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A cracked rotor on #exible bearings is studied in this paper. The vibration of such
a system has many complexities because of the crack and bearing #exibility. However, if the
properties of the bearings are known, the system can be simpli"ed by supposing that, the
vibration due to weight is dominant. Equations of motion are derived, and a linear system in
which the crack has been considered as an external disturbance described by a series of
trigonometric functions is obtained. Consequently, the quasi-periodic vibrations of the rotor
and bearings are established by harmonic balance method and approximate values of the
vibration determined by truncating the higher order terms. It is believed that the simulated
results will be useful for crack detection in the case of weight-dominant rotors.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

There has been extensive research on the vibration behaviour of cracked rotors and the use
of response characteristics to detect cracks. An excellent review of the "eld of the dynamics
of cracked rotors and of di!erent detection procedures to diagnose fracture damage has
been carried out by Wauer [1]. The state-of-the-art has been presented by Dimarogonas
and Papadopoulos in references [2, 3]. Sekhar [4, 5] and Qian [6] studied a cracked shaft
by FEM. Ratan and Baruh [7, 8] proposed some new methods to detect and locate a crack
in a rotor, but only considered a constantly opened crack. Wauer [9] and Rajab [10] also
studied the distributed parameter rotor by using a rotating Timoshenko shaft and derived
the governing equations of motion of the rotor. Similar work has been done by Rizos and
Tsai [11, 12]. Collins [13], Armon [14] and SoK !ker [15] contributed their investigations on
crack detection in di!erent respects. Seibold [16] used EKF method; a time domain
method, to study the localization of cracks. There has been #ourishing research in this
domain. The above list is merely a small part. However, most of the previous work involved
the rotor supported on ideal bearings. As we know, bearing forces can a!ect the vibration of
the shaft. Coupled bearing forces and vibration of the shaft lead to many complexities in
a rotor system. It is possible to simplify the problem if the vibrations remain small in
comparison to the sag of the rotor under its weight (weight-dominant rotor), since the
non-linear equations of motion can be transformed into linear, periodically time-variant
equations [17, 18]. However, even with weight dominance in the displacement, a generally
valid description in the sense of similarity theory is only possible in a few diagrams if the
crack model is restricted to &&strong'' parameters. Only then, are the results independent of
the speci"c geometrical dimensions of the shaft. Comparison of three di!erent models of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.



876 Y. P. PU E¹ A¸.
a cracked hollow shaft in reference [19] shows that, when the crack depth is not more than
half of the shaft radius, a simple hinge model is a good representation of the cyclic sti!ness
variation and for stability limits. The same is true for a solid shaft.
The aim of this paper is to obtain a stable response of a rotor}bearing system when the

condition of the &&weight dominance'' is available. The &&breathing'' of the crack has been
simulated by &&hinge mechanism'', and the #exible single-degree-of-freedom (S.D.O.F.) rotor
supported on #exible bearings is proposed. The crack is transformed into an external
disturbance, described by a series of trigonometric functions. Consequently, the bearing
forces and interactions between a lumped-mass disc and #exible shaft have been represented
by a series of trigonometric functions [20]. The vibrations of the lumped-mass disc, bearing
forces and the interactions between the disc and the shaft were obtained by using harmonic
balance method.

2. CRACK MODEL

The equation of motion for a simple rotor with a cracked shaft has the following form:

MuK#DuR #S(u, t)u"p
�
#p

�
, (1)

whereM is the mass matrix, D is the damping matrix, p
�
is the weight, and p

�
is the periodic

excitation.
The sti!ness matrix S (u, t), which in the general case is non-linear and time-variant, can

be split into

S (u, t)"S
�
#�S(u, t), (2)

where S
�
is the diagonal sti!ness matrix of the uncracked shaft. �S(u, t) is the additive

(negative) crack matrix, which is dependent both on the displacements u and on the rotation
angle of the rotor. However, a crack in a rotor usually causes a small change in its sti!ness.
The vibrational response of the rotor can also be split into

u (t)"u
�
#�u(t), (3)

where, u
�
is the static de#ection of the uncracked shaft, and �u(t) is the vector describing the

vibrational behaviour.
If weight dominance is assumed for the elastic de#ection, considering �S (u, t)P�S(t),

then the non-linear equation of motion (1) can be modi"ed by substitution from equations
(2), (3) to yield

