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Subsonic #ows over Helmholtz resonators often cause strong periodic pressure
#uctuations inside the resonators over a range of outer #ow velocities. The #ow-excitation
mechanism is known to be governed by both the shedding of discrete vortices within the
shear layer over the ori"ce and the acoustic response of the cavity. This self-sustained
oscillation phenomenon is often analyzed by using a feedback loop model where the #ow
excitation and the acoustic response of the resonator are approximately modelled as
a forward gain function and as a backward gain function respectively. In the present work,
a similar approach was followed and a new forward gain function was derived based on the
concept of &&vortex sound'' to model the #ow excitation. The formulation combined this
forward gain function with a backward gain function from previous work, within the
framework of the feedback loop analysis. The approximate method allowed the frequency
and the relative amplitude of the cavity pressure #uctuations to be predicted for a range of
#ow velocities. In addition, the extended Nyquist stability criterion was used to estimate the
onset and the termination velocities of the "rst two modes of the shear layer #ow
oscillations. Experimental data were obtained using a rigid-walled cavity in a low-speed
wind tunnel. The results showed that the model predictions were in reasonably good
agreement with the experimental data.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Cavities exposed to boundary layers and/or shear layers are often acoustically excited by
outer #ows over speci"c ranges of #ow velocities. Instances of self-sustained and
#ow-excited resonance occur for many engineering applications such as for vehicles with
open sunroofs [1], for pipelines with closed side branches [2], for aircraft landing gears [3].
Since the noise and vibrations that emanate from the #ow-excited acoustic resonance of
cavities are usually unwanted, many researchers have investigated the phenomenon in order
to prevent it.

Many of the models previously proposed for this problem analyzed the instability of the
shear layer based on stability theory where small wavelike disturbances of shear layers are
analyzed by using a linear approximation [4}8]. The shear layer's lateral motion (i.e.,
motion in the direction perpendicular to the free stream #ow direction) obtained by using
linear stability theory can be expressed by a sinusoidal function with exponentially
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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increasing amplitude with the distance in the streamwise direction. Since the amplitude of
the shear layer's #uctuations is predicted to grow unrealistically large at the downstream
edge by linear stability theory, only the predicted phase information is useful subsequent
analysis. In the models that use linear stability theory, the shear layer's periodic,
lateral displacement over the cavity ori"ce is identi"ed as the aerodynamically induced
acoustic source. However, one limitation of linear stability theory is that it is not
appropriate in the case of #ows where the shear layer is rolled-up into discrete vortical
structures [2].

Another method to analyze the shear layer's instability is the so-called &&vortex-sound''
theory [9, 10]. Vortex sound theory describes how sound can be induced by convection
of discrete vortices. Bruggeman and his colleagues [2] used vortex sound theory
for the problem of #ow-excited cavities. In their work, the lift force due to the convection
of discrete vortices over the ori"ce was interpreted as the acoustic source. Vortex
sound theory was considered to be more appropriate to describe the acoustic sources
for #ows where the shear layer's disturbance cannot be represented by small wavelike
motion. To predict the amplitudes and the frequencies of the pressure oscillations with the
cavity (in this case, a side-branch resonator), an inhomogeneous convected wave equation
with a source term related to vortex convection was solved using a Green's function
method.

In many other models, most of which are based on linear stability theory, a feedback loop
analysis [11}15] has been preferred to predict the amplitudes and the frequencies of the
pressure within the cavity rather than the Green's function method. In a feedback loop
model, the response of the #ow-excited cavity system is considered to be given in the
frequency domain by the product of the forward and the backward gain functions. The
forward gain function represents the response of the #ow instability to a sinusoidal acoustic
input, while the backward gain function represents the acoustic response of the cavity
resonator to a sinusoidal excitation. Once the two gain functions are modelled
appropriately, the feedback loop analysis o!ers many advantages. It can readily be
integrated in a design optimization scheme since the feedback loop method requires little
computational time. A simple stability analysis that yields the onset and termination
velocities of resonance can also be performed.

In the present study, an analytical model is proposed in the form of a feedback
loop for a convenient description of resonator systems excited by low Mach number
#ows. Vortex sound theory is introduced to model of the forward gain function to overcome
the limitations imposed by linear stability theory. Since the amplitude information
predicted by the linear stability theory is not reliable, the amplitude gain of the
forward gain function has been separately modelled based on an empirical scaling
law, while the phase response of the forward gain function is obtained from the sinusoidal
expression of the shear layer's displacement. However, it will be shown in later
sections that the mathematical derivation procedures for both the phase response and the
amplitude gain of the forward gain function can be uni"ed by introducing vortex sound
theory.

The derivation of the model also relied on the work of Nelson and his colleagues [16, 17]
for the understanding of the basic excitation mechanism. After a new feedback loop model
for the description of the #ow-excited cavity systems is proposed, a stability analysis
based on Nyquist stability criterion is described within the framework of the feedback loop
model developed in the present work. The stability analysis allowed the prediction of the
onset and termination velocities of resonance. It has rarely been attempted in previous
studies.
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2. FEEDBACK LOOP ANALYSIS AND THE BACKWARD GAIN FUNCTION

When a cavity resonator is excited by #ow, the instantaneous total #ow velocity, v, over
the cavity ori"ce can be decomposed into a purely vortical #ow "eld and a potential #ow
"eld [17], i.e.,

v"v�
�
#v�

�
#��M #���, (1)

where v
�
and �� represent the vortical #ow "eld and the potential #ow "eld, respectively,

the overbar denotes a time average and the prime denotes the #uctuating component of the
velocity "eld. Note that the acoustic #ow is the unsteady part of the potential #ow, which is
denoted by ��� in equation (1). The sum of the "rst three terms on the right-hand side of
equation (1) thus represents the remaining aerodynamic (or hydrodynamic) #ow "eld.

It is known that the acoustic #ow "eld and the aerodynamic #ow "eld strongly interact
with each other at a resonance condition. For instance, the acoustic #ow velocity near the
upstream edge of the cavity ori"ce determines the timing of a vortex shedding at the
upstream edge and is involved in the vortex rolling-up process when shed vortices convect
downstream. The aerodynamic #ow "eld also in#uences the acoustic #ow "eld: energy is
transferred from the former to the latter #ow "eld for speci"c conditions. For more detailed
physics of interaction between the two #ow "elds, see references, for instance, references
[17, 18].

