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A theoretical method is developed to investigate the e!ects of ring sti!eners on vibration
characteristics and transient responses for the ring-sti!ened composite cylindrical shells
subjected to the step pulse loading. Love's thin shell theory combined with the discrete
sti!ener theory to consider the ring sti!ening e!ect is adopted to formulate the theoretical
model. The ring sti!eners are laminated with a composite material and have a uniform
rectangular cross-section. The Rayleigh}Ritz procedure is applied to obtain the frequency
equation. The modal analysis technique is used to develop the analytical solutions of the
transient response. The analysis is based on an expansion of the loads, displacements in the
double Fourier series that satisfy the boundary conditions. The e!ect of sti!ener's
eccentricity, number, size, and position on transient response of the shells is examined. The
theoretical results are veri"ed by comparison with FEM results.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Fiber-reinforced laminated composites are extensively used in advanced structures such as
pressure vessels, airplanes, submarine hulls, and missiles because of the excellent mechanical
properties of these materials, such as the high speci"c sti!ness and speci"c strength
compared with traditional metal materials. To obtain the su$cient sti!ness suitable to
design requirement, we must laminate thickness thick using these composite materials. This
leads to heavy structure and high cost. We need another method to get the su$cient
sti!ness of the thin-walled composite structures. To enhance the sti!ness of these structures,
we can use beam-type sti!eners. Especially, the rings in the cylindrical shell are very good
sti!ening elements to raise the sti!ness without great mass increase.
Ring-sti!ened cylindrical shells are widely used in engineering "elds. These structures are

subjected to external dynamic loads. These external dynamic loads can cause the
undesirable resonance and it can lead to fatigue. Moreover, one must use the dynamic
characteristics on design of structure because only vibration (not fatigue) could severely
damage the sensitive equipment in airplanes and submarines, etc. Therefore, it is essential to
understand the dynamic behavior of these structures. Theoretical methods of analyzing the
sti!ened structures are classi"ed into twomain types, depending upon whether the sti!eners
are treated by averaging their properties over the shell surface to orthotropic materials or
by considering them as discrete elements. The "rst method, the so-called smeared sti!ener
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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theory, is particularly applicable only when large numbers of sti!eners are closely and
evenly spaced. The second method, the so-called discrete sti!ener theory, is more general as
it can accommodate any sti!ener distribution.
For the ring-sti!ened cylindrical shells many researchers conducted the free vibration

analysis. Mustafa and Ali [1] predicted natural frequencies for the sti!ened cylindrical
shells using the Rayleigh}Ritz procedure. In this procedure they used only one term in
assuming the displacement functions satisfying the simply supported boundary condition.
One-term approximation is su$cient for the analysis of the cylindrical shells with the
simply supported boundary condition. However, it can lead to much error to obtain the
exact solution of sti!ened shells with any other boundary conditions. Yang and Zhou [2]
presented the transfer function method to analyze the ring-sti!ened shell. Lee and Kim
[3, 4] investigated the e!ect of rotation speeds and boundary conditions on the frequencies
for the orthogonally sti!ened composite cylindrical shells treating the materials of sti!eners
as equivalent isotropic. The mentioned papers were, however, limited to the shells with the
uniform dimensional and evenly spaced sti!eners. In fact, non-uniform dimensional and
unevenly spaced sti!eners are used much more in structural reinforcements. Wang et al. [5]
solved the free vibration problem for the isotropic cylindrical shells with varying
ring-sti!ener distribution using the extended Ritz method.
Many researchers investigated the dynamic response of sti!ened structures. Srinivasan

and Krishnan [6] studied the dynamic response analysis of sti!ened conical shell panels
using an integral equation method in the space domain. The smearing technique is used for
closely spaced sti!eners. The time-domain analysis has been done using the mode
superpositionmethod. Cheng and Dade [7] presented a spline Gauss collocation method to
analyze the dynamic response of sti!ened plates and shells with various constraint
conditions. Bicubic B splines are used as co-ordinate functions to formulate the problem
based on energy principles using the technique of piecewise Gauss integration collocation.
Pegg [8] presented a comparative "nite element numerical study of the e!ect of a ring
sti!ener and its size and spacing on the dynamic buckling response of a cylinder. The "nite
element results show that the predominant harmonics and amplitudes of response are
a!ected by the addition of, and the size and spacing of, a ring sti!ener. Sinha and
Mukhopadhyay [9] investigated the dynamic response of sti!ened plates and shells by the
"nite element method employing a high-precision arbitrary-shaped triangular shell element
in which sti!eners may lie in any arbitrary direction within the element. Pedron and
Combescure [10] used a modal analysis method to determine the response of an in"nitely
long sti!ened cylindrical shell of revolution to a transient lateral pressure produced by an
underwater explosion and propagating in an acoustic #uid.
The dynamic analysis for the composite sti!ened structures has been the subject of