M�uK#D�uR #[S
�
#�S(t)]�u"!�S(t)u

�
#p

�
. (4)

This equation is now linear, but periodically time-variant. If the stability of the rotor is
guaranteed; �S(t)��u(t)+0, the forced vibrations can be determined from the following
time-invariant system:

M�uK#D�uR #S
�
�u"!�S(t)u

�
#p

�
. (5)

Apparently, in equation (5), the e!ect of the crack has been transformed into an external
excitation of the vibrational system. The above-mentioned processing is described in detail
in a paper by the Gasch [3].



QUASI-PERIODIC VIBRATION OF CRACKED ROTOR 877
Under the assumption of &&hinge'' model, the breathing of the crack is described by
a rectangular function, which can be written as

f (t)"�
1 cos�t'0,

0 cos�t(0.
(6)

The steering function, f (t) for the hinge switches from 1 (open) to 0 (closed), can also be
expressed by a Fourier series [20]:

f (t)"1/2#2/� cos�t!2/(3�) cos 3�t#2/(5�) cos 5�t!2/(7�) cos 7�t2. (7)

Provided that the change in sti!ness due to an open crack is �k, and that the crack
&&breathes'' according to &&hinge mechanism'', the additional disturbing forces in the
stationary co-ordinates in y and x directions, respectively, can be expressed as

f
�
"1/2��k�u

��
�f (t)�sin 2�t, (8a)

f
�
"1/2��k�u

��
�f (t)�(1#cos 2�t). (8b)

Considering equation (6):

f
�
"

1

2
�ku

���
5

6�
sin�t#

1

2
sin 2�t#

3

10�
sin 3�t!

4

21�
sin 5�t!

1

5�
sin 7�t2�, (9a)

f
�
"

1

2
�ku

���
1

2
#

7

6�
cos�t#

1

2
cos 2�t#

1

30�
cos 3�t!

6

105�
cos 5�t!

12

35�
cos 7�t2�.

(9b)

Similarly, the change of the inertia moment due to the open crack can also be transformed
into external moment. The steering function f (t) is also available:

m
��

"1/2��I��
�
�f (t)�(1#cos 2�t), (10a)

m
��

"1/2��I��
�
�f (t)�sin 2�t, (10b)

where �I is the change of the angular sti!ness due to the open crack, �
�
is the static

inclination of the disc, m
��
and m

��
are the moments in y}z plane and moments in x}z plane

respectively. Then, the additional disturbing moments can be written as

m
��

"1/2�I�
��

5

6�
sin�t#

1

2
sin 2�t#

3

10�
sin 3�t!

4

21�
sin 5�t!

1

5�
sin 7�t2�, (11a)

m
��

"1/2�I�
��

1

2
#

7

6�
cos�t#

1

2
cos 2�t#

1

30�
cos 3�t!

6

105�
cos 5�t!

12

35�
cos 7�t2�.

(11b)

Considering equation (9), the additional forces can be written as

f
�
"

�
�
���

Q
�
sin i�t, f

�
"

�
�
���

P
�
cos i�t. (12a,b)

Similarly, according to equation (11), the additional moments may be written as:

m
��

"

�
�
���

=
�
sin i�t, m

��
"

�
�
���

O
�
cos i�t. (13a,b)
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3. ROTOR AND BEARING SYSTEM

The total de#ection of the rotor is the vector sum of the de#ection of the rotor relative to
the shaft ends plus that of the shaft ends in the bearings (Figure 1). The de#ection of the
shaft ends in the bearing is related to the force transmitted through the bearings by the
bearing sti!ness and damping coe$cients as follows:

�
f
�
"k

��
�

�
m#k

��
�

�
n#c

��
�

�
mR #c

��
�

�
nR , (14a)

�
f
�
"k

��
�

�
m#k

��
�

�
n#c

��
�

�
m#c

��
�

�
n, (14b)

where
�
m and

�
n are the instantaneous displacements of the shaft ends relative to the

bearings in the horizontal and vertical directions, respectively, and take the form

�
m"

�
�
���

�
M

��
sin(i�t)#

�
�
���

�
M

��
cos(i�t), (15a)

