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Part I of this paper has shown the suitability of wavenumber}frequency approach in the
calculation of the vibro-acoustic response of a thin ba%ed plate to a large class of random
excitations. Part II describes the application of this formulation to the prediction of the
vibration and the acoustic radiation of an aircraft fuselage panel exposed to boundary layer
turbulence.

The "rst section brie#y describes the modelling of the wall-pressure #uctuations and
justi"es as to why a Corcos-like model for the wall-pressure "eld is suitable for high subsonic
#ow applications. In the next sections, several parametric studies are presented. These are
"rst used to verify the validity of the hypothesis underlying our simpli"ed model. Then we
examine the in#uence of the main physical parameters on the vibro-acoustic response of the
system. Finally, the predictions of our model are compared with some previously reported
experimental measurements taken on a panel excited by a turbulent boundary layer.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The continual development of jet-powered, well-streamlined aircraft has driven an
increasing number of studies concerning the sound and the vibration generated in the cabin
by the air#ow developed over the fuselage under cruise conditions [1]. More recently, the
boundary layer noise induced in aircraft has received increasing attention since the
contribution of other noise sources, such as the engine exhaust noise, has now been
signi"cantly reduced while maintaining optimal performance and fuel e$ciency [2].
Moreover, #ow-induced noise increases more rapidly with respect to the stream velocity
than other noise sources and so, appears to be a particularly critical problem in transonic
aircraft. Other airframe noise sources are also generated by wake vorticity beyond the
fuselage or wings trailing edge, by in#ow turbulence developed on aerodynamic surfaces
such as #aps, inline wheels or horizontal tails located in the wake of the other aircraft
portions, and by wheel cavities [3]. However, airframe noise occurs predominantly during
the takeo! and the landing con"gurations and, because of their short duration, the
subsequent discomfort is generally acceptable to the passengers.

On the other hand, because the noise generated by turbulent air#ow over the surfaces of
high-speed aircraft is a major source of annoyance during the long cruise portions of
a #ight, there is an important economic interest in reducing the transmission of boundary
layer noise within the cabin. This problem has to be addressed at the design stage and
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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requires a simple model, as analytic as possible, in order to save the most computational
e!ort and provide the best physical insight.

Many studies have already been devoted to the prediction of fuselage vibration and
aircraft interior noise due to the turbulent boundary layer (TBL) pressure "elds. Most of the
physical models [4}6] have considered a fuselage skin divided into an array of panels whose
vibration is uncorrelated. The vertical and horizontal dimensions of these panels
correspond to the distance between two adjacent frames and two adjacent stringers
respectively. The validity of this model has been con"rmed as representative by extensive
#ight test measurements conducted by Boeing and carried out on the forward and rear part
of an airplane fuselage under cruise conditions [7, 8]. These data have shown that, from
500 Hz to 1)5 kHz, the boundary layer noise is preponderant and excites the forward part of
the fuselage in such a way that the #ow-induced vibrations are only correlated over a single
fuselage bay in the streamwise direction. This is not the case for the rear portion where jet
noise then produces highly correlated vibrations across several bays in the streamwise and
in the spanwise direction at frequencies below about 800 Hz.

A second point concerning the geometry of the modelled subsystem is that the adjacent
bays are set in a cylindrical fuselage and the e!ects of curvature have to be considered
a priori. However, recent analytical work [9] has shown that, for subsonic applications, the
in#uence of the panel curvature on the interior sound "eld can be neglected if the
surrounding inner surface is su$ciently hard to appear as a ba%e, but, at the same time,
su$ciently absorbing to neglect the di!racted sound waves due to the curvature. These
competing e!ects seem, a priori, di$cult to achieve in aeronautical applications but the
in#uence of curvature still appears to be negligible when compared with the in#uence of
in-plane stresses acting on the boundaries of the panel [6]. These membrane tensions are
due to the cabin pressurization and lead to an increase of the typical fundamental resonance
frequency of each bay by a factor of about 3. Hence, the main physical characteristics of the
problem are retained by considering the simpli"ed, but relevant model of a simply
supported #at plate stressed by tension forces.

The third point is related to the modelling of the structural damping e!ects. We will
introduce an equivalent damping ratio � which accounts for several e!ects [10]: the internal
material damping, usually modelled through a hysteresis loss factor �, and the boundary
damping due to the friction in the joint edges or due to the energy lost by the panel
through its elastic boundaries. We will consider in our simulations two characteristic
cases: an aluminium panel which accounts both for the hysteretic damping and the energy
losses through its boundaries (�"0)01) and a panel which accounts for the damping
e!ect of a &&trimmed'' panel [11, 12], i.e., the dissipation due to the insulating material
placed between the interior trim panel and the outer fuselage skin (�"0)05). However,
we should keep in mind that a more rigorous modelling of the trimmed panel should
address the problem of two #exible panels enclosing a cavity "lled with blankets of
insulating materials. Results concerning the alteration of the characteristics of turbulent
boundary layer noise transmission through double panels will be presented in
a forthcoming paper.

Finally, measurements performed at high Mach numbers have shown that the damping
in the structural acoustic response of TBL-excited panels may vary signi"cantly as
a function of the mean-#ow speed. Thus, recent investigations [13}15] have accounted for
aeroelastic coupling, i.e., the in#uence of the mean #ow on both the acoustic propagation
and the #uid}structure interaction at subsonic and supersonic Mach numbers. These
studies have pointed out a bene"cial aerodynamic damping e!ect, leading to a decrease in
the #ow-induced noise transmitted by the fuselage mainly for increasing supersonic Mach
numbers. However, this e!ect is overwhelmed, in practice, by an increase in the levels of the
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TBL noise source, which scale on the mean-#ow velocity, and also by increased
transmission e$ciency due to surface e!ects on the boundary layer pressure distribution
generated over the fuselage skin, such as structural inhomogeneities and ring sti!eners [16],
the wall roughness [17] and step-like discontinuities [18]. An important point is to know
the parameter range over which the in#uence of aeroelastic coupling can be neglected. This
point is addressed in reference [15]. It is shown that, for a typical aircraft panel, up to Mach
number of 0)7, the aerodynamic damping e!ect can still be neglected without signi"cantly
a!ecting the dynamics of the system.