In the feedback loop analysis of the #ow-excited cavity system, each of the #uctuating
acoustic and the aerodynamic #ow velocity "elds is approximated by the complex acoustic
volume velocity, qL

�
, and the complex aerodynamic volume velocity, qL

�
respectively. Both

volume velocities are taken to be positive in the direction pointing into the cavity. Then, the
controlling and controlled relationship between the two #ows in a #ow-excited system can
be described by using a feedback loop as shown in Figure 1. The feedback loop model in
Figure 1 consists of a forward gain function, (qL

�
/qL

�
)
�
, and a backward gain function, (qL

�
/qL

�
)
�
.

The backward gain function is the complex ratio of the output acoustic volume velocity
and the input aerodynamic volume velocity and it represents the acoustic response function
of the cavity. The backward gain function can be formulated according to the type of
resonator involved in the system. The type of cavity resonator considered in the present
study is a Helmholtz resonator. A sketch of the cavity is shown in Figure 2. The Helmholtz
resonator is composed of a void cavity with an open neck. It is the acoustical analog of
a single-degree-of-freedomoscillator. The equivalent damping ratio is governed by both the
radiation resistance of the ori"ce and viscous losses in the ori"ce. The resonance frequency,
which is equal to the natural frequency, depends on the equivalent mass of the #uid within
the neck and on the equivalent compliance of the compressed #uid within the cavity. The
equivalent mass also accounts for the radiation reactance, and #ow entrainment in the
vicinity of the neck. The compliance depends primarily on cavity volume [18]. Mast and
Figure 1. Non-linear feedback loop model of the #ow-excited cavity.



Figure 2. Co-ordinates system and cavity geometry.
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Pierce derived a backward gain function in terms of the angular resonance frequency of the
Helmholtz resonator, �

�
, and the damping ratio, �, of the equivalent single-degree-of-

freedom system. The backward gain function can be represented as [15]

�
qL
�

qL
�
�
�

"

!(2�( j�)�
�
#��

�
)

(j�)�#2� ( j�)�
�
#��

�

. (2)

In the present study, the above backward gain function was used in the feedback loop
analysis together with a forward gain function that will be derived in the next section.

3. FORMULATION OF THE FORWARD GAIN FUNCTION

The forward gain function is the complex ratio of the output aerodynamic volume
velocity and the input acoustic volume velocity. It represents the external pressure
#uctuations of the #ow instability triggered by the acoustic #ow (i.e., if the output volume
velocity is replaced by the output pressure). In the present study, vortex sound theory
[9, 10] was used to model the periodic pressure #uctuations induced by vortices convected
over the cavity ori"ce.

3.1. VORTEX SOUND THEORY

Vortex sound theory describes the power transfer mechanism between the vortical #ow
"eld and the acoustic #ow "eld. For low Mach number #ows, the vortical #ow can be
assumed to be incompressible. The instantaneous acoustic power, P, transferred from the
incompressible vortical #ow and by the mean #ow to the compressible potential acoustic
#ow is given by

P"!� �
�

(��v) ) ud�, (3)

where �� "��v is the vorticity vector, v is the local #ow velocity vector, and u is the local
acoustic velocity vector. The integral is carried out over the volume, �, where the vorticity
� is non-vanishing. The power is transferred from the vortical #ow (and the mean #ow) to
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the acoustic "eld through the Magnus force, !� (��v), acting on #uid elements
throughout. It should be noted that a positive value of the scalar product of the force,
!� (��v), and the acoustic velocity vector, u, indicates a net work production.

3.2. PERIODIC EXTERNAL EXCITATION PRESSURE

To make use of the interpretation of vortex sound theory in the present formulation, the
#ow over the cavity is simpli"ed as a train of discrete line vortices travelling at a constant
convection speed ;

�
: the local #ow velocity at the center of a vortex can be represented as

v";
�
n
�
, (4)

where n
�
, i"1, 2, 3 represents the unit vector in the x

�
direction of the co-ordinate system

shown in Figure 2. Since the #ow can be assumed to be nearly two-dimensional over the
ori"ce, only the vorticity component in the spanwise direction (i.e., in the x

�
direction) needs

to be considered. Thus, the vorticity vector is

�"�n
�
. (5)

The transverse force per unit span induced by the vortices on the compressible #ow in the
cavity can thus be calculated as follows:

F
�	


"�
�

!� (��v) dS"�
�

!� (�n
�
�;

�
n
�
) dS"�!�;

� �
�

�dS� n
�
"(!��;

�
)n

�
,

(6)

where �"�
�

� ) n�
dS is the vortex circulation, and S is the cross-sectional area (along the

x
�
}x

�
plane) of a control volume enclosing the ori"ce. The control volume shown in

Figure 3 is the region of interest where interactions between the vortical #ow and the
acoustic #ow are presumed to be strong. The circulation is simply the integral of the
vorticity (i.e., �"�

�
�n

� '
n
�
dS"�

�
�dS). It is negative for the co-ordinate system shown in
Figure 3. A diagram of circulation strength #uctuations.
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Figure 2. Therefore, the vortices convected downstream over the ori"ce induce a lifting force
pointing out of the cavity ori"ce in the positive x

�
direction. The local non-uniform pressure

distribution induced by the discrete vortices across the ori"ce at any instant can be integrated
over the ori"ce to yield an overall pressure #uctuation as a function of time. The excitation
pressure, p

�	

, can be obtained by dividing the Magnus force in equation (6) by the streamwise

ori"ce length, d:

p
�	


n
�
"!

F
�	

d

(7a)

and thus,

p
�	


"

��;
�

d
. (7b)

Positive and negative signs in the external force, F
�	


, mean upward and downward lift forces,
respectively, in the chosen co-ordinate system (see Figure 2). The sign convention has been
changed in equation (7a) so that positive and negative pressures represent compression and
rarefaction respectively. Note that equation (7b) is in fact Kutta}Joukowski's law. The e!ect
of the external pressure, p

�	

, is analogous to that of an evenly distributed external pressure,

such as that produced by a normally incident plane wave.
Recall that equation (7) was formulated based on the assumption of ideal line vortices (i.e.,

concentrated vortices). However, equation (7) is assumed to be valid in the practical case
where vortices are di!used. In either case, the circulation � represents the total circulation
strength within the control volume and the velocity ;

�
represents the constant convection

velocity of the vortices within the control volume. Then, from equation (7b), it can be seen that
the external pressure is in phase with and proportional to the total circulation strength within
the control volume.