�
n"

�
�
���

�
N

��
cos(i�t)#

�
�
���

�
N

��
sin(i�t), (15b)

�
f
�
"

�
�
���

�
F
���

sin(i�t)#
�
�
���

�
F
���

cos(i�t), (15c)

�
f
�
"

�
�
���

�
F

���
cos(i�t)#

�
�
���

�
F
���

sin(i�t). (15d)

Comparing coe$cients of sin(i�t) and cos(i�t) on each side of both equations results in the
matrix equation:

�
�
F
���

�

�
F
���

�
F
���

�

�
F
���

�
F
���

�

�
F
���
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F
���

�

�
F
���

�"

k
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0 2 k
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��

�
�
M
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�

�
M
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�
M
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�

�
M
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�
N

��

�

�
N
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�
N
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�

�
N
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�
which can be expressed more simply as

�
�
F
�
�"[

�
I]�

�
��. (16)



Figure 1. Single mass rotor on a light shaft, running in #uid lubricated bearing.
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Similarly, another equation describing the forces transmitted through the bearing at the
other end of the machine may be written as

�
�
F
�
�"[

�
I]�

�
��. (17)

Combining equations (16) and (17):

��
F
�

�
F
�
�"��

I 0

0
�
I���

�

�
�� (18)

which can be abbreviated as

�F
�
�"[I]���. (19)

The magnitude of the reaction forces transmitted by the bearings can also be evaluated in
terms of the forces applied to the shaft by the rotor. Considering the shaft to behave as
a simply supported beam carrying a point force and moment at the location of the rotor
shown in Figure 2, the vertical reaction forces at the shaft ends are

�
f
�
"(1!a/l)F

�
#(1/l )M

��
, (20a)

�
f
�
"(a/l)F

�
!(1/l)M

��
(20b)

and similarly, the forces in the horizontal direction may be written as

�
f
�
"(1!a/l)F

�
#(1/l)M

��
, (20c)

�
f
�
"(a/l )F

�
!(1/l )M

��
. (20d)

Recognizing that the forces and moments applied to the shaft by the rotor vary sinusoidally,
we arrive at

F
�
"

�
�
���

F
���

cos(i�t)#
�
�
���

F
���

sin(i�t), (21a)

F
�
"

�
�
���

F
���

sin(i�t)#
�
�
���

F
���

cos(i�t), (21b)



Figure 2. Simply supported shaft carrying a point force and moment at the location of the rotor.
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M
��

"

�
�
���

M
����

cos(i�t)#
�
�
���

M
����

sin(i�t), (21c)

M
��

"

�
�
���

M
����

sin(i�t)#
�
�
���

M
����

cos(i�t). (21d)

Substituting these expressions into equation (8), and comparing coe$cients of sin(i�t)
and cos(i�t) leads to the matrix equation

�F
�
�"[A]�F

	
�#[A



]�F


��
�
�, (22)

where [A] and [A


] are determined by the geometrical parameters of the rotor and
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���
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�����

�
,

��������
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�
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�
F
���

,
�
F
���

, 2 ,
�
F
���

,
�
F
���

, 2 ,F
���

,
�
F

���
, 2 ,

�
F
���

,
�
F
���

, 2 ,

�
F
���

, 2 , 2 ,
�
F
���

, 2 ,
�
F

����
�
.

The subscripts b and s indicate loads applied to the bearing and rotor respectively. It is now
possible to obtain expressions for the de#ection at the bearings in terms of the forces and
moments applied to the shaft. This can be done by substituting equation (22) into
equation (19):

���"[I]��([A]�F
	
�#[A



]�F


��
�
�). (23)

Recognizing that these shaft displacements vary sinusoidally such that x
�
, y

�
, �, and � may

be written in the form

x
�
"

�
�
���

X
��
sin(i�t)#

�
�
���

X
��
cos(i�t), (24a)
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y
�
"

�
�
���

>
��
cos(i�t)#

�
�
���

>
��
sin(i�t), (24b)

�"

�
�
���

�
��
sin(i�t)#

�
�
���

�
��
cos(i�t), (24c)

�"

�
�
���

�
��
cos(i�t)#

�
�
���

�
��
sin(i�t) (24d)

and considering the shaft to be rigid for the moment, the horizontal de#ection of the shaft at
the rotor must be

x
�
"

�
m#(

�
m!