The model described above has allowed extensive analysis to be performed either to
predict or to control #ow-induced structural vibration and sound radiation inside aircraft
cabins. In order to understand the airborne noise transmitted through the fuselage bays due
to turbulent wall-pressure #uctuations, structural modal analysis forms the background of
many investigations in the low-frequency domain and/or for simple elements, whereas
statistical methods like power #ow energy analysis are more suitable when considering
systems which exhibit high modal densities [19]. To our knowledge, the "rst attempt to
derive a statistical estimate of the sound power radiated by air#ow-excited panels starting
from a modal analysis was made by Davies [5]; the usual simpli"cations, such as neglecting
the acoustic and the excitation coupling between the structural modes, have been required
for predicting trends. Several investigations of the modal approach have been proposed by
the use of space}frequency or a space}time formulation for the turbulent excitation
[20}22]. Other authors have also shown the suitability of a wavenumber}frequency
approach either to obtain reduced algebraic forms leading to asymptotics and analytical
approximations [23}25] or to gain further insight into the coupling between a structural
mode and the turbulent #ow or the acoustic "eld [26}29]. It is also important to know the
required precision for the modelling of the excitation "eld in order to describe the
vibro-acoustic response of the structure with su$cient accuracy. A large number of
publications [28}32] have been focussed on the choice of the modelling of the wall-pressure
#uctuations with respect to the frequency range or the Mach number of interest.

In this paper, these excitation models will be brie#y reviewed before an e$cient method
of modelling the response of a turbulent boundary layer-excited panel is presented, based on
the wavenumber approach described in Part I of this paper. This model is then used to
calculate the response for a particular and representative example of a panel for di!erent
conditions and di!erent TBL models. The in#uence of these models is discussed for high
subsonic Mach number applications in section 2 of the paper. Section 3 contains the results
of various parametric studies. The aim is to con"rm the main hypotheses of the model and
to provide a better understanding of the coupling between the dynamic behaviour of the
structure and #ow turbulence. Finally, comparisons between our predictions and previous
measurements are discussed in section 4.

2. MODEL FOR TURBULENT WALL-PRESSURE FLUCTUATIONS

Numerical predictions of TBL pressure #uctuations are limited to low Reynolds number
simple #ows and, in any other case one has to rely on semi-empirical models "tted to
experimental data. A large number of these models have been developed to described the
wall-pressure #uctuations on a rigid plane wall due to a turbulent boundary layer.
A comprehensive review of the most classical models can be found in reference [31].

One of the "rst models was introduced by Corcos [33] to discuss problems of spatial
resolution for pressure transducers at high frequency. Corcos assumed that the spectrum of
the wall-pressure #uctuations can be expressed in a separable form along the spanwise and
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the streamwise directions, so that, in the wavenumber}frequency domain:

Sp
�
p
�
(k;�)"�

�
(�)

¸
�

[k�
�

¸�
�
#1]

¸
�

[(k
�
!�/;

�
)�¸�

�
#1]

, (1)

where ;
�
+0)7;

�
is the eddy convection velocity and ;

�
the free-stream velocity.

Measurements [34] have shown that the value of the ratio;
�
/;

�
is relatively constant with

respect to frequency and to the streamwise separation variable.
In equation (1), �

�
(�) is the point-power spectrum de"ned by

�
�
(�)"��

�

Sp
�
p
�
(k;�) d�k. (2)

Because we are concerned with high subsonic #ow applications, we have chosen the model
proposed by E"mtsov [30] for the point-power spectrum since it has been determined from
experimental data obtained up to highMach numbers (M

�
)0)9). It is given as a function of

the Strouhal number Sh"��/;
�
by

�
�
(�)"

��
�
�
;�

0)01�
(1#0)02Sh���)

, ;�"�
�
�
�

+0)03;
�
, (3)

where � is the boundary layer thickness, �
�

is the mean wall shear stress and ;� is the
friction velocity. The Strouhal number is the non-dimensioned variable associated to the
boundary layer thickness.

Equation (1) for the excitation spectrum also contains the spanwise and streamwise
correlation lengths, namely ¸
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Unlike those used in the original Corcos model [33], they depend on the boundary layer
thickness. At high Mach numbers (or low frequencies), when the wall-pressure #uctuations
are correlated over large distances, the in#uence of the boundary layer thickness cannot be
neglected whereas, at low Mach numbers (or high frequencies), expressions (4, 5) coincide
with the correlation lengths proposed by Corcos.

The dimensionless wavenumber}frequency power spectrum given by references (1}5) has
been plotted at 200 Hz for two Mach numbers in Figure 1. The maximum corresponds to
the convective ridge. It occurs for streamwise wavenumbers k

�
+�/;

�
, and for spanwise

wavenumbers k
�
+0. It separates the low-wavenumber region (k

�
;

�
/�(1) from the

high-wavenumber region (k
�
;

�
/�'1). At high Mach number, the correlation lengths (4, 5)

are much smaller than those originally proposed by Corcos and so, the convective peak is
broadened (see Figure 1, thin and bold curves). The same phenomenon occurs with the
Chase model described below, but to a lesser extent (Figure 1, dashed and dash-dotted
curves).

By comparisons with measurements, Blake [35] has shown that the Corcos model
provides a good estimate of the power spectrum of #ow-noise near the convective ridge.
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This model is particularly useful for high #ow speed applications like aircraft boundary
layers since, in this case, the convective wavenumber �/;

�
nearly coincides with the "rst

modal wavenumbers of the plate. This hydrodynamic coincidence phenomenon shows that
an accurate modelling of the convective domain will be required for vibroacoustic
predictions in this aeronautical application.

