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1. INTRODUCTION

In recent years, work on toroidal shell vibrations has been based on shell theory [1}3].
A comment by Gall et al. [4] that some vehicle tires have a thickness placing them at the
limit of shell theory has rekindled interest in the use of the theory of elasticity [5] for the
analysis of these shells.
In this work, the theory of elasticity is used to study the polar axisymmetric vibrations of

isotropic toroidal shells with circular cross-section and uniform thickness. The theory is
valid for shells of any thickness and can serve to assess the accuracy of the shell theories.
Governing equations developed earlier by McGill and Lenzen [6] are adapted for the
analysis. Numerical results are found using the new di!erential quadrature method (DQM).
The solution is partially validated by comparing with results from the "nite element method
(FEM). The current work represents the initial stage of a program intended to cover
dynamics of non-symmetric anisotropic toroidal shells of variable thickness.

2. AXISYMMETRIC TOROIDAL ELASTICITY THEORY

The hollow toroid has a bend radius R, an annular cross-section of mean radius
r
�
"(r
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)/2, and a thickness h"r
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. The shell is axisymmetric and complete, and

thus extends through 3603 in the circumferential (�) and meridional (�) directions.
The equations of motion for polar axisymmetric vibrations, adapted from the theory of

McGill and Lenzen [6], can be written as
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The displacement components u
�
, u� are in the r, � directions, respectively, the f

�
are known

functions of r, � given in reference [7], ��"�L r�
�
��/(�#2�) , �L is the mass density, � is the

natural frequency in Hz, �"2��/(1!2�) , 2�"E/(1#�) , E is the Young's modulus and
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� is the Poisson ratio. The stresses are given in terms of the displacements by
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where the g
�
are known functions given in reference [7]. The solution to the governing

equations is subject to the boundary conditions 	
�
"	

��"0 on the surfaces r"r
�
, r"r

��
.

3. DIFFERENTIAL QUADRATURE METHOD

The DQM approach is used to determine the numerical results. This method which has
developed a reputation for high precision was introduced to vibration problems of thin
shells by Bert and Malik [8]. In the current study, the DQM is adapted to cover the
requirements of the theory of elasticity. A meshing is required in the cross-section de"ned by
the co-ordinates r and �. An extended exposition of the DQM approach is given by Bert and
Malik [8] and thus only a brief outline is given in the following.
The basis of the DQM is the meshing of the domain and the representation in the domain

of the derivatives of a function f (x) by a weighted sum of trial function values, i.e.,

d�f
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�
), (3)

where the A
��
��

are the weighting coe$cients of the kth order derivative at the ith sampling
point of the mesh in the x direction, and M is the number of sampling points in this
direction. Values are determined a priori for the weighting coe$cients depending on the
choice of the trial functions. In the analysis, either the DQM analogue of a governing
equation for the domain or a boundary equation is represented at each sampling point.
For the current problem polynomial trial functions [8] are used for the radial direction as

f (r)"1, r, r�, 2, r���. (4)

The Chebyshev}Gauss}Lobatto spacing [8] is used for the sampling points in this direction
of the mesh, and explicit formulas are then available for the weighting coe$cients.
Harmonic trial functions [8] are used in the meridional direction so as to satisfy continuity
conditions across �"180, 3603. The trial functions are thus taken as

f (�)"cos[2(k!1)
�], k"1, 2, 3, 2, N/2#1,

f (�)"sin[2(k!N/2!1)
�], k"N/2#2, N/2#3, 2, N, (5)

where N is an even number. Again formulas are available for the weighting functions
involved.
Use of the quadrature rules (3)}(5) for the derivatives in the governing equations (1) and

the boundary conditions leads to the transformed DQM domain and boundary equations.
The assembly of these equations yields a matrix equation of the form
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TABLE 1

Convergence of FEM and DQM results

Mode 1 2 3 4 5

FEM
6�24 0)28599 0)50139 1)18873 1)48968 2)73690
12�24 0)06991 0)20511 0)88066 0)91887 1)43433
12�48 0)06991 0)20510 0)88060 0)91878 1)43431
24�48 0)06991 0)20509 0)88060 0)91877 1)43431