�
m)�(d/l )"(1!d/l )

�
m#(d/l )

�
m (25a)

and the slope of the shaft in the x}z plane will be

�"(
�
m!

�
m)/l. (25b)

Similarly, for motion in the vertical direction and y}z plane:

y
�
"

�
n#(

�
n!

�
n)�(d/l )"(1!d/l )

�
n#(d/l )

�
n, (25c)

�"(
�
n!

�
n)/l. (25d)

Substituting x
�
, �, y

�
and � from equation (24), together with expressions for

�
m,

�
n,

�
m and

�
n from equation (15a), (15b) into equation (25), and comparing coe$cients of sin(i�t) and
cos(i�t) on either side of the resulting four equations, the following matrix equation is
obtained:

�u
�
�"[B]���. (26)

Substituting for ��� from equation (23):

�u
�
]"[B][I]��([A]�F

	
�#[A



]�F


��
�
�), (27)

where the matrix [B] is also determined by geometrical parameters of the rotor and:

�u
�
�"[>

��
,2 , >

��
, �

��
,2, �

��
, X

��
,2 ,X

��
, �

��
,2, �

��
, >

��
,2,

>
��
,2,2, �

��
,2 , �

��
]�.

In order to obtain the net rotor de#ection under a given load, we must add the de#ection
due to deformation of the shaft to that which has been calculated in equation (27). As we
know, the crack can be considered as an external disturbing force when the maximum
amplitude of the vibration is far less than the stationary de#ection of the rotor. Therefore,
the de#ection at the disk due to deformation of the shaft:

�u
	
�"[�]�F

	
�#[�



]�F


��
�
�, (28)

where �F

��
�

� is the disturbing force due to the crack, [�] and [�


] are the #exibility matrixes

when loaded by �F
	
� and by �F


��
�
� respectively. Consequently, the net rotor de#ection is

�u�"�u
�
�#�u

	
�"([B][I]��[A]#[�])�F

	
�#([B][I]��[A



]#[�



])�F


��
�
�

"[D]�F
	
�#[D



]�F


��
�
�. (29)



Figure 3. The crack disturbance (h


/h"0)1): **, y direction; * }* , x direction.

Figure 4. Trajectory of the rotor: h


/h"0)1, 	"0, e"0)5 mm.
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The equation of motion for the rotor, allowing for motion in the x, y, � and � senses, can be
written as

me�� sin�t!F
�
"myK

�
, (30a)

!M
��

"I


�G , (30b)

me�� cos�t!F
�
"mxK

�
, (30c)

!M
��

"I


�G . (30d)



Figure 5. Trajectory of the journal: h


/h"0)1, 	"0, e"0)5 mm.

Figure 6. Amplitude}time waveform of the rotor vibration: h


/h"0)1, 	"0, e"0)5 mm.
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Substituting for F
�
, F

�
, M

��
and M

��
from equation (21) into equation (30), and

abbreviating, we obtain the compact equation

� f �"�F
	
�#[G]�u�, (31)

where [G] is composed of the mass and the moment of the rotor. Substituting for �F
	
� from

equation (23) gives

� f �"[D]��(�u�![D


] �F


��
�
�)#[G]�u� (32a)



Figure 7. Amplitude}time waveform of the journal vibration: h


/h"0)1, 	"0, e"0)5 mm.

Figure 8. Noise-free power spectrum of rotor vibration: h


/h"0)1, 	"0, e"0)5 mm.
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or

� f �"([D]��#[G])�u�![D]��[D


]�F


��
�
�. (32b)

Equation (27) can be rearranged to give the response of the rotor as

�u�"[H]��(� f �#[¸]�F

��
�

�). (33)

The response of the rotor can be obtained from equation (33). The change of sti!ness is
expressed by an in"nite series in equation (7). Considering equations (2), (7), (12), (19) and
(22), it is apparent that this response is the series of the sin(i�t) and cos(i�t), namely, the



Figure 9. Trajectory of the rotor: h


/h"0)1, 	"0, e"0)05 mm.