Another advantage of a Corcos-like model is that it is simple enough to provide
closed-form analytical expressions for the modal excitation term, ���

�	
(�) from equation (65)

in Part I, either in the space}frequency domain [20] or in the wavenumber}frequency
domain [6]. Thus, extensive parametric studies can easily be handled over a wide frequency
range without a lot of computational e!ort.

However, the Corcos model overestimates dramatically the low-wavenumber levels for
the power spectrum which, then, exhibits a white wavenumber spectrum from 20 to 40 dB
above the measured spectrum in the subconvective region down to the compressible (or
acoustic) domain (�k �+�/c). Speci"cally, in most low Mach number applications, such as
underwater acoustics, for which the structural wavenumbers are usually much lower than
the convective wavenumber, large eddy scales of turbulence contribute as a major part to
the vibro-acoustic response of the structure and, hence, one needs a more rigorous model
than the Corcos description for the low-wavenumber region. For this purpose, in 1980,
Chase formulated a model [36] to describe spectral elements of the #ow noise down to and
near the acoustic wavenumber (Figure 1, dashed and dash-dotted curves). Blake [35] has
shown that this semi-theoretical formulation agreed reasonably well with measured data
within a wide range of subconvective wavenumbers down to k

�
+0)4/�*, where �* is the

boundary layer displacement thickness.
In summary, the Chase and Corcos-like modes are complementary. The Corcos power

spectrum of the excitation provides a good estimation for the levels of the wall-pressure
#uctuations near and at the convective peak which is of fundamental importance for aircraft
boundary layers. On the other hand, the Chase power spectrum is more suitable for



TABLE 1

Physical parameters for the aircraft panel used in the simulations

Parameters Value

Free-stream velocity ;
�

"225 m/s
Boundary layer thickness �"0)1 m
Panel thickness h"0)0015 m
Panel Young's modulus E"7)24�10�� Pa
Panel longitudinal tension N

�
"29 300 N/m

Panel lateral tension N
�
"62 100 N/m

The panel Poisson's ratio 	"0)33
Panel mass density �"2800 kg/m�
Panel damping ratio �"0)01 or �"0)05
Panel dimensions a"0)414 m, b"0)314 m
Sound speed in #uid External #uid: c



"300 m/s

Internal #uid: c
�

"340 m/s
Fluid density External: �



"0)44 kg/m�

Internal: �
�

"1)2 kg/m�
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low-speed #ow applications where the strongest #ow}structure interaction occurs in the
low-wavenumber region. For our case of interest, with a Mach number of 0)7, a Corcos-like
model of the excitation seems well suited. However, in paragraph 3.3, the in#uence of both
the Chase and Corcos models on the sound power radiated by an aircraft panel will be
presented.

3. NUMERICAL RESULTS

In this section, numerical results are presented for the response of an aircraft panel
excited by a turbulent boundary layer. We have considered a tensioned aluminum panel
with a thickness of 0)0015m, which is characteristic of an aircraft with a radius of about 2m.
The aircraft is assumed to be #ying at Mach 0)75, at an altitude of about 30 000 ft, which
results in a di!erential static pressure load of 7000N/m� on the fuselage panel. According to
the model used by Koval [37], these values lead to initial in-plane tensions of 29 300 N/m in
the axial direction and 62 100N/m in the spanwise direction. The geometrical and
mechanical parameters of the panel used in this study are summarized in Table 1.

3.1. CONVERGENCE OF THE MODAL REPRESENTATION

As outlined in the Appendix A of Part I, the bandwidth of the excitation "eld determines
the number of modes required for the modal representation of the solution. In practice,
given an upper frequency f, we can deduce the number of modes (M

���
, N

���
) that will

contribute signi"cantly in the modal expansion of the solution from a criteria similar to
equation (A3) (Appendix A of Part I), but derived for a tensioned panel:
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Expression (6) is not easily tractable and we will prefer to determine the required number
of non-resonant highly excited modes from the form of the modal excitation terms.



Figure 2. The self-modal excitation terms ��
�
(�) as a function of the frequency for increasing streamwise mode

numbers:00 , (1, 1); - ) - ) -, (1, 2); ) ) ) ), (1, 3); 00 , (1, 4).

Figure 3. The power spectral density of the kinetic energy as a function of the frequency when an increasing
number of structural modes is accounted for: }} } }, (3, 6), - ) - ) -, (3, 7); ) ) ) ), (4, 7); 00 , (6, 10);00 , (8, 12).
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Figure 2 shows the "rst coe$cients of the self-modal excitation terms ��
�	

of series (80)
(Part I) as a function of frequency. They correspond to the projection of the excitation "eld
on the set of eigenmodes. Using a Corcos-like model for the excitation, their analytical
expression is readily obtained in the space}frequency domain [20] or in the
wavenumber}frequency domain [6]. At a given frequency, the contribution of
a non-resonant mode to the panel response is more important when the modal excitation
term is high. This maximum value of ��

�	
(�) (see Figure 2) occurs, in the wavenumber



Figure 4. Fluid-loading e!ect on the vibrating response of an aircraft panel:00 , with #uid-loading;00 ,
without #uid-loading.
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domain, for frequencies for which the convection peak of the turbulent pressure "eld nearly
coincides with the maximum peak of the modal shape function at the hydrodynamic
coincidence (see Figure 3 and 4 in Part I).

For the aircraft panel considered here, all the modes up to order 6 and 10, respectively, in
the spanwise and streamwise directions were required to accurately describe the power
spectral density of the panel response up to 2 kHz. This is illustrated in Figure 3 where the
power spectral density of the panel kinetic energy has been plotted with an increasing
number of structural modes accounted for. Below the convergence limit, increasing the
number of streamwise modes has a signi"cant e!ect on the spectrum levels over a wide
frequency range while increasing the number of spanwise modes has a smaller e!ect.