numerous studies. Liao and Cheng [11] investigated the dynamic stability of laminated
composite sti!ened or non-sti!ened plates and shells due to periodic in-plane forces at
boundaries using the "nite element method.Mukhopadhyay andGoswami [12] studied the
transient response analysis of composite sti!ened panels using the "nite element method.
Gong and Lam [13] analyzed the transient response of a composite submersible hull
subjected to underwater explosive shock. The doubly asymptotic approximation method is
employed to describe the #uid}structure interactions. The #uid}structure coupled
equations were solved using coupled commercial "nite element and boundary element
codes. TuK rkmen and Mea tog\ lu [14] studied experimentally and numerically the dynamic
response of sti!ened laminated composite plates exposed to a normal blast load. ANSYS
"nite element software was used in their numerical procedure.
All of the above-mentioned researches for the sti!ened composite structures were solved

using "nite element method. However, the results using theoretical method has been
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relatively little reported for the transient response analysis of the ring-sti!ened composite
cylindrical shells. In this paper, the theoretical method is developed to investigate the e!ects
of ring-sti!eners on vibration characteristics and transient responses for the ring-sti!ened
composite cylindrical shells subjected to the step pulse loading. Love's thin shell theory
combined with the discrete sti!ener theory to consider the ring sti!ening e!ect is adopted to
formulate the theoretical model. The Rayleigh}Ritz procedure is applied to obtain the
frequency equation. The modal analysis technique is used to develop the analytical
solutions of the transient analysis. The theoretical results are veri"ed by comparing the
present numerical results from commercial software ANSYS.

2. FORMULATION

Figure 1 shows the considered ring-sti!ened cylindrical shell, where R, ¸ and h are the
radius, length, and thickness of the shell respectively. The displacements of the shell in the x,
� and z directions are denoted u, v, and w respectively. Rings sti!en the shells evenly or
unevenly. The shell and ring sti!eners are laminated with a composite material. The kth ring
sti!ener is located at a distance x

�
measured from one end of the shell and its rectangular

cross-section has a depth d
�
and width b

�
. Sti!ening techniques considered in this paper are

called as concentricity, external eccentricity, or internal eccentricity depending on whether
sti!eners are placed either symmetrically, outwardly, or inwardly to the shell middle surface.
The considered ring sti!eners are spaced evenly or unevenly on the shell. The sti!eners'

axial positions are shown in Figure 2. The unevenly spaced sti!eners are sti!ened
functionally. The symbol x

�
denoting the sti!ener's position is a function of space ratio,

S and is given as follows:

x
�
"

¸

2

����
�
���

S����
����
�
���

(1#S�), (1)

where N
�
is the sti!ener number. This function is available for the shells with even number

of sti!eners. The sti!eners are located symmetrically to the axial center of the shell. As
shown in this "gure, the sti!eners are located near the boundary edges in the case of S'1,
the axial center of the shell in the case of S(1, and symmetrically to the axial center of the
shell in the case of S"1.
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Figure 1. Co-ordinate system of ring-sti!ened cylindrical shells: (a) external; (b) internal; (c) concentric.