Figure 10. Amplitude}time waveform of the rotor vibration: h


/h"0)1, 	"0, e"0)05 mm.
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quasi-periodic vibration. Once the response of the rotor has been obtained, it is possible to
calculate the vibration of the journals, and calculate the forces transmitted through the
bearings and to "nd the load applied to shaft.

4. RESULTS AND DISCUSSION

In practice, it is impossible to calculate the response of the rotor when the function of the
sti!ness due to crack is considered as an in"nite series, like equation (7). However, the main
components of the response can be obtained by truncating the higher order terms in



Figure 11. Amplitude}time waveform of the journal vibration: h


/h"0)1, 	"0, e"0)05 mm.

Figure 12. Noise-free power spectrum of rotor vibration: h


/h"0)1, 	"0, e"0)05 mm.

TABLE 1

Geometric parameters of the rotor

Length of the shaft The mass of the rotor Diameter of the shaft

1)2 m 40 kg 0)03 m
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equation (7). If only the "rst "ve terms are considered, in equations (9) and (11), the highest
value of i in sin(i�t) and cos(i�t) will be 8, and no other excitation and disturbance (except
the crack) can induce high order response. Hence, n in the previous equations is equal to 8.
Subsequently, the response can be approximated.



Figure 13. Trajectory of the rotor: h


/h"0)1, 	"603, e"0)05 mm.

Figure 14. Amplitude}time waveform of the rotor vibration: h


/h"0)1, 	"603, e"0)05 mm.
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Simulating the rotor supported on a #exible bearing by a De Lavel rotor, the disc is
located at the middle of the shaft, the geometrical parameters of the rotor are listed in
Table 1.
Then the matrix describing how the load on the shaft is distributed to the bearings is

found from equation (22). The relationship between the shaft displacement at the rotor and
the shaft displacement at the bearings is given by equation (26). The shaft displacement at
the rotor due to its #exibility is given by equation (28).
Provided that h



is the local #exibility, h is the #exibility of the normal shaft, 	 is the angle

between the directions of the crack and centrifugal force and k
��

"k
��
, k

��
"k

��
, c

��
"c

��



Figure 15. Noise-free power spectrum of rotor vibration: h


/h"0)1, 	"603, e"0)05 mm.

Figure 16. Amplitude}time waveform of the rotor vibration: h


/h"0)1, 	"603, e"0)05 mm.
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c
��

"c
��
, the trajectory and the vibration waveform of the centre of the rotor and of the

journal can be calculated by using the method derived above. The results are shown in the
following "gures.
The crack disturbance is shown in Figure 3. The vertical disturbance is indicated by the

solid line and the horizontal disturbance is indicated by the dashdotted line. The trajectories
and the vibration waveform of the rotor and journal are shown in Figures 4}7, when the
h


/h"0)1, 	"0 and e"0)5 mm. The corresponding noise-free power spectrum of the

rotor vibration is shown in Figure 8 from which one can "nd the quasi-periodic vibration of
the rotor. When the eccentricity changes to e"0)05 mm, the results, correspondingly, are
shown in Figures 9}12. It is obvious that the vibration due to unbalance is dominant when
the centrifugal force is far larger than the crack disturbance. Both trajectories in Figures 4
and 5 are similar to a circle and the waveforms in Figures 6 and 7 are similar to sinusoid or



Figure 17. Noise-free power spectrum of rotor vibration: h


/h"0)1, 	"603, e"0)3 mm.

Figure 18. Noise-free power spectrum of rotor vibration: h


/h"0)3, 	"603, e"0)3 mm.
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cosine waveform.When the centrifugal force and the crack disturbance are comparative, the
properties of the crack appear in the vibration signal. Like the result shown in Figures 9}12,
comparing Figures 9, 10 and 11 to Figures 13, 14 and 16, the trajectory and the waveform
are sensitive to the angle between the crack direction and centrifugal force changes, unlike
for the power spectrum. To increase the crack disturbance, namely, increase the depth of the
crack, obviously, the amplitude of the high order harmonic, such as second, third, "fth
harmonic, will increase. Therefore, high order harmonic can be considered as a sign of
a propagating crack, as shown in Figures 17 and 18.
Experimental validation of the simulated results will be reported by the author in the

future paper that is underway.
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