3.3. CIRCULATION STRENGTH BALANCE

The net circulation strength within the control volume enclosing the cavity ori"ce, where
the interaction between the acoustic #ow and the vortically induced #ow is strong, is
investigated in this subsection. If the #ow within the control volume is assumed to be inviscid
(i.e., no generation or dissipation of vorticity within the control volume), then the Reynolds
transport theorem applied to the circulation within the control volume yields

d

dt ��
����

�dS"��
����

�v
�
dx

��
��

!��
����

�v
�
dx

��
�



. (8a)

The above equation shows that the net rate of change of circulation within the control volume
is the sum of the in#ux of circulation and the out#ux of circulation. The in#ux is originally
distributed throughout the incoming boundary layer and shed into the cavity ori"ce area
through the upstream control surface. The out#ux is carried primarily by the discrete vortices
which are discharged from the control volume crossing the downstream control surface.

Equation (8a) can be rewritten in terms of the circulation, �
��


(t)"��
����

�dS, recognizing
that the #ux terms become ��

��
(t)"(�

����
�v

�
dx

�
)
��
and ��

�


(t)"(�

����
�v

�
dx

�
)
�


, i.e.,

��
��


(t)"��
��
(t)!��

�


(t). (8b)
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The circulation in#ux at the upstream edge, ��
��
(t), can be approximated as a function of the

free stream #ow velocity, ;
�
, as explained by Nelson and his colleagues [17], i.e.,

��
��
(t)"�

	
�

�

�v
�
dx

�
"�

	
�

�
�

v

�

x

�

!


v
�


x
�
�v�dx�

"�
	
�

�

!

dv
�

dx
�

v
�
dx

�
"�

	
�

�

!v
�
dv

�
"!

1

2
;�

�
,

(9)

where 	
�
represents the boundary layer thickness and v

�
represents the #ow velocity

component in the x
�
direction. Note that the circulation in#ux is independent of the velocity

pro"le v
�
(x

�
) and is a constant for a given free stream #ow velocity as can be seen in

equation (9). Therefore, it is the unsteady circulation out#ux at the downstream control
surface that is responsible for the #uctuations of the net circulation within the control
volume.

The time history of the net circulation #uctuations, along with a series of schematic
diagrams for the convection of vortices over one cycle are given in Figure 3. Vortex
shedding is triggered by periodic acoustic velocity near the upstream edge. It has been
frequently reported that it occurs at the moment the acoustic component of the #ow, the
real part of qL

�
e��
, is zero and increasing [2, 15, 17]. The time origin (t"0) was chosen as

the moment when a vortex is shed near the upstream edge. The input acoustic velocity is
considered nearly sinusoidal since a cavity resonator can be considered a low-pass "lter.
The time history of the net circulation is represented by a solid line in the case of convection
of ideal line vortices. Whenever a vortex is discharged at the downstream control surface,
the net circulation experiences a rapid increase in amplitude (which occurs at t"2/4¹ in
Figure 3). The vorticity is accumulated at a constant rate over the rest of the cycle. Note that
the circulation out#ux (and thus the net circulation) can be considered as a periodic
function since the vortical #ow over the cavity ori"ce is synchronized with the action of the
acoustic #ow: that is,

��
�



(t)"��
�



(t!n¹), (10)

where n is an integer, and ¹ is the acoustic period.

3.4. FOURIER SERIES REPRESENTATION

Since the circulation out#ux is a periodic function, it can be represented as a Fourier
series, i.e.,

��
�



(t)"
�
�

����

C
�
ej(2�n/¹)t (11)

with the Fourier coe$cients,

C
�
"

1

¹ �
�

��
�



(t) e!j (2�n/¹)t dt. (12)

The rate of net circulation can be represented by substituting equations (9) and (11) into
equation (8b), i.e.,

��
��


(t)"!

�
�

����nO0

C
�
e!j (2�n/¹)t. (13)
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Note that the DC term of the Fourier series of the rate of net circulation was nulli"ed since
there can be no net accumulation of circulation within the control volume during one
complete acoustic cycle (that is, C

�
"��

��
(t)"!�

�
;�

�
). Then, the net circulation can be

obtained by integrating equation (13) with respect to time, i.e.,

�
��


(t)"�
��


!

�
�

����nO0

�
¹

j2�n�C�
ej(2�n/¹) t , (14)

where �
��


is an integrating constant and represents the time-averaged net circulation. The
mean value of the net circulation within the control volume can be obtained by multiplying
the steady circulation in#ux and the time during which a vortex is convected over the
ori"ce, i.e.,

�
��


"!

1

2
;�

�

d

;
�

. (15)

Finally, the external excitation pressure, p
�	


, can be obtained by combining equations (7b)
and (14), i.e.,

p
�	


(t)"!

1

2
�;�

�
!�

;
�

d

�
�

����nO0

�
¹

j2�n� C
�
ej(2�n/¹) t. (16)

The time history of the net circulation as well as that of the external excitation pressure
depend on both the details of the distribution of the vorticity within the discrete vortices
and the vortices' convection speed. For instance, when a loosely packed vortex is discharged
out of the control volume, the net circulation within the control volume would not change
rapidly compared to the case when a tightly packed vortex is discharged (see in Figure 3 the
time history of the net circulation for the case of di!used vortices represented by a dotted
line). In the next subsection, two circulation out#ux functions associated with the
convection of ideal vortices and di!used vortices, respectively, are investigated. In either
case, the vortices' convection velocity is assumed to be constant.

3.5. MODELLING OF THE EFFECTS OF VORTEX DIFFUSION

The simple case of ideal line vortices was "rst considered. If the vorticity shed during one
period of an acoustic cycle is perfectly concentrated along a line, following an ideal
rolling-up process, the circulation out#ux can be expressed as

��
�



(t)"!�
�
;�

�
¹	 (t!�), ��

�


(t!n¹ )"��

�


(t), (17)

where 	(t) is the Dirac delta function and � is the convection time delay given by �"d/;
�

(alternatively, �"(St
(
/2�)¹ where St

(
is a Strouhal number given by St

(
"�d/;

�
). The

resulting external pressure #uctuation associated with the convection of ideal line vortices
can be expressed as

p
�	


(t)"!

