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1. INTRODUCTION

A method is presented that is aimed at reducing the sound power radiated by a vibrating
structure using a feedback control system based on optimal structural power absorption.
This control strategy is intended for applications where a coherent measurement of the
disturbance is not readily available and where the use of feedback control is necessary. The
method would apply, for example, in the case of noise inside the aircraft that is generated by
the turbulent boundary layer on the outer skin. Current feedback control strategies that are
designed to reduce radiated sound power include active structural acoustic control [1}4]
and radiation modal control [5, 6]. Such techniques are designed using a priori knowledge
of the acoustic radiation characteristics of the structure together with structural sensors as
control inputs. While the analytical and experimental results obtained to date for both
techniques appear promising, a considerable drawback in both cases is the complexity of
the controller design that results from the necessity of knowing the acoustic radiation
characteristics of the structure. This may be di$cult to obtain in practice.

In work described here, an optimal power absorbing control system is proposed which
relies on only local vibration information. Such a system can be e!ective in reducing
a structure's radiated sound power. The optimal controller provides a causally constrained
impedance match between the control system and structure, maximizing the power #ow
between the two systems [7, 8]. The result of the impedance match is a reduction in the total
energy in the structure and corresponding reduction in sound power radiation. The
controller described is a single-input}single-output (SISO) system that requires only local
vibration information at the position of the co-located control sensor and actuator. The
form of the controller is derived from the solution of the Wiener}Hopf equation.
�Present address: Ingersoll-Rand Company, P.O. Box 867, 800-C Beaty St., Davidson, NC 28036, U.S.A.
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Figure 1. Diagrammatic representation of feedback control of power input.
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2. CONTROLLER PARAMETERIZATION

The block diagram used to design the optimal power absorbing control system is shown
in Figure 1. The optimal feedback controller, G

�
(q��), is designed to be driven by

a structural velocity signal, y
�
(t), and to feedback a control signal to an actuator,=

�
(q��),

which applies a force to the structure, denoted x
�
(t). Similarly, x

�
(t) denotes the primary (or

disturbance) force and y
�
(t) as the total velocity at the point of application of the primary

source. The mobilities relating these variables are denoted by Z
��

(q��), Z
��

(q��), Z
��

(q��)
and Z

��
(q��). Here we use t to denote the discrete time index and q�� to denote the delay

operator. The primary force is assumed to be generated by passing white noise, w(t),
through a minimum phase shaping "lter=

�
(q��)"B

�
(q��)/A

�
(q��). We will assume that

the controller parameterization is that given by Nelson and Thomas [9],

G
�
(q��)"

H (q��)

1#H (q��)=
�
(q��)Z

��
(q��)

, (1)

where H (q��) is shown by the dashed line in Figure 1. It can be shown that the controller
parameterization given in equation (1) allows the feedback system to be modelled as an
equivalent feedforward system, as sketched in Figure 2. This technique is termed &&internal
model control'' [10]. The optimal feedforward "lter, H

�
(q��), can be obtained by using the

well-established "lter design techniques of feedforward control. Thus, the optimal
controller, G

�
(q��), can be obtained using feedforward techniques.

3. THEORETICAL DEVELOPMENT

The design of the optimal power absorbing controller is accomplished by deriving
a Wiener}Hopf equation that de"nes the condition for the optimality of the feedback
controller. Referring to Figures 1 and 2, the appropriate cost function to maximize power
absorption is given by

J"E[x
�
(t)y

�
(t)#�u�(t)], (2)



Figure 2. Diagram of equivalent "lter design.
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where x
�
(t)y

�
(t) is the power at the secondary source, � is the control input and � is

a weighting factor on the control input. To "nd the "lter H
�
(q��) that minimizes this cost

function, we assume that H(q��)"H
�
(q��)#�H�(q��), where H� (q��) is a realizable

(causal and stable) departure from the optimal "lter, H
�
(q��), and � is a small parameter.

The Wiener}Hopf equation that results is given by [11]�

R
��

(�)#H
�
(q��)[(Z

��
(q)#Z

��
(q��))R

��
(�)#2�R

��
(�)]"0, �*0. (3)

The solution for H
�
(q��) that satis"es this equation can be found using spectral

factorization techniques and is given by

H
�
(z��)"!