3.2. VERIFICATION OF THE SIMPLIFYING ASSUMPTIONS

3.2.1. ¹he -uid-loading e+ect

Figure 4 shows the spectral density of the panel displacement (�"0)01) excited by
a turbulent boundary layer and calculated at the point (x

�
, y

�
)"(0)3b, 0)2a) when using

two di!erent expressions. All the structural modes up to 2 kHz contribute to the response at
this position. The bold curve has been plotted using the "rst order approximation of the
panel structural response in the light #uid-loading case (see equation (63), Part I). We note
that, for a typical aircraft panel described by the physical parameters given in Table 1, our
frequency range of interest (up to 2 kHz) is well below the coincidence frequency (8 kHz)
and the "rst order approximation (63) of the modal series can be applied. It is compared to
the thin curve corresponding to the zero-order approximation of the panel response; in this
case, equation (63) is modi"ed according to approximations (73, 74).

Only the magnitude of the "rst resonance is signi"cantly reduced because of the radiation
damping e!ect. Also, one can see that the added mass e!ect, that shifts down the resonances,



Figure 5. Comparison between the vibrating response for the full solution (00 ) and the diagonal solution
(00).
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can be clearly neglected. The same simulations have been carried out for a structural
damping ratio �"0)05 [38]. The same phenomena are observed, but the reduction is less
pronounced at the "rst resonance. This is due to the fact that, in this case, the radiation
damping e!ect becomes relatively less important with respect to the structural damping
e!ect. In view of these initial simulations, we will neglect the radiation damping e!ect in the
following analysis since it will not a!ect the main physical trends that we are going to
investigate.

3.2.2. ¹he cross-modal excitation terms

Figure 5 shows a comparison for the prediction of the spectral density of the panel
displacement (�"0)01) evaluated at the point (x

�
, y

�
) either from the full expansion (63) in

Part I (bold curve), or from the approximate expansion deduced from equation (63) by
neglecting the cross-modal excitation terms with respect to the diagonal terms (thin curve).

This example clearly shows that the cross-modal excitation terms can be neglected in the
prediction of the vibrating response of this #ow-excited plate over the frequency range of
interest here. This could have been expected simply by looking, in Part I, at condition (79)
which de"nes a transition frequency (�

�
";

�
/a


�
) above which the approximation is valid,

i.e., 519 Hz in our case. One can see that the cross-terms are still negligible below �
�

because there is not a great modal overlap in this frequency range. The diagonal solution
will thus be used for the simulations carried out in the rest of this section at high-speed
subsonic #ow.

3.3. INFLUENCE OF THE EXCITATION MODEL

In section 2, we have shown that for high subsonic #ow applications a Corcos model of
the TBL excitation, accounting for the dependence of the correlation lengths on the



Figure 6. The sound power inwardly radiated by an aircraft panel (�"0)01) when a Corcos model (00 ) and
a Chase model (00), both at M

�
"0)7, are used to describe the turbulent pressure "eld.
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boundary layer thickness given by equations (4, 5), is more suitable than the Chase model to
describe the levels of the turbulent pressure #uctuations in the neighbourhood of the
convective peak. In order to verify this result, we have plotted in Figure 6 the sound power
inwardly radiated by the aircraft panel when this Corcos model (bold curve) and the Chase
model (thin curve) are used to represent the wall-pressure "eld. Up to 600 Hz, the levels
predicted when using a Corcos model are lower than those obtained with the Chase model
(max. 5 dB on the peaks levels). Above this frequency, the levels are quite similar. Similar
results have been obtained in the case of the untensioned panel, but, in this case, the
maximum di!erence reaches up to 10 dB at the "rst resonant peak.

The trends shown in Figure 6 can be explained by using the dimensionless excitation
spectra in Figure 1. For a "xed high subsonic #ow velocity (;

�
"225 m/s), the di!erence in

levels at the convective peak observed between the Corcos and the Chase model in Figure
1 are responsible for the di!erence in levels of the sound power radiated by the panel in the
low-frequency domain. The low-frequency domain is de"ned by the Strouhal number in
section 2 being less than about 70, i.e., below about 800 Hz for M

�
"0)7.

Note that the levels observed at the convective peak in Figure 1 for both the Corcos and
the Chase model are quite similar for M

�
"0)09 and at f"200 Hz. They correspond to

a Strouhal number of about 150. By using a similarity argument, the same Strouhal number
is also obtained forM

�
"0)7 and for f+1)4 kHz. Thus, under these conditions, there is also

very little di!erence between the peak levels of the Chase and Corcos models, as observed in
Figure 6.

In summary, this comparison shows that, for the aircraft panel of interest, the dependence
of the correlation lengths on the boundary layer thickness cannot be neglected when
describing the sound power inwardly radiated below 600 Hz. Above this frequency,
neglecting this dependence leads to only small errors on the levels predicted. Although the
Corcos model overpredicts the low-wavenumber levels for a TBL excitation, we note that,
for a Mach number of 0)7, the choice of the Corcos model does not signi"cantly modify the
vibro-acoustic response of the panel with respect to the Chase model.



TABLE 2

Eigenfrequencies and critical frequencies of the panel (Hz)

m n Flat panel In-plane tension Curved, tensioned Critical frequency

1 1 58 225)9 269)1 679)5
1 2 121)5 304)9 413)5 983)6
2 1 168)4 434)2 437)1 1158)0
1 3 227)3 425)1 548)1 1345)6
2 2 231)9 494)4 515)6 1359)0
2 3 337)7 596)3 637)7 1640)1
3 1 352)4 686)8 687)3 1675)3
1 4 375)5 584)2 687 1729)4
3 2 415)9 742)3 746)8 1820)0
2 4 485)9 740)9 791)8 1967)3
3 3 521)7 837)4 850)1 2038)5
1 5 566 782)5 867)6 2123)3
4 1 610 991 991)1 2204)2
3 4 669)9 974)2 995 2309)9
4 2 673)5 1046 1047)2 2316)1
2 5 676)4 928)4 979)9 2491)4
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3.4. PARAMETRIC ANALYSES

Table 2 summarizes the values of the "rst eigenfrequencies of an aircraft panel considered
either as a #at untensioned panel (column 3), as a #at tensioned panel (column 4) or as
a curved tensioned panel (column 5). The "fth column represents the set of frequencies for
which the acoustic wavelength coincides with each modal wavelength and also named the
critical frequency of each mode.