1

2
�;�

�
#

1

2
�;�

�

�
�

����nO0

1

jnSt
(
ejn(�t!St

(
) . (18)
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Since, in general, the external pressure, p
�	


(t), is a non-sinusoidal periodic function as can be
seen in equation (18), the aerodynamic volume velocity associated with the external
pressure is also a non-sinusoidal periodic function because they are linearly related. Since
the output aerodynamic volume velocity resulting from the nearly sinusoidal acoustic
volume velocity input consists in not only the fundamental component but also its
harmonic components plus a DC term, the subsystem modelled by the forward gain
function is considered non-linear. In the describing function analysis of non-linear systems,
the output is approximated by the fundamental component and the higher order harmonic
terms are discarded [19]. The phasor of the fundamental component of the external
excitation pressure can be written as

pL
�	


"�;�
�

1

St
(
e!jSt

( . (19)

Exact modelling of the circulation out#ux function for the practical case of di!used
vortices may require a detailed knowledge of the interaction between the vortical #ow and
the resulting acoustic #ow a priori. However, considering the simplicity of the control
volume model used in the present work, the approach of obtaining the circulation out#ux
based on both the details of the vorticity distribution in a di!used vortex and its convection
is considered unnecessary. Instead, a simple form of the circulation out#ux function is given
to stimulate the case when a di!used vortex is discharged out of the control volume. The
circulation out#ux function tested in the present work to simulate the case of a di!used
vortex is a rectangular step function and is given by

��
�



(t)"!H (!=/2#�)t)=/2#�),

��
�



(t)"0 (otherwise), (20)

��
�



(t!n¹)"��
�



(t),

whereH is given by H"�
�
;�

�
¹/=, and= is a control parameter that is greater than zero

and less than or equal to ¹. The control parameter,=, controls the degree to which the
vortex is concentrated: that is, the vortex becomes an ideal line vortex as= goes to zero
while the circulation out#ux becomes uniform when = is given by ="¹. The external
pressure #uctuation resulting from the above assumed circulation out#ux can be obtained
from a Fourier transform of equation (20), and substitution of the Fourier coe$cients into
equation (16), i.e.,

p
�	


(t)"!

1

2
�;�

�
#

1

2
�;�

�

�
�

����nO0

1

jnSt
(
sinc�

n=

¹ � ejn(�t!St
(
), (21)

where sinc(x) is de"ned as sinc(x)"sin(�x)/�x. The phasor of the fundamental component
of the #uctuating terms can be identi"ed in equation (21) as

pL
�	


"�;�
�

1

St
(
sinc�

=

¹� e!jSt
(. (22)

Note that, when ="0 (i.e., in the case of an ideal line vortex), equation (22) becomes
identical to equation (19) as expected. As = increases (i.e., as the vortex becomes more
di!use), the amplitude of the phasor decreases and "nally reaches zero as= approaches the
value of ¹ (i.e., the circulation out#ux becomes steady as the vortices are fully di!used).
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Thus the e!ect of vortex di!usion is to decrease the amplitude of the external pressure
#uctuation as can be seen in equation (22). A similar result is obtained as long as the
assumed circulation out#ux is given by a function symmetric with respect to t"�.
A symmetric circulation out#ux function may represent, for instance, a symmetrically
distributed vorticity "eld convected at a constant speed. In the case of an asymmetric
circulation out#ux function, the phase of the fundamental component of the external
pressure #uctuation would vary from that speci"ed in equation (22). That would in turn
result in a change in the oscillation frequency. The circulation out#ux function is assumed
to be symmetric in the present work. This assumption is consistent with experimental
results reported in a previous study [20] showing that the pulsation amplitude of a #ow-
excited cavity tends to decrease without signi"cant changes in the oscillation frequency as
the shear layer thickness (i.e., di!usivity of a vortex) increases. Then, the phasor of the
fundamental component of the external pressure #uctuation can be rewritten for general
cases of symmetrical circulation out#ux functions by introducing a parameter 
, i.e.,

pL
�	


"
�;�
�

1

St
(
e!jSt

(. (23)

The parameter 
 represents the degree to which a vortex is concentrated. It reaches
a maximum value of unity for an ideal line vortex, and is minimum or null for a totally
di!used vortex.

3.6. DESCRIBING FUNCTION THEORY

The phasor of the fundamental component of the external pressure #uctuation, pL
�	


, can
be related to the phasor of the fundamental component of the aerodynamic excitation
volume velocity, qL

�
, through the relation [15]

qL
�
"S�

�
pL
�	


/(j�M), (24)

where M is the e!ective mass of the Helmholtz resonator. This is simply the linearized
momentum equation for sinusoidal #ow through the ori"ce in the absence of a cavity,
neglecting the e!ects of sound radiation and the ori"ce resistance (i.e., assuming the ori"ce
to have a purely mass-like impedance). Equation (24) can be rewritten by using equation
(23), i.e.,

qL
�
"

S�
�

�;�

�
St

(
( j�M)

e!jSt
( . (25)

The phasor of the sinusoidal input is readily obtained recalling that the time origin (t"0) is
the moment when the acoustic component of the #ow is zero and increasing at this instant,
i.e.,

qL
�
"�qL

�
�. (26)

The forward gain function can be obtained by combining equations (25) and (26), i.e.,

�
qL
�

qL
�
�
�

"

S�
�

�;�

�
1

St
(
( j�M) �qL

�
�
e!jSt

( . (27a)
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Interestingly, the forward gain function expressed in equation (27a) is almost identical
with that proposed by Mast and Pierce [15], i.e.,

�
qL
�

qL
�
�
�

"

S�
�
��;�

�
�M �qL

�
�
e!j(3�/2!St

(
) . (27b)

In combination with the backward gain function expressed in equation (2), equations
(27a, b) would predict the same oscillation frequencies and nearly identical oscillation
amplitudes over a range of free stream #ow velocities provided that the parameter � (whose
physical interpretation is similar to 
 in the present work) is set equal to 
/St

(
for a given

free stream velocity. Mast and Pierce's derivation of equation (27b) was based on the
concept of &&vortex-edge interaction'' mechanism: that is, the dipole-like aerodynamic
pressure oscillation near the downstream edge on which the vortices periodically impinge
was considered responsible for the acoustic excitation of the cavity. In their work, the phase
response of the forward gain function was modelled as the linear combination of
a convection phase lag and an inherently constant phase factor associated with the
vortex-edge interaction mechanism. In equation (27b), the exponent St

(
represents the

phase lag associated with the convection time for a vortex to travel from the upstream edge
to the downstream edge of the cavity ori"ce, while ej3�/2 is the inherent phase factor between
qL
�
and qL

�
when a vortex interacts with the downstream edge. To obtain the phase factor

associated with the vortex-edge interaction, Mast and Pierce referred to the
experimental results presented by Tang and Rockwell [21], who studied the instantaneous
pressure "elds along the top and front faces of a corner as a function of the streamwise
position of an approaching vortex.