Figure 2. Ring sti!ener arrangement.
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The strain energy only for the symmetrically laminated, specially orthotropic and thin
composite cylindrical shell [15] without the sti!eners is given by
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where coe$cients A
��
, D

��
(i, j"1, 2, 6) are stretching and bending sti!ness of composite

materials and can be easily found in the literature on laminated composite structure [15].
FromLove)s thin shell theory, the strain �

�
(i"x, �, x�) in the middle surface and curvature
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where ( , ) is the di!erentiation to the space.
The deformation of the ring sti!ener at distance z from the shell middle surface can be

expressed as

u
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"u!zw,

�
, v
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"v#

z

R
(v!w,

(
), w

�
"w. (4)

The deformation of x direction for the ring sti!ener, u
�
, is negligible as the ring sti!ener is

analogous to a beam. The strain energy for a ring sti!ener from the discrete sti!ener theory
is
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Figure 3. Applied load types and step pulse.
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where superscript (or subscript) r denotes the ring sti!ener and �
(�
, �

(�
and �

�(�
are

circumferential strain, curvature and twisting curvature of the ring sti!ener in the middle
surface of shell respectively.
The kinetic energies of the shell and sti!ener are given by
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where ( ) ) is the di!erentiation to time and �, �
�
are the density.

The potential energy of the sti!ened shell subjected to the transverse load q(x, �, t) as in
Figure 3 can be expressed as follows:

="�
�

�
�

��

�

q (x, �, t) w dxRd�. (8)

In this analysis, the beam function [4] is used as the axial mode and can be expressed in
a general form as
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where the coe$cient �
�
is determined from the boundary condition and �

�
does not need an

integer depending on the axial wave number.
The considered boundary condition is both edges clamped. The clamped condition

prohibits transverse displacement and rotation. For the clamped boundary condition, the
mathematical expressions using the beam function are given by

�"�	"0. (10)

The transcendental equation for �
�
and the coe$cient �

�
satisfying the considered

clamped}clamped boundary condition can be numerically computed from the following
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formulas:
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The admissible displacement functions [4] for freely vibrating cylindrical shell with any
boundary conditions can be written as
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,=
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are the amplitudes for each direction, m and n are axial and

circumferential wave number, and �
�

is the angular natural frequency for (m, n) vibration

mode.

2.1. FREE VIBRATION ANALYSIS

Recognizing that at a natural frequency every point in the elastic system moves
harmonically, we may assume that 
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(t)"cos �

�

t in displacement functions. Substitute

the displacement functions into each energy equation and then apply these results to the
Rayleigh}Ritz procedure (14) as follows:
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As the transverse load q(x, �, t) is not considered for the free vibration analysis, the
potential energy = by the transverse loading is zero. Therefore, from the Rayleigh}Ritz
procedure the following frequency equation is obtained:
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where K
��
, M

��
(i, j"1, 2, 3) are sti!ness and mass matrices given in Appendix A.

Solving this eigenvalue problem the natural frequency and its corresponding mode shape
are obtained. As the cylindrical shells without/with ring sti!eners have a homogeneous
geometric shape for the circumferential direction, the one-term approximation is valid for
the circumferential vibration mode when analyzing the vibration characteristics. Hence, the
size of matrix in frequency equation (15) is 3M�3M. Solving this eigenvalue problem
generally gives 3M angular frequencies of ��

�

for each nth circumferential mode and 3M

corresponding eigenvectors, each containing a set of numbers for ;
�

, <

�

,=

�

. The
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eigenvalue problem is simpli"ed as follows:

[K][X]"��[M][X], (16)

where [X] is the modal matrix consisting of eigenvectors.

2.2. TRANSIENT RESPONSE ANALYSIS

In many cases, shell structures may be subjected to dynamic loads over a limited time
period rather than continuous oscillating loads. The load function in Figure 3 can be
assumed as follows:
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where coe$cient F
�

is determined from the state of load distribution. In this study, three

types of distributed loads are considered as shown in Figure 3. The following are coe$cients
F
�

for the considered load.

In the case of the unit point load acting at an arbitrary axial point (xH, �H) of the shell, we
have the following formula for coe$cient F

�

:
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When the unit line load is uniformly distributed along a certain axial distance 2� at an
arbitrary point of the shell, the coe$cients F
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In the case where the unit load is uniformly distributed over a certain rectangular area
2��2� at an arbitrary point, the coe$cients F
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It is considered in this paper that the distributed loads are applied symmetrically at the
center of the shell.
The temporal portion of f

�

(t) in equation (17) can be a harmonic loading. For this time

loading it is convenient to express f
�

(t) as the convolution integral:

f
�

(t)"�




�

F(�) sin �
�

(t!�) d�, (21)

where F(�) is the actual applied load, �
�

is the angular natural frequency for the (m, n)

vibration mode, and � is a dummy time variable.
The time pulse loading considered in this paper is stepped pulse as shown in Figure 3. For

the stepped pulse the force function F(t) and the convolution integral f
�

(t) are given by
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�
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(23)

where F
�
is the maximum amplitude of load.