3.4.1. E+ect of membrane stresses

As shown in Table 2, the in-plane tensions lead to an increase of the fundamental
eigenfrequency of the panel by a factor of about 3. The order of the corresponding
eigenfrequencies for the individual modal values (m, n) associated with each structural mode
are also modi"ed. The corresponding mode shapes are, however, still the same as those for
the untensioned panel.

Figure 7 presents a comparison of the sound power inwardly radiated by the untensioned
panel (thin curve) and by the tensioned panel (bold curve) when excited by the TBL. This
"gure clearly con"rms that we cannot neglect the in#uence if the in-plane tension even in
a simpli"ed model.

3.4.2. E+ect of circumferential curvature

Table 2 (column 5) also presents the "rst eigenfrequencies of a curved aircraft panel which
are obtained from the analytical approximations given by Blevins [39]. We have used
a typical circumferential radius of 2m [8]. One can see that the curvature raises the natural
frequencies of a curved panel above that of an analogous #at plate by a factor of up to about
1)3, but in a non-uniform way. Indeed, it can be noticed, as expected, that the
eigenfrequencies that are only slightly raised (less than 1%) are those associated with the
very "rst modal order in the direction along the axis of the aircraft.



Figure 7. The sound power inwardly radiated by an aircraft panel (00 ) and an untensioned panel (00)
when both are excited by a turbulent pressure "eld (�"0)01).
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Although the in#uence of curvature on the structural properties of an aircraft panel are
not negligible, they are still less important than the in#uence of the cabin pressurization.
Through investigations have been carried out to determine the e!ects of panel curvature on
the sound "eld inwardly radiated [9] as well as on the wall-pressure #uctuations [40]. The
e!ect of curvature on the acoustic radiation has already been discussed in the introduction.
The e!ect of surface curvature on the wall-pressure #uctuations cannot be neglected if the
boundary layer thickness is large compared to the radius of curvature. In the streamwise
direction, this approximation is clearly justi"ed and, in the spanwise direction, the ratio
boundary layer thickness/radius is typically around 5%. Accounting for curvature in this
direction leads to a decrease of the wall-pressure spectrum only in the subconvective
domain [40]. At high subsonic Mach number, the modes that contribute to the panel
response are predominantly excited by the convective elements of the boundary layer
pressure "eld and so, neglecting the azimuthal curvature should not dramatically a!ect the
response.

3.4.3. E+ects of the structural damping

We will "rst examine how the structural dissipation a!ects the distribution of energy
transferred from the #ow to the panel. In order to show that this result is not speci"c to our
parameter range, dimensionless forms of the power quantities involved in the balance
energy equation (43) (Part I) are considered [38]. Figure 8 shows the spectral distribution of
the dimensionless power quantities for a typical aircraft panel (�"0)01).

We notice that only a small fraction of the power input incoming from the turbulent
pressure "eld contributes to the radiated sound power. Most of the boundary layer input
power is either dissipated within the structure or transmitted to the boundaries. As could be
expected, this e!ect becomes more signi"cant with increasing frequency, since the radiation
damping e!ect decreases with frequency. Thus, for the panel of interest, the input power is
almost entirely dissipated within the structure above 800 Hz (see Figure 8). Simulations
have also been carried out for a lightly damped panel (�"0)001). In this case, similar



Figure 8. Energy balance of the power spectral quantities for an aircraft panel (�"0)01):00 , boundary layer
input power; - ) - ) -, structurally dissipated power; 00 , inwardly radiated power.

Figure 9. In#uence of an increased structural damping on the total sound power inwardly radiated by the
aircraft panel up to 1 kHz.
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trends are observed but the structural damping becomes the dominant e!ect only above
1 kHz [38].

A second point is regarding how to use the structural damping e!ect to reduce
#ow-induced vibrations and radiation. Figure 9 shows that doubling the damping ratio of
the panel provides a 6 dB attenuation for the levels of the total sound power radiated, here
calculated up to 1 kHz. The same trend has been observed when the total sound power
radiated is calculated up to 2 kHz. This e!ect of structural damping on the panel response
can be understood since resonant modes contribute to the panel response over this



Figure 10. In#uence of an increased #ow velocity on the spectral density of the panel displacement normalized
by the point-power spectrum of the TBL excitation: 00 , ;

�
"225 m/s; - ) - ) -, ;�

"130 m/s; 00 ,
;

�
"70 m/s.
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frequency range and the peak levels are 1/��
�	

dependent. Thus, increasing the damping ratio
initially has a very bene"cial in#uence on the total sound power radiated. However, as
noticed by Graham [11], the same increment for higher values of the damping ratio brings
diminishing returns.

3.4.4. Hydrodynamic coincidence e+ect

This important e!ect has been thoroughly discussed in references [6, 20] and we illustrate
here its in#uence on the panel structural response. Figure 10 shows, for a #uid velocity
varying from 70 to 225 m/s, the normalized spectral density of the panel displacement at the
point (x

�
, y

�
). It is scaled onto the point-power spectrum of the wall-pressure #uctuations so

that the increase of the noise source levels with the #ow velocity does not appear. It can be
seen that the bandwidth within which the vibration energy is contained increases with #ow
velocity. The explanation lies in the hydrodynamic coincidence e+ect that occurs over
a frequency range for which each modal wavelength in the #ow direction, 2a/n, nearly
coincides with the convecting scale of the turbulent excitation, 2�;

�
/�, where the main

#uctuating energy lies.
Considering the case of an untensioned in"nite plate excited by a turbulent #ow provides

a guideline to estimate the frequency �
�
below which hydrodynamic coincidence occurs. It

is shown in Appendix A2 that the hydrodynamic wavenumber, k


"�/;

�
, matches the

plate bending wavenumber, �
�
"(m��/D)���, at the hydrodynamic coincidence frequency

�
�
";�

�
�m/D. For the three #ow velocities considered in Figure 10 (225, 130 and 70 m/s),

the hydrodynamic coincidence frequencies are, respectively, 2540, 847 and 245 Hz and
provide an upper limit above which no structural modes can be e$ciently excited by the
turbulent pressure "eld. However, we have to bear in mind that these frequencies
overestimate the hydrodynamic frequency range in the case of a tensioned panel. Indeed,
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because of pressurization e!ects, the panel resonance frequencies are shifted up and the
hydrodynamic coincidence frequency range is consequently reduced.