1

S
��(z��) �

S
��

(z��)

S
��(z) �

�

, (4)

where [ ]
�

denotes the positive-time portion of the function inside the bracket (i.e., the
causal portion) and the spectral factors S

�� (z��) and S
��(z) are de"ned by

S
��(z��)S

��(z)"(Z
��

(z��)#Z
��

(z))S
��

(z��)#2�S
��

(z��). (5)

An analytical solution to equation (4) is only practical for simple systems due to the
complexity of extracting the positive-time portion of the function inside the brackets.
A numerical solution to obtain the positive-time portion can be accomplished through the
use of a Diophantine equation in the form of

A(x)X(x)#B (x)>(x)"C (x), (6)

which may be written as

X (x)

B (x)
#

>(x)

A (x)
"

C (x)

A (x)B(x)
, (7)
�It is noted that with the removal of the causality constraint and letting �"0, the substitution of equation (3)
into equation (1) results in the optimal controller being equal to the complex conjugate of the structural impedance
at the position of the control system; this is the condition needed for maximum power #ow between the two
systems. The inclusion of the causality constraint as shown in equation (3), results in a causally constrained
impedance match and provides maximal power #ow for a feedback system.
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whereA(x), B (x) andC(x) are known polynomials andX(x) and>(x) are polynomials to be
determined. Thus, we want to transform the function inside the brackets of equation (4) into
the form of the Diophantine equation given in equation (7).

We begin the transformation by de"ning the disturbance and secondary plants as a ratio
of polynomials such that

=
�
(z��)"

B
�
(z��)

A
�
(z��)

, Z
��

(z��)"
B
�
(z��)

A
�
(z��)

(8, 9)

and similarly de"ne the actuator polynomial as

=
�
(z��)"

z�	B
�
(z��)

A
�
(z��)

, (10)

where z�	 represents the delay in the control system. It can be shown that by de"ning

A(z��)A(z)"A
�
(z��)A

�
(z)A

�
(z��)A

�
(z)A

�
(z��)A

�
(z), (11)

B (z��)B(z)"(B
�
(z��)A

�
(z)#B

�
(z)A

�
(z��))B

�
(z��)B

�
(z)A

�
(z��)A

�
(z), (12)

C (z��)C(z)"A
�
(z��)A

�
(z)A

�
(z��)A

�
(z)B

�
(z��)B

�
(z), (13)

and further

D


(z��)D



(z)"B(z��)B(z)#2�A(z��)A(z), (14)

D
�
(z��)D

�
(z)"Q

�
C(z��)C(z)#Q



A (z��)A(z), (15)

that equation (5) can be written as

S
��(z��)S

��(z)"
D



(z��)D



(z)D

�
(z��)D

�
(z)

A(z��)A (z)A(z��)A(z)
. (16)

If we further de"ne

D�


(z)"A

�
(z)D



(z) , B� (z)"B

�
(z)A(z), (17, 18)

the substitution of equations (16)}(18) into equation (4) results in

�
S
��

(z��)

S
��(z) �

�

"

1

Q
�
�
z	D

�
(z��)BM (z)

A(z��) D�


(z) �

�

. (19)

Using the Diophantine equation de"ned in equation (7), it may be written as

z	D
�
(z��)BM (z)

A(z��)D�


(z)

"

G(z��)

A(z��)
#

zgF(z��)

D�


(z)

, (20)

where G(z��) and zgF (z��) are unknown functions. While the "rst term on the right-hand
side of equation (20) is entirely causal, the second term consists of both causal and
non-causal terms. By properly assigning the value of g, the second term becomes anti-causal
and equation (20) may be written

�
S
��

(z��)

S
��(z) �

�

"

1

Q
�

G(z��)

A(z��)
. (21)



TABLE 1

Beam, acoustic and signal processing parameters

Beam parameters
Young's modulus: 7)1�10�� Pa
Density: 2700 kg/m�
Length: 0)7 m
Thickness: 0)002 m
Width: 0)01 m
Damping ratio: 0)02

Acoustic #uid parameters
Sound speed: 343 m/s
Density: 1)21 kg/m�

Signal processing parameters
Sampling frequency: 1024 Hz
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The optimal feedback compensator is then written

G
�
(z��)"

A(z��)G(z��)

z�	B(z��)G(z��)!D


(z��)D

�
(z��)

. (22)

It should be noted that the transition from equation (20) to equation (21) is beyond the
scope of this article and will appear in a future publication.