When they interpreted the #ow visualization results obtained by Tang and Rockwell,
they judged a vortex to &&reach'' the downstream edge at the instant when the leading edge of
the vortex, not the core of the vortex, reaches the edge. However, the consistency of this
vortex impingement criterion with the rest of their discussion is disputable, since it was
assumed in their study that the vortices travel a distance, d, to obtain the convection phase
lag. When the pressure gradient along the corner at the moment where the vortex core
reached the downstream edge in Tang and Rockwell's visualization study is used, it can be
found that Mast and Pierce's approach would yield a far di!erent phase factor of ej�/2.

In the present work, the forward gain function was derived based on a di!erent physical
basis; a circulation strength balance over the cavity ori"ce. This approach appears to be
preferable over that of reference [15]. The phase response of the forward gain function does
not need to be modelled separately from the amplitude gain, and the phase factor, e j3�/2, has
a clearer physical interpretation (i.e., a mass-like impedance of the air within the ori"ce of
a cavity).

4. SOLUTION PROCEDURE AND STABILITY ANALYSIS

4.1. GRAPHICAL SOLUTION OF LIMIT CYCLES

The oscillation frequencies and the amplitudes of the so-called &&limit cycles'' (i.e., nearly
sinusoidal oscillation in a non-linear system) of the #ow-excited resonator system can
be obtained by solving the characteristic equation of the feedback loop shown in
Figure 1, i.e.,

�
qL
�

qL
�
�
�
�
qL
�

qL
�
�
�

"1. (28)
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This equation represents the self-consistent condition of any closed feedback loop. For the
purpose of calculating the oscillation frequency and the amplitude, the non-linear
describing function, (qL

�
/qL

�
)
�
, equation (27), was decomposed into linear and non-linear

elements. The linear element of the forward gain function was then combined with the linear
backward gain function to yield a new linear gain function, G( j�), expressed as

G ( j�)"K
�

��
�
#2��

�
(j�)

j� ((j�)�#2��
�
( j�)#��

�
)
e!( j�)�, (29)

whereK
�
is a constant gain de"ned asK

�
"
�;�

�
S�
�
/�M. Note that the linear gain function

in equation (29) also includes an integrator and a time delay. Then, the non-linear element
in the forward gain function can be represented as

N (A, �)"
1

�A
, (30)

where A represents the amplitude of the input sinusoidal signal (i.e., A"�qL
�
� ). By using

equations (29) and (30), equation (28) can be conveniently rearranged as

1#N (A, �)G( j�)"0 (31a)

or equivalently,

G ( j�)"!

1

N (A, �)
. (31b)

Then, the characteristic equation, equation (31b), can be solved graphically by using
Nyquist plots. From polar plots of the open-loop responses of the two gain functions,G( j�)
and !1/N(A, �), the values of frequency and amplitude that satisfy equation (31) can be
uniquely determined at each crossing point of the two curves.

Typical Nyquist plots for G( j�), equation (29), are shown in Figure 4 for four di!erent
free stream #ow velocities. The negative real axis in each polar plot represents the locus of
!1/N (A, �) (i.e., !1/N(A, �)"!�A from equation (30)). Note that the shape of the
frequency response of the linear gain function, G( j�), is a spiral because it includes a time
delay element.G( j�) crosses the negative real axis repeatedly. Thus, given a free stream #ow
velocity, there is an in"nite number of possible limit cycles, even though the predicted
amplitude of the limit cycle goes to zero rapidly as its oscillation frequency increases as can
be seen in Figures 4(a)}(d). Each limit cycle is associated with a di!erent shear layer
excitation mode. The "rst shear layer excitation mode has approximately one vortex over
the ori"ce and is associated with the second limit cycle (when the limit cycles are numbered
in the order of increasing oscillation frequency). The second shear layer excitation mode has
approximately two vortices over the ori"ce and is associated with the third limit cycle, and
so on. The shear layer excitation mode that is associated with the "rst limit cycle with the
lowest oscillation frequency among the limit cycles is referred to as the shear layer
excitation mode &&zero'' in the present work. Its wavelength is theoretically greater than four
times the ori"ce length, d, in the streamwise direction [22]. In the next subsection, the
stability of the limit cycles is assessed by using the Nyquist stability criterion.

4.2. NYQUIST STABILITY CRITERION

Very few researchers have theoretically investigated the stability of the #ow-excited
oscillation. The stability of a limit cycling system is of particular interest here since it allows



Figure 4. Nyquist plots (polar plots) of the function G ( j�) given by equation (29) in the case where d"8 cm
(thus �

�
"754 and �"0)0455: see Table 1); (a) ;

�
"15 m/s; (b) ;

�
"20 m/s; (c) ;

�
"25 m/s; (d) ;

�
"30 m/s.
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the prediction of the onset and termination velocities for di!erent modes of #ow excitation.
Covert [23] and Howe [6] attempted to predict the onset velocity of di!erent shear layer
modes by using linear stability theory. However, Covert's model cannot predict the
termination velocity. Moreover, both of their models cannot predict the existence of a stable
second shear layer excitation mode coupled with the fundamental acoustic mode, which
was observed over a range of low free stream #ow velocities in the experiment performed in
the present work (detailed experimental results will be discussed in section 5). In the present
work, attempts were made to predict the onset and termination velocities for each shear
layer excitation mode by using a stability analysis based on the Nyquist stability criterion
that can be performed within the framework of the feedback loop model represented in
Figure 1. Readers who are not familiar with the Nyquist stability criterion can refer to
reference [24], for example.