When external loads act on the shell, the temporal portion of 

�

(t) in displacement

functions is not assumed unlike the vibration analysis. Substituting displacement functions
(13) and force function (17) into Rayleigh}Ritz procedure (14), and applying Hamilton)s
principle to the results, the equations of motion are yielded as follows:

[M][X]
(
�

(t)#[K][X]


�

(t)"[Q] f

�

(t), (24)

where matrix [Q] consists of (1�3) sub-matrix with dimension (M�M) given in
Appendix A. These equations of motion are a set of 3M-coupled ordinary di!erential
equations of second order. The solution of these equations becomes more complex when the
degree of freedom of system is large and/or when the load functions are not periodic. In such
cases, we can obtain a set of 3M-uncoupled di!erential equations of second order using the
modal analysis technique as in the following procedures.
Multiplying equation (24) by [X]	 we obtain

[X]	[M][X]
(
�

(t)#[X]	[K][X]


�

(t)"[X]	[Q] f

�

(t). (25)

Normalizing the normal modes, we have

[X]	[M][X]"[I], [X]	[K][X]"��
�

[I]. (26a, b)

Equation (25) can be expressed, using equations (25a, b), as
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(
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�

(t)"[P] f

�

(t), [P]"[X]	[Q]. (27)

Equation (27) denotes a set of 3M-uncoupled di!erential equation of second order. The
solution of these equations can be expressed using convolution integral as follows:
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Substituting equation (28) into lateral displacement function, w(x, �, t), we obtain the
lateral displacement function of ring-sti!ened composite cylindrical shells subjected to
external pulse loads.

w(x, �, t)"


�

���

�
�

��

=
�

P
�


�
�


sin
m
x

¸

cos n��



�

F(�) sin �
�

(t!�) d�. (29)

3. RESULTS AND DISCUSSIONS

Some numerical examples are now demonstrated for the present theoretical method. The
used graphite/epoxy (T300/NY556/HY917) composite material and basic geometric
properties are given in Table 1.
Comparisons are made with "nite element method to check the validity of the present

theoretical method. ANSYS commercial FEM code [16] is used for the "nite element
analysis procedures. The element used in FEA is the multi-layered shell element, SHELL99,
which has eight-nodes and six-degrees of freedom per node. In the FE model, a half model
for the vibration analysis is considered because the circumferential vibration modes are
symmetric to any radial axis and a quarter model for the transient response analysis
because the responses are symmetric to the axial and circumferential direction if the load
applies to the center of the cylindrical shell. The eigenvalue problem formulated within the
FEM for the vibration analysis is solved by the reduced subspace analysis method included
in the ANSYS code. The full analysis method is used for the transient response problem to
be applicable to the structures subjected to the element load.
In Table 2, the convergence studies are conducted for the "rst "ve lower frequencies of the

unsti!ened and sti!ened composite cylindrical shells. Also, the converged frequencies and
the corresponding mode shapes are compared with the results from the "nite element
analysis. The composite cylindrical shells with shell's length-to-radius ratio, ¸/R"2)5 are
sti!ened evenly or unevenly by four-internally eccentric ring sti!eners with sti!ener's
depth-to-width ratio, d

�
/b

�
"3. There are some di!erences in results between the one-term

and multi-term approximation methods. The maximum di!erence is about 5% for
unsti!ened shell, 6% for the shells with evenly and unevenly spaced (S"0)5) sti!eners, and
8% for the shell with unevenly spaced sti!eners (S"2)0). Also, for the shell with unevenly
spaced sti!eners there is slight di!erence of mode sequences. This means that the one-term
approximationmethod is not appropriate to predict the natural frequency and mode shape.
It is obvious that the multi-term approximation method must be adopted to obtain
reasonable results for the Rayleigh}Ritz procedure. There is a good agreement between
FEM results and the converged values of the theoretical method, thus validating the present
TABLE 1