DQM
6�24 0)07025 0)21195 0)88464 0)93741 1)43588
12�24 0)06989 0)20487 0)88016 0)91812 1)43477
12�48 0)06989 0)20487 0)88016 0)91812 1)43477
24�48 0)06989 0)20487 0)88016 0)91812 1)43477
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where vectors �
�
and �

�
contain the displacements u

�
, u� corresponding to the boundary

and domain sampling points respectively. The vector �
�
is eliminated using the static

condensation technique. The matrix equation then reduces to

([!S
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S��
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�
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This equation represents a standard eigenvalue problem and can be used to "nd the
frequency parameters ��. The theory presented in the preceding was coded in the
MA¹¸AB	� program axifre.m. Results from this program are given in the following.

4. VALIDATION AND RESULTS

Two problems were considered to obtain partial validation for the analysis procedure. In
the "rst problem, DQM results are compared for a thick toroid with results from the FEM
code ADINA [9]. An axisymmetric rather than a shell theory element was used. The shell
parameters were: r

�
/r

�
"1)3333, r

��
/r

�
"0)6667, R"5)0, �"0)3. Table 1 gives

a comparison of the frequency parameter �� for the "rst "ve natural frequencies for
a number of di!erent meshes. It is seen that there is rapid convergence for both methods and
close agreement for the "ner meshes. The DQM as a specialized solution has a major
computer time advantage over the FEM.
In the second validation problem, DQM results are compared for a thin toroid with

results obtained from the FEM. Table 2 gives a comparison of the results obtained for the
frequency parameter 
"�L ��R�/E. The lowest axisymmetric frequencies for three cases
cited in reference [1] are presented. The thin shell theory results of reference [1] are also
given. It is seen that there is close agreement between the three methods, especially for the
very thin shells.
Additional results were computed to indicate the variation of the natural frequencies with

the Poisson ratio. The geometric parameters were r
�
/r

�
"1)01, r

��
/r

�
"0)99, R"2)0.

Table 3 indicates the variation of the frequency parameter 
 with � as computed by the
FEM and DQMmethods. The values given represent the "rst "ve antisymmetric modes for
a toroid described in reference [6]. Results from the two methods agree very closely with
each other, but are at major variance with the results given in Figure 7 of reference [6].



TABLE 2

Comparison with shell theory and FEM results

Shell theory FEM DQM

Case [1] Mesh Value Mesh Value

R/r
�
"10 2�400 0)0149 6�18 0)0149

h/r
�
"0)01 0)0148 2�800 0)0149 8�24 0)0149

4�800 0)0149 12�36 0)0148

R/r
�
"10 2�400 0)0322 6�18 0)0319

h/r
�
"0)02 0)0315 2�800 0)0322 8�24 0)0319

4�800 0)0322 12�36 0)0318

R/r
�
"5 2�500 0)0153 6�18 0)0152

h/r
�
"0)02 0)0150 2�1000 0)0153 8�24 0)0152

4�1000 0)0153 12�36 0)0152

TABLE 3

<ariation of frequency parameter with �

�"0)25 �"0)30 �"0)35

Mode FEM DQM FEM DQM FEM DQM

1 0)001287 0)001287 0)001165 0)001165 0)000996 0)000996
2 0)052849 0)052849 0)047238 0)047238 0)039773 0)039773
3 0)065252 0)065251 0)058588 0)058587 0)049589 0)049588
2 0)097698 0)097697 0)087818 0)087817 0)074455 0)074454
3 0)138559 0)138556 0)125141 0)125138 0)106669 0)106666
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5. CONCLUSION

Accurate solutions have been presented for the natural polar axisymmetric frequencies of
isotropic toroidal shells of arbitrary uniform thickness. These values are useful in validating
shell theory and "nite element procedures. Work is currently underway to extend the
current method to the non-symmetric dynamics problem of anisotropic toroidal shells of
variable thickness.
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