As discussed in the introduction, the optimal power absorbing controller requires only
local vibration information. It is seen by the examination of equation (3) that the design of
the control system requires models of the disturbance at the secondary control position,
=

�
(z��), the mobility relating the output force of the controller and the co-located velocity,

Z
��

(z��), and the actuator plant,=
�
(z��). A model of each transfer function in the form of

a ratio of polynomials in the z-domain is obtained using a least squares curve "t routine of
the actual transfer functions obtained by either analytical derivation or experimental
measurements. The curve "t routine used in this work is performed using the INVFREQZ
command in the MATLAB Signal Processing Toolbox.

It is important to note that previous work [7, 8, 12] in power absorbing controllers has
determined that the use of power absorption as a cost function can lead to an increase in the
energy in the system. The occurrence of this phenomenon is due to the secondary source
driving the primary source to generate additional power in order to achieve greater power
dissipation. Sharp [11] and Nelson [13], however, argue that as the predictability of the
disturbance decreases (which, in the limit, results in a white-noise disturbance input), the
possibility of a change in the disturbance power input also decreases. In this work, we will
assume the disturbance to be a white-noise input which guarantees not to alter the
disturbance power input as long as the disturbance and control system are not co-located.
A future publication will present a more thorough analysis of this aspect of optimal power
absorption as applied to acoustic enclosures and vibrating systems.

4. OPTIMAL POWER ABSORPTION APPLIED TO A SIMPLY SUPPORTED BEAM

We now investigate the ability of optimal power absorption to reduce the radiated sound
power from a simply supported beam. The beam, acoustic and signal processing parameters



Figure 3. System identi"cation of Z
��

transfer function; **, actual plant; } } }, modelled plant.

Figure 4. System identi"cation of Z
��

transfer function; **, actual plant; }} }, modelled plant.
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for this example are listed in Table 1. The disturbance is a point force located at 0)175 m, the
control force and sensor are co-located at 0)5 m and the disturbance input is assumed to be
white noise (i.e., the shaping "lter,=

�
, is unity). A control weighting factor of �"10��� was

used in the simulation.



Figure 5. Radiated sound power without (} } }) and with (**) control.

Figure 6. Total kinetic energy in the beam without (} } }) and with (**) control.
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In order to obtain a model of the disturbance,=
�
(z��), we note that the disturbance is

simply the cascade of the shaping "lter, =
�
(z��) and Z

��
(z��). Since the shaping "lter is

speci"ed by the authors, we only require a model of Z
��

(z��). The results of the system
identi"cation for Z

��
(z��) and Z

��
(z��) are shown in Figures 3 and 4, where both models

have a sixth order numerator and denominator. The actuator plant is assumed to have
unity gain and zero delay.

The radiated sound power from the beam with and without optimal power absorption is
shown in Figure 5. The "gure indicates that the sound power is reduced at all resonance
frequencies and increased between the resonance frequencies (which agrees well with the
results presented by Nelson et al. [14] for causally constrained control systems). Sound



Figure 7. Velocity spectrum at the position of the secondary source without (} } }) and with (**) control.
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power reductions of 30)4, 14)9 and 7)7 dB are achieved at the three beam resonance
frequencies respectively. The total kinetic energy in the beam is shown in Figure 6, and
Figure 7 shows the velocity spectrum at the position of the controller. The e!ect of the
power absorbing controller is to not only reduce the vibration at the position of the control
system but provide global vibration attenuation, resulting in a reduction in the radiated
sound power. A global vibration attenuation is expected since the optimal power absorbing
controller provides the optimal causally constrained impedance match between the control
system and the structure, maximizing the power #ow between to the two systems.

5. CONCLUSIONS

The use of an optimal power absorbing control system is introduced as a method to
reduce the sound power radiated from a vibrating structure. This design approach requires
only local vibration information and suggests an alternative to current feedback design
approaches which require information about the radiation characteristics of the structure.

Future work by the authors includes a detailed description to the solution of the
Diophantine equation for various systems parameters and the application of optimal power
absorbing control systems to acoustic enclosures and plate systems including experimental
veri"cation.
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