Thus, the hydrodynamic coincidence e!ect enables us to explain as to why the vibration
levels increase with #ow velocity more rapidly than the noise source levels. For the aircraft
panel of interest in contact with a high-speed subsonic #ow, hydrodynamic coincidence
exists up to 1)5 kHz. Note that, for an untensioned panel, it occurs over a broader frequency
range (up to 2 kHz) since the number of modes e$ciently excited by the convected "eld is
more important.

3.4.5. Modal radiation properties

The third major e!ect which governs the amplitudes of the resonance peaks for the sound
radiated is related to the radiation e$ciency of each structural mode. From Table 2, it is
clear that most of the modes which contribute to the response of the system are ine$cient
radiators at their resonant frequencies. This means that, below their critical frequency,
these modes have large di!erences in their contribution to the far"eld radiated pressure, the
less e$cient modes being the even}even modes. Above their critical frequency, however,
these modes radiate sound independently, with an e$ciency that asymptotes to one for all
modes. For instance, we notice in Figure 7 that, below 500 Hz and for the untensioned
panel, the resonant modes with the highest contribution to the sound power radiated are
odd}odd ine$cient modes. However, the (2,2) mode that does not contribute to the sound
power radiated by the untensioned panel at its natural frequency of 232 Hz, because it is so
ine$cient, begins to radiate e$ciently when the panel is tensioned and its frequency is
raised to 494 Hz.

Another important point is that, below the critical frequency of each mode, the sound
"eld radiated by this mode generally couples with any other structural mode. However, in
the case of an excitation by a turbulent pressure "eld and above the transition frequency �

�
de"ned in section 3.2.2, the sound "elds due to di!erent structural modes are uncorrelated
and so, the sound power radiated by the panel is just the sum of the sound power radiated
by each structural mode. As discussed by the authors in reference [41], we are then certain
to reduce the total sound power radiated by the plate if we manage to reduce the amplitude
of any single structural mode, whereas this is not necessarily the case under a general
harmonic excitation [42].

4. COMPARISONS WITH EXPERIMENTAL RESULTS

In this section, predictions, obtained from our model, are compared with experimental
results performed in the anechoic wind-tunnel of the LMFA (Ecole Centrale de Lyon,
France) for the vibration of a #at plate excited by a turbulent boundary layer [20].

A thin (1 mm thick) rectangular untensioned plate made of stainless steel was clamped on
the rigid wall of a wind-tunnel test section. Although measurements were taken for #ow
velocities varying from 40 to 130 m/s, we only present the results obtained for the highest
#ow speed. Indeed, we have explained in section 2 as to why a Corcos-like model is not
a good candidate for low subsonic #ow applications and so, the experimental con"guration
with the highest #ow speed seems more appropriate to assess the validity of our predictions
when using a Corcos model for the excitation.

The plate was #ush-mounted far downstream from the rectangular pipe inlet, in order to
achieve conditions of homogeneity and stationarity for the air#ow when developed over
one side of the plate. The anechoic wind-tunnel has been designed to prevent the e!ects of



TABLE 3

Physical characteristics of the ¹B¸-excited plate used in the experiments of Robert

Panel parameters Flow parameters

Dimensions: a�b�h"0)30�0)15�0)001 m� Boundary layer thickness: �"0)03 m
Mass density: �"7800 kg/m� Mass density: �



"�

�
"1)3 kg/m�

Young's modulus: E"200 GPa Sound speed: c



"c
�

"340 m/s
Modal damping ratio: �"0)005 Free-stream velocity: ;

�
"130 m/s

The Poissons' ratio: 	"0)3

Figure 11. The power spectral density of the velocity, at the point R1, of a clamped plate excited by a turbulent
boundary layer: comparisons between measurements performed by G. Robert (00 ) and predictions obtained
using our modal formulation (00 ).
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acoustic contamination from the centrifugal blower and the ambient noise. However,
inaccuracies in the measurements below 200 Hz are attributed to an undesirable acoustic
component due to the contribution of the longitudinal modes that are excited in the pipe
between the inlet and the outlet. No noise cancellation techniques have been applied for the
measurements presented here.

The plate acceleration was measured by small accelerometers attached to the structure.
As the surface mass of the plate is high (7)8 kg/m�), the added mass e!ect introduced by the
accelerometers can be neglected. The geometrical and mechanical characteristics of the
system under study are summarized in Table 3.

In Figures 11 and 12, the experimental results (bold line) have been obtained by Robert
[20] and the numerical ones (thin line) have been calculated by the authors with the modal
formulation detailed in section 3 of Part I, but applied to the case of a clamped plate. The
wavenumber sensitivity function for the clamped}clamped rectangular panel has been
obtained by spatially Fourier transforming the Warburton analytical approximation of the
panel structural modes [43, 44]. In Figure 11, we have plotted the measured and predicted
power spectral density of the plate velocity at the point x"0)08m and y"0)16m, i.e., near



Figure 12. The power spectral density of the velocity, at the point R2, of a clamped plate excited by a turbulent
boundary layer: comparisons between measurements performed by G. Robert (00 ) and predictions obtained
using our modal formulation (00 ).
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the centre of the plate. One can see that the overall levels at the peaks are correctly described
by our model when using a damping ratio �"0)005, as suggested in reference [20]. Some
small peaks have been detected and predicted above 800 Hz: they correspond to even}even
modes that poorly contribute to the vibrating response of the plate measured at this
position.

