtained by numerical calculation.
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Figure 3. Calculated amplitude of vibration for the first antisymmetric mode.

posterior detection has been described previously [4]. The test piece is located so that it can
vibrate almost freely. An axial impact is applied at the centre of the cylinder base using
a small steel sphere. This kind of excitation allows the sample to vibrate freely after the
impact.

A laser interferometer OP-35 I/O from Ultra Optec Inc. has been used to measure the
vibration of the central point on the opposite base to that where the impact was applied.
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Figure 4. Spectrum of the free out-of-plane vibration measured for the aluminium cylinder of slenderness
L/D = 0-800.
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Figure 5. Experimental out-of-plane displacement amplitude and phase at the central point of a base of the
aluminium cylinder, submitted to a periodic longitudinal force. —O—, amplitude; —@—, phase.

Amplitude
Phase

The out-of-plane displacement component was detected. The obtained signal is
proportional to the instantaneous displacement of the detection point and it is digitized
with an oscilloscope. The sampling frequency was f; = 250 kHz. The maximum amplitudes
of the spectrum, obtained from the fast Fourier transform of the signal, correspond to the
natural frequencies of the induced vibration.

The first sample tested was an aluminium cylinder, D = 39-00 mm in diameter and
L = 3120 mm in length, i.e., L/D = 0-800. Figure 4 shows the vibration spectrum of the
sample obtained applying the previous procedure. The maxima corresponding to the lowest
natural frequencies are at f;; = 69975 and f,; = 72300 Hz. These values agree with the
numerical calculations. The sample experimentally tested does not have a ratio L/D = 0-764
although its slenderness is close to the theoretical ratio. A reduction in the complexity of the
experiments referred to below is then expected since the experimental layout and the
interpretation of the results become simpler. Consequently, the natural frequencies
corresponding to sl and al are not exactly equal.

In view of the previous results, a second experiment was carried out with the same
aluminium cylinder, but now using a harmonic exciter. The purpose of such an experiment
was to evaluate the behaviour of the cylinder plus a piezoelectric element system. The
piezoelectric disc was added to a base of the cylinder and the out-of-plane component of the
displacements was detected at the central point of the opposite base. Figure 5 shows the
amplitude—frequency results yielded when a sweeping of the exciting frequencies in the
range of interest is performed. Variation of oscillation amplitude and phase shift between
the displacement and the applied force can be observed. Note that the peaks are very sharp
although they do not seem so, due to the horizontal scale used. The resonance frequency
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(maximum amplitude) for the mode s1 is 69 495 Hz and for al it is 72273 Hz, which do not
agree completely with the previously measured frequencies for the free cylinder. The
resonant frequencies do not agree totally with the obtained ones for the previously analyzed
free vibration of the cylinder because the sample was overloaded due to the added
transducer. The variation of natural frequency due to the mass added to the bar can be
roughly estimated [4] by means of the formula tan kL. = — m,kL/m. The exciter used is
a commercial transducer of diameter 1-5 cm and mass 0-3 g. The rod mass is m = 1054 g,
and so the product of the wave number and the length of the bar is kL = 3-1327. Without
the added mass, it would be k'L = n. The relative variation of frequency is then ( f — f")/f =
(k — k')/Jk = — 0-:0028. The aforesaid experimental natural free vibration frequencies
fs1 = 69975 and f,; = 72300 Hz for the non-loaded sample become, after the estimated shift
for the loaded sample, f;; = 69779 and f,; = 72098 Hz. Thus, the estimated and measured
frequencies are in close agreement.

In a third experiment, two transducers were glued to the sample in order to induce forced
vibrations in the sample. Each one was adhered to a base of the cylinder being connected in
parallel to a sinusoidal signal generator. If symmetrically applied forces act on the bases for
a certain polarity in the connection, the excitation will be symmetric. The antisymmetric
excitation will be reached with the opposite polarization. We assume that the variation of
the resonant frequency of the system will be double because a mass is added to each base.
The resulting forced vibrations have been detected for both the symmetric and
antisymmetric excitations. The measurement of the amplitude and phase of the
displacement at a point of the cylinder generatrix should be taken when the exciting
frequency is close to the resonance. Therefore, the displacement is expected to be easily
detected. However, if the exciting frequencies are too close to the resonance, any parasitic
variation of frequency brings about sharp changes of amplitude and phase. For that reason,
close but non-equal frequencies to those of resonance have been applied, when carrying out
a scanning along a generatrix.