Material and geometric properties of the composite cylindrical shell

Material properties Geometric properties

E
�

139)4 GPa Shell radius 200 mm
E
�

8)7 GPa Shell thickness 2 mm
G

��
3)1 GPa Thickness of each layer 0)125 mm

�
��

0)268 Sti!ener width 2 mm
� 1542 kg/m� Stacking sequence [($453/03/903)

�
]
�



TABLE 2

Convergence and comparison study with FEM results of natural frequencies for the unstif-
fened/sti+ened cylindrical shells (R"0)2 m, ¸/R"2)5, d

�
"3b

�
, N

�
"4)

Natural frequency (Hz)

M"1 M"6 M"10 M"12 M"14 FEM

(a) ;nsti+ened shell

617)15 (1,6) 601)10 (1,5) 597)03 (1,5) 596)13 (1,5) 595)57 (1,5) 587)23 (1,5)
617)21 (1,5) 607)61 (1,6) 605)20 (1,6) 604)69 (1,6) 604)38 (1,6) 594)13 (1,6)
712)27 (1,7) 706)13 (1,7) 704)59 (1,7) 704)26 (1,7) 704)09 (1,7) 691)71 (1,7)
746)83 (1,4) 719)40 (1,4) 712)48 (1,4) 710)89 (1,4) 709)85 (1,4) 701)68 (1,4)
869)37 (1,8) 864)67 (1,8) 863)53 (1,8) 863)29 (1,8) 863)15 (1,8) 848)47 (1,8)

(b) Internally sti+ened shell: evenly spaced

808)00 (1,4) 784)13 (1,4) 776)16 (1,4) 773)94 (1,4) 773)04 (1,4) 750)50 (1,4)
835)47 (1,5) 824)31 (1,5) 815)90 (1,5) 814)15 (1,5) 813)75 (1,5) 777)35 (1,5)
1026)8 (1,3) 981)67 (1,3) 970)09 (1,3) 966)99 (1,3) 965)14 (1,3) 943)33 (1,3)
1043)4 (1,6) 1038)4 (1,6) 1022)4 (1,6) 1019)8 (1,6) 1019)7 (1,6) 962)03 (1,6)
1344)4 (2,5) 1322)4 (2,5) 1309)3 (2,5) 1307)6 (2,5) 1306)4 (2,5) 1233)0 (2,5)

(c) Internally sti+ened shell: unevenly spaced with S"0)5

825)14 (1,4)
890)61 (1,5)
1021)9 (1,3)
1141)0 (1,6)
1354)1 (2,5)

800)58 (1,4)
874)03 (1,5)
997)63 (1,3)
1118)8 (1,6)
1317)4 (2,5)

794)43 (1,4)
870)36 (1,5)
966)43 (1,3)
1115)0 (1,6)
1309)0 (2,5)

792)39 (1,4)
868)99 (1,5)
963)42 (1,3)
1113)8 (1,6)
1305)0 (2,5)

789)48 (1,4)
863)79 (1,5)
961)27 (1,3)
1103)3 (1,6)
1303)0 (2,5)

764)50 (1,4)
822)56 (1,5)
938)94 (1,3)
1039)8 (1,6)
1233)3 (2,5)

(d) Internally sti+ened shell: unevenly spaced with S"2)0

669)73 (1,5)
728)79 (1,6)
760)53 (1,4)
890)63 (1,7)
1038)1 (1,3)

659)49 (1,5)
709)77 (1,6)
736)27 (1,4)
826)19 (1,7)
980)59 (1,8)

655)87 (1,5)
706)80 (1,6)
730)09 (1,4)
822)53 (1,7)
975)39 (1,8)

655)09 (1,5)
706)17 (1,6)
728)48 (1,4)
821)63 (1,7)
974)43 (1,8)

654)33 (1,5)
705)35 (1,6)
727)31 (1,4)
820)55 (1,7)
973)37 (1,8)

638)91 (1,5)
685)63 (1,6)
714)30 (1,4)
798)38 (1,7)
949)39 (1,8)

Numbers in (m, n) represent the axial and circumferential wave numbers.
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theoretical method. The frequencies from the theoretical method are somewhat higher than
those from the "nite element method. This is the reason why the theoretical results generally
provide the upper bounds. It may be observed that using M"14 for each displacement
function in multi-term approximation is adequate for converged results of all considered
shells in vibration analysis.
Figure 4 indicates the convergence of the lateral de#ections at the center of the

unsti!ened/sti!ened shells considered in Table 2. The shells are subjected to point step pulse
load at the center of shell: the load is applied with the amplitude,F

�
"1)0 kN during 1)5 ms.