Measurements have also been performed at another point, with co-ordinates x"0)09m
and y"0)27 m, i.e., located near one corner of the plate. In this case, a larger number of
modes are observed (see Figure 12). Thus, this con"guration is more interesting in order to
assess our model. We note that we have a better agreement with these experimental data
than with the previous one, not only concerning the overall levels, but also when we
compare the relative contribution of each peak to the vibrating response.

The di!erences concerning the position of the resonant peaks in Figures 11 and 12 are
partly due to the errors inherent to the measurements of the mechanical parameters of the
plate. However, the main source of errors could result from the fact that we have considered
idealized boundary conditions (clamped plate) in our model and these boundary conditions
are only approximated in the experiment.

5. CONCLUSIONS

In this paper, we have applied the general formulation presented in Part I for the response
of a randomly excited panel to the prediction of the vibrations and the acoustic radiation of
an aircraft fuselage panel using the tensioned #at plate model.

The requirements that have been derived in Part I for the neglect of the acoustic and the
excitationmodal coupling have been discussed a posteriori. They provide a good estimation
for the validity range of the simplifying assumptions in case of an untensioned panel. When
we account for pressurization e!ects, a more speci"c condition should be obtained to
estimate the frequency below which #uid-loading e!ects can be neglected.
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Parametric studies have pointed out the in#uence of the structural dissipation together
with the hydrodynamic coincidence on the structural and acoustic response of the panel.
First, increasing the structural damping reduces the levels of noise inwardly radiated.
Second, the radiated sound power increases more rapidly with #ow velocity than the
turbulent pressure levels.

As outlined in section 3 while examining the modal radiation properties of an aircraft
panel, we can consider that, under cruise condition, each structural mode radiates sound
independently and so, a suitable strategy for the active structural acoustic control of the
sound power inwardly radiated by the panels would be independent feedback control of
each panel mode in the low-frequency domain.

Finally, good agreement is demonstrated between our predictions and previous
experimental results which enables to show the validity of our simpli"ed formulation. This
model will be considered by the authors as a basis for a study of the boundary layer noise
transmitted through aircraft sidewalls a typical con"guration of which is a double panel
partition containing a light insulating material.
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APPENDIX A: INFINITE PLATE EXCITED BY A TURBULENT FLOW

In this appendix, we consider the problem of the vibro-acoustic response of a uniform
#uid-loaded #at plate, of in"nite extent and excited by the wall-pressure #uctuations
associated with a homogeneous turbulent #ow over plate, which is more tractable than the
problem with a "nite plate. The main purpose of this example is to provide some insight
into the main results obtained in the parametric analysis and to give a priori estimation of
the accuracy of the approximations introduced in Part I, section 3, and associated to our
initial problem.

The notation adopted is that introduced in Part I of this paper. First, consider �
�
the

in"nite #uid-loaded plate Green function that satis"es the equation
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�
!k�

�
) �

�
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�

G� (x!x�) �
�
(x�) d�x�"�/D, x3R�

with k�
�
"m��/D and 
"2�

�
/m; the plate separates two #uid domains characterized by

a density �
�
and a sound velocity c

�
. The uniqueness of the solution is determined by

a Sommerfeld condition at in"nity. The Neumann Green function G� is de"ned in Part I,
section 2, equation (39). The spatial Fourier transform �

�
of �

�
is readily obtained
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k
�
"�/c

�
is the acoustic wavenumber in both #uid domains and k

�
is the plate bending

wavenumber.
We assume that the turbulent excitation is described by the wavevector}frequency

spectrum Sp
�
p
�
(k ;�), an expression of which, using the Corcos model, is given by equation

(1) in section 2. Because the in"nite #uid-loaded plate is a space- and time-invariant system,
its wavevector}frequency response, S�

��
, to a turbulent "eld is related to the excitation

spectrum Sp
�
p
�
by
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��
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�
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(k ;�). (A2)

According to equations (A1) and (1),
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Figure A1. The power spectral density, S�
��

(�), of the displacement of an in"nite aluminium plate excited by
a turbulent air#ow (;

�
"225 m/s) as a function of k

�
and k

�
and for an analysis frequency f"5 kHz.
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where k


"�/;

�
stands for the hydrodynamic wavenumber and ¸

�
, ¸

�
for the spanwise and

streamwise correlation lengths. In equation (A3), we notice that the wavevector}frequency
spectrum of the displacement of the #ow-excited plate is in"nite-valued along the
circle �k �"k

�
, where k

�
is one of the real roots of the dispersion equation of the

#uid-loaded plate

j
 (k�!k�
�
)#
k�

�
"0. (A4)

It corresponds to the free wavenumber of the #uid-loaded plate that propagates without
losing energy into the #uid.

Moreover, a maximum occurs at k"(0, k


) and corresponds to the spectral contribution

of the convective peak. These features are illustrated in Figure A1 where the wavevector
spectrum of the structural response of an in"nite aluminium plate in contact with an air#ow
(;

�
"225m/s) is plotted as a function of k

�
and k

�
at a "xed frequency ( f"5 kHz) such

that k
�
+1)5 k

�
, k



+2)2k

�
and k

�
+100. We see that the dominant contribution to the

structural response of an in"nite #uid-loaded plate excited by a turbulent air#ow comes
from wavevectors having magnitudes equal to k

�
and this holds whatever the analysis

frequency and the #ow velocity.
A noteworthy point is that the roots of the quintic equation (A4) are not known explicitly.

However, inasmuch as the #uid has a small in#uence on the plate vibrations, as in our case,
accurate analytical approximations of these roots can be obtained.