The results of the in-plane displacements corresponding to the symmetric mode sl are
shown in Figure 6, which shows the variations of amplitude and phase for a frequency of
69 130 Hz. This figure represents in the vertical axis seven approximately equidistant points
P1, P2,..., P7 placed along the generatrix of the test specimen. Point P1 is placed at
1-14 mm from a base. The in-plane displacements for each point are shown during the first
50 ps. The amplitude at P1 is about 5 nm and it decreases to zero at the central point P4.
Note the agreement with the theoretical results shown in Figure 2, in amplitude as well as in
phase. Figure 7 represents for mode s1 the amplitude vectors from their measured in-plane
and out-of-plane displacement components of the seven points along the generatrix. We
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Figure 6. Measured in-plane displacements as a function of time at seven equidistant points at the bottom
generatrix of the aluminium cylinder in the case of resonant symmetric excitation. The vibration amplitude at
1-14 mm from a base, point P1, is about 5 nm.
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Figure 7. Graph of the in-plane and out-of-plane experimental amplitudes and resultant displacements at seven
points along a generatrix of the cylinder for the first symmetric mode.
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Figure 8. Experimental in-plane displacement versus time at seven points along a generatrix for the first
antisymmetric mode. Note the phase concordance for this component of the displacement.

noted a very satisfactory coincidence between these experimental results and those shown at
the bottom of Figure 2 obtained by the aforementioned numerical calculation.

Figure 8 shows the measured in-plane displacements versus time for seven points
vibrating in the first antisymmetric mode al. All the points have the same phase for that
component. Figure 9 represents the amplitude (eigenvectors) for the same seven points
along the generatrix. The vibration shape shown differs from that expected from the
elementary theory for slender bars. The experimental results are in complete agreement with
the theoretical ones given in Figure 3.

A new experiment was carried out using a stainless-steel sample that theoretically has
a multiple frequency. The steel test piece used in the laboratory has a length of 31-35 mm,
a diameter of 39-90 mm, then its slenderness is 0-7857, which agrees with the theoretical
value of the crossing point of Q-L/D curves for al and s1. Figure 10 shows in detail the
obtained spectrum for the free vibration of the sample, which is left to vibrate on its own
after an initial axial impulse. There is only one resonance frequency at 67 875 Hz as it is
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Figure 9. Experimental eigenvectors at the seven points of the generatrix for the first antisymmetric mode. They
differ from the elementary mode shape.
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Figure 10. Detailed spectrum of the free vibration of a steel cylinder that presents only one frequency for
symmetric and antisymmetric modes sl and al.

expected. This demonstrates the good precision achieved in numerical calculation and
experiments as well as the consistency of the results.

The only aforesaid maximum is spread out in two, if the steel sample is put under
harmonic oscillation with piezoelectric pieces placed on both bases of the cylinder. On
analyzing the in-plane component at the centre and ends of the generatrix, it is deduced that
one value corresponds to the symmetric oscillation and the other to the antisymmetric one.

4. CONCLUSION

This paper describes the application of the Ritz method to calculate the eigenfrequencies
for axisymmetric vibration modes of aluminium and stainless-steel short cylinders. In the
study presented, the problem of multiple frequency for such cylinders is investigated.
A numerical solution for the frequency of axisymmetric vibration modes of a short cylinder
foresees a double frequency for the lowest symmetric and antisymmetric modes. From the
numerical results, it is concluded that the cross-over of frequencies versus slenderness curves
for the lowest antisymmetric and symmetric modes should be at L/D = 0-764 and 0-786 for
aluminium and steel samples respectively. The analysis of the eigenvectors at the crossing
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point shows the vibration shapes of such modes for the same frequency. The accuracy of the
numerical calculation is experimentally verified. Each test sample is put under free
oscillation in the laboratory in order to determine the natural frequencies. The detected
out-of-plane displacement, using a laser interferometer, proves the existence of the multiple
frequency. Under forced oscillations, the out-of-plane and in-plane displacements are
detected. The shapes obtained experimentally for the lowest antisymmetric and symmetric
modes near the crossing point are in good agreement with the numerical ones and
demonstrate that the experimental mode shapes and the theoretical ones are very close.
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