In order to analyze the stability of the possible limit cycles based on the Nyquist stability
criterion, the complete polar plot of the frequency response function, G( j�), should be
obtained for the whole range of � including the region where 0�(�(0�. The complete
polar plot of G( j�) can be obtained by mapping a so-called Nyquist path de"ned in
the s plane into the G(s) plane. Since the open-loop transfer function,N(A, �)G(s) has a pole
at the origin in the s-plane, the Nyquist path should be chosen such that it circles around the
s"0 point, while ensuring that all the poles and zeros of G(s) in the right-half plane are
enclosed by the path. A Nyquist path that satis"es these requirements is shown in Figure 5:
the Nyquist path describes an in"nitesimally small semi-circle near the origin in the s plane
to avoid the singularity at the origin. The small semi-circle of the Nyquist path shown in
Figure 5 can be represented as s"� ej� (!�/2)�)�/2), where � is its radius. Then, by
using equation (29), the map of the semi-circle in the G(s) plane can be represented as

G(� ej�)"K
�

��
�
#2��

�
� ej�

� ej�(�� e2j�
#2��

�
���#��

�
)
e!�e��� . (32)



Figure 5. Modi"ed Nyquist path in the s plane.
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As � tends to zero, equation (32) becomes

G (� e ��)"K
�

��
�

� e����
�

"K
�
r e���, (33)

where r tends to in"nity as � approaches zero. Therefore, the small counterclockwise
semi-circle in the right-half s plane is mapped into a large clockwise semi-circle in G(s)
plane. The incomplete polar plot of G( j�) that is shown in Figure 4(a), for instance, can
then be completed by using the above result and the complete polar plot is shown in
Figure 6.

Note that equation (31a) represents the characteristic equation of the system, and that
only G( j�) depends on the variable j�. Provided that non-linearities involved in the system
are independent of the complex variable j�, N(A, �) can be considered a constant gain in
the loop transfer function. The same arguments as used in the ordinary Nyquist stability
criterion can be applied to the non-linear system except that the number of clockwise
encirclements of G( j�) around the cross points with !1/N (A, �), instead of (!1, j0),
should now be counted. An extended Nyquist stability criterion can be interpreted in this
case as follows [24]. If points near a limit cycle point and along the increasing-A side of the
locus of !1/N(A, �) are not enclosed by the locus of G ( j�), then the corresponding limit
cycle is deemed stable: otherwise, the limit cycle is deemed unstable. Among the
limit cycles shown in Figures 4(a)}(d), only the leftmost limit cycle points on the negative
real axis are predicted to yield a stable oscillation according to this criterion. The
stable limit cycles are depicted by circles in Figures (a)}(d), while the unstable
limit cycles are marked by crosses. Interestingly, the stable limit cycle (thus the
corresponding stable shear layer excitation mode) can be seen to migrate as the free stream
velocity increases as shown in Figures 4(a)}(d). That is, the "rst limit cycle is stable
as shown in Figure 4(a). As the free stream velocity increases, the "rst limit cycle point is
enclosed by the locus of G( j�) and becomes unstable while the second limit cycle point
migrates into the stable region of the Nyquist plots as shown in Figures 4(b) and 4(c). The



Figure 6. The complete polar plot of the linear gain function G( j�) plotted in Figure 4(a).
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"rst limit cycle point migrates back into the stable region at higher velocities as shown in
Figure 4(d).

Therefore, only one limit cycle associated with one mode of shear layer excitation is
predicted to be stable by the Nyquist stability criterion for each free stream #ow velocity.
The amplitude of the external pressure #uctuations is predicted to be proportional to
;�

�
/St

(
, as shown in equation (27). This results in a ;�

�
dependence of the excitation

pressure amplitude for a given shear layer excitation mode (for instance, ;�
�
/St

(
+;�

�
/2�,

for the "rst shear layer excitation mode), which is consistent with the empirical scaling law
used by many other researchers. For higher shear layer excitation modes, the excitation
pressure is predicted to be still proportional to ;�

�
, but with a di!erent proportionality

constant (for instance,;�
�
/St

(
+;�

�
/4�, for the second shear layer excitation mode, and so

on). This result can be physically interpreted by the fact that the relative change in total net
circulation strength that would result from the discharge of a vortex at the downstream
control surface is greater when there is a smaller number of vortices over the ori"ce. Higher
shear layer excitation modes have a large number of vortices over the cavity ori"ce, and
thus produce weaker external pressure #uctuations. This may partly explain why excitation
modes higher than the third shear layer mode were not observed in the experimental results
reported below.
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5. RESULTS AND DISCUSSION

Experiments were performed in a low-speed, quiet wind tunnel, using an open cavity,
shown in Figure 7, made of 1)1 cm thick Plexiglas. The bases of the two inclined panels were
mounted #ush with the wind tunnel test section #oor. The ori"ce was rectangular at zero
yaw. The ori"ce size was varied by gluing 1)3 cm thick Plexiglas inserts along the
downstream edge of the ori"ce. The wind tunnel is an Ei!el type with a closed test section
and extensive sound attenuation treatment [25]. The test section measured
61�46�152 cm�. The maximum #ow velocity achieved was 50)9 m/s (183)2 km/h) with 1%
span-wise uniformity. The average turbulence intensity was 0)1% in the frequency range
from 1 Hz to 3 kHz. The overall sound pressure levels in the center of the closed test section,
in the absence of the cavity, were 87 dB (79dBA) and 98 dB (95 dBA) at 26)8 m/s (96)5 km/h)
and 50)9 m/s (183)2 km/h) respectively. The background noise was emitted primarily from
the wind tunnel fan, at well below the cavity pressure levels of interest. The sound pressure
inside the cavity was measured using a BruK el & Kjaer (B&K) type 4133 microphone located
35)6 cm downstream from the front wall in the center of the cavity #oor. A B&K type 2609
measuring ampli"er was used, the output from which was processed using a Tektronix 2630
frequency analyzer.

The acoustic parameters that are required in the backward gain function expressed by
equation (2) were obtained experimentally by measuring the frequency response function of
the cavity mounted in the test section of the wind tunnel (with the wind tunnel o! ). For
each case of six di!erent cavity ori"ce lengths (i.e., d"8, 7, 6, 5, 4, and 3 cm), the cavity
was acoustically excited using a loudspeaker with a random input, and the resonance
frequency and the quality factor of the Helmholtz resonator were measured from the
frequency response function of the cavity pressure signals. The measured angular
resonance frequency, �

�
, and the damping ratio, �, for each ori"ce length are shown in

Table 1.
The convection velocity of the vortices, needed in the analytical model, was assumed to be

one-half the free stream #ow velocity [15, 16]. To verify the above assumption, #ow
visualization was performed to measure the convection velocity of vortices for one ori"ce
Figure 7. Dimensions of the cavity.