A.1. ACCURACY OF THE LIGHT FLUID APPROXIMATION

When the parameter 
 is small, the roots of equation (A4) are close to $k
�
, $jk

�
and

$k
�
. Because the frequency range of interest is, in the case considered here, below the

coincidence frequency �
�
"c�

�
�m/D, de"ned by k

�
(�

�
)"k

�
(�

�
) and which is equal to

8 kHz for the plate described in section 3, we will "rst assume that k
�
(k

�
. The

perturbation method can be applied to each regular root by posing a power series in

 starting with 
� as given by: k+k

�
(1#
�

�
#
��

�
# 2). Thus substituting this



Figure A2. Wavenumbers frequency dependence for an in"nite plate:00 , acoustic wavenumber k
�
; - - - -, plate

bending wavenumber k
�
; - ) - ) -, hydrodynamic wavenumber, k



;00 , "rst order analytical approximation of the

real dispersion root k
�
; xxxx, numerical approximation of the real dispersion root k

�
.
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expansion into equation (A4) yields
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Applying the same method to the other roots yields
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In the case k
�
'k

�
, the perturbation method leads to
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We now have asymptotic approximations for each root of the dispersion relation. Their
accuracy is determined by the last term included once 
 is su$ciently small. As depicted in
Figure A2, accounting for the two "rst leading order terms already provides, in our range of
parameters, a very accurate approximation of the real root k

�
, but away from the

coincidence frequency. An asymptotic representation uniformly valid over the whole
frequency range would require "rst an inner approximation for the roots, only valid at the
vicinity of this particular frequency and then, to assume that the inner and outer expansions
are of a similar form in an overlap area (matched asymptotic expansion). Restricting our
attention to frequencies below �

�
, it appears that the accuracy of the zero order

approximation for the real dispersion root is governed by the smallness of the quantity


k
�
/2�k�

�
!k�

�
.
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Furthermore, the inverse Fourier transform of equation (A1) yields an exact expression of
the plate displacement �

�
in terms of the roots of the dispersion relation [45]. Substituting

the roots approximations into this expression and comparing with the "rst order
approximation of the solution enables one to show that the four following parameters
govern the accuracy of the "rst order expansion for the structural response of an in"nite
#uid-loaded plate [46]:
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. (A5)

First, we notice that these criteria are general and do not depend on the nature of the
excitation. Second, as suggested in reference [46], one can reasonably assume that their
validity condition is independent of the plate boundary conditions and/or geometry and so,
are of the same order of magnitude as for a "nite-dimensional plate.

A.2. SIMPLIFICATION OF THE SPECTRAL DENSITY FOR THE FLOW-INDUCED

DISPLACEMENT OF THE PLATE

The validity condition of this simpli"cation is easily obtained in the space}frequency
domain. Thus let us consider the inverse spatial Fourier transform of equation (A2). We
then obtain an expression similar to expression (24) (see Part I, section 2) for the spectrum of
the plate displacement:
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(x;�) Sp

�
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�
(�!x#x� ;�) �*

�
(x� ;�) d�xd�x�. (A6)

We note that, inasmuch as the spectrum of the excitation does not depend on the location x,
the spectrum of the displacement of the in"nite plate depends only on the separation �.
Introducing the new variable v"�!x#x� into (A6) yields
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�
(v;�) d�x d�v.

This expression can be factorized in the form:
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(x�;�) d�x� , (A7)

where�
�
is the point power spectrum or correlation area of the excitation, which is de"ned in

the wavenumber domain by equation (2) and, in the space}frequency domain, by

�
�
(�)"��

R

Sp
�
p
�
(� ;�) d��. The simpli"cation of equation (A6) into equation (A7) is only

valid when �
�
(�)�4��/��

�
(�), i.e., when the greatest area along which the turbulent "eld is

correlated is small compared to the square of the structural wavelength and so, when the
structure does not accept a lot of energy from the #ow.

For a "nite dimensional plate, a similar simpli"cation occurs when the correlation area is
smaller that the plate surface [5], but a more stringent condition could be formulated in
terms of each modal wavelength. In any case, such simpli"cation enables a lot of
computational e!ort to be saved.
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Finally, we notice that, if we introduce a structural damping, the amount of #ow energy
accepted by the structure strongly depends on this parameter and this point is discussed for
the case of a "nite dimensional plate in section 3.

A.3. DIRECT FOURIER ANALYSIS OF THE PLATE RESPONSE

As outlined at the beginning of Part I, section 2, many authors write the equations
governing the response of any continuous linear system to a general random forcing in the
space}frequency domain or in the wavenumber}frequency domain, assuming that each
realization of the response satis"es the condition for a Fourier integral to exist. However, it
is not likely that a strongly, or even a weakly stationary and homogeneous process is, in
some way, &&localized'' in time and space and so, possesses a classical Fourier transform.

An important result due to Wiener [47] is that, whereas the Fourier transform of
a random event w (x, t) occurring on a volume< and over a period of time [0,¹] diverges as
< and ¹ tend to in"nity, the limit of its integral on the in"nitesimal dual domain, which we
note as d=(k ;�), exists when<,¹PR. Each particular realization of the process can then
be written in terms of the random increment d=(k;�) in the form

w(x; t)"��
�

ej(�t!k ;�) d= (k;�). (A8)

Expression (A8) is a Fourier}Stieltjes integral accounting for unbounded variations of
=(k ;�). Considering the spectral density of the random increment, it is found, as shown in
reference [48], that

lim
dk, d�P0

Sd=d= (k;�)

dkd�
"

1

(2�)� ��
�

R
��

(x; t) e!j (�t!k;x) dx dt .

"S
��

(k ;�). (A9)

The same analysis can be applied to the turbulent excitation "eld p
�
(x; t) and the di!erence

p
�
(x; t) between the surface pressure "elds radiated in each #uid domain. For instance, for

the forcing "eld, it reads as
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If we substitute equations (A8, A10) into the governing equation
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Evaluating the spectral density of the increments, according to equations (A9, A11), yields
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i.e., the input}output relationship (A2) we have derived at the beginning of this appendix
between the statistics of the wall-pressure "eld and the structural response of the plate, but
using the superposition principle applied to a space- and time-invariant linear system.
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