As shown in this "gure, the de#ections in small series number are much smaller than those
in large series number for all considered shells. Therefore, we must use a large enough series
number to obtain reasonable results. For the transient analysis the use of (30, 50) series
number is adequate for the converged results.
Figure 5 shows the comparison of the transient response between the theoretical and
"nite element methods for the model considered in Figure 4. The results from the two
methods agree well. As indicated in this "gure, the results from FEM are somewhat higher
than those from the theoretical method. This is because the lateral de#ection is inversely
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proportion to the angular frequency as indicated in equation (29): the frequency from the
theoretical method is higher than that from the "nite element method as presented in
Table 2.
Figure 6 shows the e!ect of concentricity and eccentricity of sti!eners for the six-evenly

spaced ring-sti!ened composite cylindrical shells with ¸/R"2. The sti!ener's aspect ratio,
d
�
/b

�
is 5. The point step pulse loading is applied with 1)0 kN amplitude at the center of shell

during t
�
"1)0 ms. The fundamental frequency ( f

�
) of shells with eccentric sti!eners is

much higher than that of shells with concentric sti!eners. For the eccentrically sti!ened
shell, the frequency of the shell with the internal sti!eners is higher than that of the shell with
the external sti!eners. From this result, we can estimate that the internally sti!ened shell
with the highest frequency has the smallest de#ection. Like the estimation the de#ection of
the internally sti!ened shell is the smallest and that of the concentrically sti!ened shell is the
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Figure 6. E!ect of sti!ener eccentricity on center de#ection for the six evenly spaced ring-sti!ened shells
subjected to point step pulse loading (¸/R"2, d
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*�*, external: f
�
"40)2 Hz; *�*, concentric: f
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"809)0 Hz.
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largest. It is notable that eccentric sti!eners are more e!ective than concentric ones and
internally eccentric sti!eners are more e$cient than externally eccentric sti!eners in raising
the fundamental frequency or decreasing the de#ection.
Figure 7 indicates the e!ect of ring sti!ener location on dynamic characteristics for the

internally sti!ened cylindrical shell with ¸/R"4, d
�
/b

�
"4 subjected to the step point or

line pulse loading. The maximum amplitude of loads, F
�
for the point loading is 1)0 kN

acting on the center of the shell and for the line loading 5 kN/m on 2�"0)5¸ of the shell
during t

�
"1)0 ms. The dashed lines denote the results for the evenly spaced shell. The

frequency of the shells where the rings are positioned near the center of the shells (in the case
of S(1) is much higher than that of the shells where the rings are positioned near the two
edges of the shells (S'1). That is, as the sti!eners are positioned near the center of shells
(S(1), the frequencies of the shells increase and become larger than those of the evenly
spaced shell. However, as the sti!eners are positioned near the edges (S'1), the frequencies
decrease and become smaller than those of the evenly spaced shell. The de#ection of the
shell with S(1 is slightly smaller or larger than that of evenly spaced shell. In the case of
S'1, the de#ection increases rapidly with space ratio, S. This is because the positioning of
the sti!eners near axial center increases the sti!ness of the shell. This result shows that
dynamic characteristics may be in#uenced by the sti!ener positions. Designers may obtain
the desirable dynamic characteristics adequate to design purpose as they arrange the
sti!eners appropriately.
Figure 8 illustrates the e!ect of eccentricity (or sti!ener's aspect ratio, d

�
/b

�
) on the

fundamental frequency and the maximum center de#ection for the various sti!ened shells.
The shells with ¸/R"2 are subjected to point step pulse loading of 1)0 kN during 1)0 ms.
Figure 8(a) indicates the increase percentage of fundamental frequency and Figure 8(b)
indicates the decrease percentage of maximum de#ection calculated by the following
equations:

Increase percentage of fundamental frequency (%)"
f
�
!f

�
f
�

�100,

Decrease percentage of maximum de#ection (%)"
�
�
!�

�
�
�

�100,
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Figure 7. E!ect of sti!ener position for the internally eccentric ring-sti!ened shells subjected to point and line
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variation; (b) line load: F
�
"5)0 kN/m; (c) point load: F

�
"1)0 kN.
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where f
�
, f

�
are the fundamental frequencies and �

�
, �

�
the maximum de#ections of the

unsti!ened/sti!ened shell. It is seen from the "gure that as the eccentricity increases,
the frequency increases nearly proportionally while the frequency decreases inversely in the
extreme case of the shell sti!ened by many rings with the large eccentricity. For the shell
with extreme eccentricity, d

�
/b

�
"13, the frequencies decrease by adding more rings. Each

ring imposes not only sti!ness but also mass loading e!ect on the shell. Thus, this
phenomenon occurred because mass loading e!ects activate greater than sti!ness e!ects on
the fundamental frequency of the shells with excessive ring eccentricity. The de#ection
decreases exponentially at the "rst small eccentricity but above any d

�
/b

�
ratio (about 9) the

de#ection remains almost the same. The maximum de#ection of the shell with d
�
/b

�
"1

decreases only about 3}10% compared with that of unsti!ened shell. However, that of the
shell with d

�
/b

�
"2 decreases about 11}40%. From this, one should sti!en the shell with the

ring of d
�
/b

�
"2}9 to obtain an e$cient sti!ening e!ect. This result indicates that the

eccentricity of sti!ener can signi"cantly in#uence vibration characteristics and transient
response. The excessive eccentricity is not good at structural characteristics because the ring
sti!ening e!ect is very small and the sti!ened structure is to be buckled locally on slender
sti!eners.
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Figure 9 is given to investigate the e!ect of sti!ener number for the evenly spaced,
internally eccentric sti!ened shells. The shells with ¸/R"3 are subjected to the area step
pulse loading with 200 kN/m� during t

�
"1)0 ms. The loading area (A

�
) is 0)3¸�0)1H,

where H is the circumferential arc length. It is noted that the sti!ening e!ect is not great
although many sti!eners with small d

�
/b

�
ratio add to the shell but magni"cent in the case

that the shells are sti!ened by sti!eners with relatively large d
�
/b

�
ratio. For example, adding

the only two ring sti!eners with d
�
/b

�
"8 on the shell the fundamental frequency increases

about 80% and the center de#ection reduces about 60% compared with the unsti!ened
shell. However, for the corresponding shell with d

�
/b

�
"2 the frequency rises about 10%

and the de#ection decreases about 20%. The maximum value increasing the frequency or
reducing the de#ection by adding the sti!eners with d

�
/b

�
"2 on the shells is only about

30% in the considered case. For small sti!ener numbers the maximum center de#ections
decrease dramatically with the increase of sti!ener number. However, as sti!eners are more
added to the shell the change of the frequency or de#ection nearly does not occur. In the
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extreme case the frequency decreases conversely. This "gure shows that although it is
advantageous to have few sti!eners to increase the fundamental frequency or to decrease
the de#ection, many sti!eners do not necessarily lead to proportional increase of
fundamental frequency or decrease of de#ection. Therefore, few sti!eners are adequate to
raise the frequency or to reduce the de#ection.

4. CONCLUSIONS

In this paper, the theoretical method is developed to investigate the e!ects of ring
sti!eners on vibration characteristics and transient response for the ring-sti!ened composite
cylindrical shells subjected to the step pulse loading. As there are no published results
available on the transient response of the ring-sti!ened composite cylindrical shells, the
present theoretical results are veri"ed by comparing the present "nite element results from
ANSYS. Based on the numerical results, the following are concluded.
The eccentric sti!ening is more e!ective than the concentric to increase frequency or

decrease the de#ection. The appropriate sti!ener's eccentricity (or depth-to-width ratio)
leads to an increase in the frequency and a decrease in the de#ection, but the excessive
eccentricity decreases the frequency on the contrary and does not decrease the de#ection.
Few sti!eners are adequate to raise the frequency or to reduce the de#ection. Adding the
ring greatly decreases the frequency but does not decrease the de#ection. The proper
arrangement of ring-sti!eners may result in the desirable e!ect of raising the frequency or
decreasing the de#ection.
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