TABLE 1

Measured angular resonance frequencies and damping ratios of the cavity model in the wind
tunnel

d (cm) �
�
(rad/s) �

8 754 0)0455
7 722)6 0)0625
6 697)4 0)05
5 659)7 0)0556
4 628)3 0)0714
3 603)2 0)0714

Figure 8. Experimental set-up for #ow visualization.
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length, d"8 cm (see Figure 8 for the experimental set-up used for the #ow visualization).
The free stream #ow velocity in the test section of the wind tunnel was 20)8 m/s, that was the
critical speed at which the amplitude of the acoustic pressure in the cavity was maximum.
Using a stroboscope and introducing a time delay between the microphone signals
measured inside the cavity and the stroboscope, eight still photos were taken at evenly
spaced phase intervals over one cycle of the nearly sinusoidal pressure oscillation in the
cavity. A value of ;

�
"0)48;

�
was obtained, which was close to the assumed convection

velocity.
The sensitivities of the predictions, both in the frequency and in the amplitude of the

pressure oscillations inside the cavity, to the ratio of the convection velocity to the free
stream #ow velocity were investigated and shown in Figures 9(a) and 9(b), respectively, for
the case of the opening length d"7 cm. The results of the simulation show that a $10%
variation of the convection velocity (i.e., ;

�
"0)55;

�
and ;

�
"0)45;

�
) leads to a 3)1%

increase and a 3)7% decrease, respectively, in the value of the frequency prediction at the



Figure 9. Sensitivities of (a) the frequency prediction and (b) the amplitude prediction to the $10% changes in
the ratio of the convection velocity to the mean-#ow velocity; ;

�
/;

�
"0)5 (**); ;

�
/;

�
"0)55 (} } } });

;
�
/;

�
"0)45 ( ) ) ) )). The oscillation frequency and the cavity pressure amplitude were calculated by using equation

(28) in combination with equations (2) and (27) in the case where d"7 cm (thus �
�
"722)6 and �"0)0625: see

Table 1).
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critical speed; i.e., 18 m/s for ;
�
"0)5;

�
as shown in Figure 9(a). A $10% change of the

convection velocity leads to 8)3% decrease and 11% increase, respectively, in the predicted
value of the critical velocity as shown in Figure 9(b).

The upper limit of the cavity pressure amplitude can be predicted by setting the vortex
concentration parameter 
 to the maximum value (i.e., 
"1 that corresponds to the case of
line vortices) in the analytical model. Since an appropriate value of the vortex concentration
parameter 
 cannot be known a priori, only the relative amplitudes of the cavity pressure
that are normalized with respect to, for instance, the maximum amplitude of the cavity
pressure within the range of free stream #ow velocities can be predicted. Instead of
comparing the normalized data with the normalized predictions, the vortex concentration
parameter 
 was estimated by using absolute cavity pressure amplitudes obtained
experimentally over a range of free stream #ow velocities for one ori"ce length. The
estimated parameter 
 was used in all other cases to see how the vortex concentration
parameter may change depending on the ori"ce length. The vortex concentration parameter
was estimated as 
"0)25 for the case where the ori"ce length d was 7 cm.

For each ori"ce length, the cavity pressure frequencies and amplitudes were
experimentally obtained over a range of free #ow velocities (from 5 to 35 m/s). The
experimental data along with the theoretical predictions are shown in Figures 10(a)}10(f)
and Figures 11(a)}11(f ) for the oscillation frequency and the cavity pressure amplitude
respectively. For all cases of ori"ce lengths tested in the present work, the cavity's
Helmholtz mode was observed to be excited by the "rst shear layer excitation mode within
the range of free stream #ow velocities speci"ed above. For the "rst three ori"ce lengths
(i.e., d"8, 7, and 6 cm), the cavity's Helmholtz mode was observed to be also excited
by the second shear layer excitation mode at low free stream #ow velocities. The
experimental data plotted in Figures 10 and 11 were obtained from the dominant tonal
component in the power spectrum of the cavity pressure, by inspection. Some data points
may not represent very &&strong'' self-excited oscillations due to by their low amplitudes in
Figure 11.

The experimental data associated with the "rst shear layer excitation mode are denoted
by circles while data points associated with the second shear layer excitation mode are



Figure 10. Comparison between the experimental data and the predicted oscillation frequencies for a range of
free stream #ow velocities in the cases where the ori"ce length is 8, 7, 6, 5, 4, and 3 cm, respectively, (a)}(f ). � � �,
measured frequencies associated with the "rst shear layer excitation mode. X's, measured frequencies associated
with the second shear layer excitation mode.**, predicted oscillation frequencies associated with the "rst and
higher shear layer excitation modes.00, shear layer excitation mode that is predicted to be stable at each free
stream #ow velocity. (a) d"8 cm; (b) d"7 cm; (c) d"6 cm; (d) d"5 cm; (e) d"4 cm; (f ) d"3 cm.
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denoted by x's, as shown in Figures 10 and 11. For the amplitude predictions in Figures
11(a) and 11(b), the vortex concentration parameter was assumed to be 
"0)25. In Figures
10 and 11, the theoretical predictions for the fundamental and higher shear layer excitation



Figure 11. Comparison between the experimental data and the predicted cavity pressure amplitudes for a range
of free stream #ow velocities in the cases where the ori"ce length is 8, 7, 6, 5, 4, and 3 cm, respectively, (a)}(f ). � � �,
measured amplitudes associated with the "rst shear layer excitation mode. X's, measured amplitudes associated
with the second shear layer excitation mode.**, predicted oscillation amplitudes associated with the "rst and
higher shear layer excitation modes.00, shear layer excitation mode that is predicted to be stable at each free
stream #ow velocity. (a) d"8 cm; (b) d"7 cm; (c) d"6 cm; (d) d"5 cm; (e) d"4 cm; (f ) d"3 cm.
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modes are represented by solid lines while darker lines indicate stable limit cycles predicted
by the Nyquist stability criterion.

For the cavity pressure oscillation associated with the "rst shear layer excitation mode,
theoretical predictions in both the oscillation frequency and the pressure amplitude are
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generally in good agreement with the experimental data over the range of free stream
velocities where the "rst shear layer excitation modes are predicted to be stable. Note that
strong self-excited oscillations were initiated near the free stream #ow velocities at which the
"rst shear layer excitation mode becomes stable and the self-excited oscillations became
quenched near the free stream #ow velocities at which the stable mode turns from the "rst
shear layer excitation mode to the shear layer excitation mode zero as shown in
Figures 11(a)}11(c). The agreement between the data and the theory for the pressure
amplitude predictions, especially in the cases of d"4 and 3 cm as shown in Figures 10(e)
and 10(f ), respectively, are not as good as for the case of oscillation frequency. However,
note that, using the vortex concentration factor (i.e., 
"0)25) for all ori"ce lengths, the
maximum cavity pressure amplitude was predicted with reasonable accuracy for ori"ce
lengths with the exception of the smallest one, d"3 cm. The Plexiglas inserts used to
change the ori"ce length were placed at the downstream edge of the ori"ce in the
experiments. Thus, it is believed that the decrease in ori"ce length might have had
a negligible in#uence on the thickness of the incoming shear layer that is also related to the
di!usion of vortices.

For the "rst three ori"ce lengths (d"8, 7, and 6 cm), the second shear layer excitation
mode dominated the "rst shear layer excitation mode at velocities approximately between
7 to 12 m/s as shown in Figures 11(a)}11(c). The analytical model predicted the oscillation
frequencies with a good accuracy, although the second shear layer excitation mode in the
case where the ori"ce length was 7 cm was predicted to be marginally stable. The cavity
pressure amplitude associated with the second shear layer excitation mode, however, was
overestimated. This may indicate that the energy was not concentrated at the vortical
wave number prescribed by the analytical model, but di!used over a wide spectrum of
frequencies, making the #ow excitation random rather than tonal.

For each ori"ce length, the lowest shear layer excitation mode (that was referred to as
mode zero in section 4.1) was predicted to be stable over speci"c ranges of free stream #ow
velocities. For instance, in the case where the ori"ce length was 8 cm, for stream #ow
velocities approximately from 5 to 8, 11 to 15, and 26 to 35 m/s, the shear layer excitation
mode zero was predicted to be stable as shown in Figures 10(a) and 11(a). However, mode
zero was not observed in the experiments. Mode zero is the lowest shear layer excitation
mode that is controlled by the cavity feedback (that is, the acoustic #ow "eld near the
upstream edge). The wavelength of the vortices associated with such a low shear layer
excitation mode would be at least 4 times the cavity ori"ce length, d, o!-resonance, and
in"nitely long at resonance (at which the Strouhal number, St

(
approaches zero in theory).

However, note that other feedback processes would take over the cavity feedback process
for such low frequencies since the shear #ow near the upstream edge is sensitive to any small
external disturbance, and since such disturbances are very likely to occur (due for example
to natural shear layer instabilities). For this reason, it is concluded that mode zero can never
be stabilized and no dominant feedback processes exist in the ranges of free stream #ow
velocities where mode zero is predicted to be stable.

6. CONCLUSION

A #ow-excited cavity resonator system was analyzed by following a feedback loop
approach. A forward gain function required in the feedback loop analysis was developed by
using the concept of &&vortex sound''. Applying vortex sound theory to the modelling of the
shear layer's instability yielded a uni"ed procedure to obtain the amplitude gain and the
phase lag of the forward gain function. The mathematical procedure allowed the physical
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interpretation of many aspects of the #ow-excitation mechanism. For example, the external
#uctuating force was shown to result from the #uctuation of circulation strength over the
ori"ce and the di!usivity of the vortices over the ori"ce was shown to a!ect the amplitude of
the excitation force. The validity of the analytical model was veri"ed by showing that the
predicted oscillation frequency and the relative amplitude were in reasonably good
agreement with the data obtained from experiments performed using a wind tunnel. The
usefulness of the feedback loopmodel was also proven by demonstrating that the stability of
the "rst and the second shear layer modes can be analyzed based on the Nyquist stability
criterion.
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APPENDIX A: NOMENCLATURE

A amplitude of a sinusoidal signal
C

�
Fourier series coe$cients

d length of the cavity ori"ce (m)
F
�	


force per unit span exerted by convected vortices (N/m)
G( j�) transfer function for the linear part of the system
H amplitude of a rectangular pulse
K

�
constant gain of the linear gain function

M equivalent mass of resonator (kg)
N(A, �) transfer function for the non-linear part of the system
n
�
, n

�
, n

�
unit vectors along principal axis of co-ordinates

P sound power (W)
p
�	


external excitation pressure (Pa)
pL
�	


phasor of the fundamental component of p
�	
qL

�
complex amplitude of the fundamental component of the &&excitation'' volume velocity
(m�/s)

qL
�

complex amplitude of the fundamental component of the &&acoustic'' volume velocity
(m�/s)

(qL
�
/qL

�
)
�

forward gain function
(qL

�
/qL

�
)
�

backward gain function
S cross-sectional area of a rectangular plane across the region of interest within the ori"ce

(along the x
�
}x

�
plane).

S
�

cross-sectional area of the ori"ce (m�)
St

(
Strouhal number, based on the convection velocity, St

(
"�d/;

�
¹ period (s)
;

�
average vortex convection velocity (m/s)

;
�

free stream #ow velocity (m/s)
u acoustic velocity vector (m/s)
= rectangular pulse duration (s)
v total velocity vector (m/s)
v
�

total velocity component in the x
�
direction (m/s)

v
�

vortical #ow velocity vector (m/s)
x
�
, x

�
, x

�
Cartesian co-ordinate system


 vortex concentration parameter
� ori"ce loss factor
� circulation (m�/s)
��
��

circulation in#ux (m�/s�)
��
��


rate of change of circulation strength inside a control volume (m�/s�)
��
�



circulation out#ux (m�/s�)
	
�

boundary layer height (m)
	(t) Dirac delta function
� ambient density (kg/m�)
� time delay (s)
� vorticity, x

�
component (s��)
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� control volume over the ori"ce of the Helmholtz resonator
� angular frequency (rad/s)
�

�
angular resonance frequency (rad/s)

� vorticity vector (s��)
� damping ratio
�� potential velocity
[ ) ] denotes a complex variable
[ ] denotes a vector
� � denotes the magnitude of a complex quantity
[ � ] denotes the time average of a time-varying quantity
[ ]� denotes the unsteady part of a time-varying quantity
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