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A previous investigation has used a procedure for analyzing the transient behaviour of
acoustic gyrometers, providing advances in &&inertial}acoustic'' theory and modelling. The
approximate behaviour of the Coriolis acoustic modes coupling in a gyroscopic #uid-"lled
cylindrical cavity, for a very fast variation of the rotation rate of the cavity, has been derived,
showing, after the stabilization of the rotation rate of the #uid, an asymptotic value of the
sensitivity in good agreement with the theoretical steady state value and with the
experimental result for steady rotation. However, the parameters which govern the transient
response, its shape and its characteristic stabilization time, were not fully identi"ed.
Especially, the analysis does not predict recent experimental results, which show a
stabilization time for the transient response of the gyro much shorter than the stabilization
of the unsteady circular #ow created when the walls of the cavity are set impulsively
(Heaviside step function) in rotation. Thus, it is the aim of the present paper to investigate
more deeply, analytically, the transient behaviour of the acoustic gyro, using a revisited
description for the inertial}acoustic modes coupling which conveys signi"cant
improvements and introducing new features (as the #ow-induced acoustic modes coupling)
neglected in the previous investigation. The theoretical results are in good agreement with
the experimental results now available; they also permit both to interpret the physical
phenomena which underlie the &&inertial}acoustic'' transient process and to address
requirements that have to be taken into account in the design of acoustic gyros.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Nowadays, there exists an understanding that inertial coupling between acoustic modes
inside rotating #uid-"lled resonant cavities occurs which provides methodology for
designing new sensors (acoustic gyrometers) involving smaller dimensions [1], lower
manufacturing costs and lower power consumption, as well as higher reliability and
improved lifetime. The physical mechanisms which have been investigated until now are
those related to the nature of this coupling, in the frequency domain [2}5] and more
recently in the time domain [6].

In fact, it has already been established that the stationary angular velocity of these
acoustic gyrometers can be obtained directly from the measurement of the acoustic pressure
(the acoustic energy being provided by a localized source set on the wall) using a
#ush-mounted localized microphone, and requirements that have to be taken into account
in the design of acoustic gyros have been addressed from the analysis of the phenomena
involved.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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Figure 1. Root mean square of the amplitude of the normalized total acoustic pressure at the location of the
measurement microphone (r"R, �"�/2) as functions of the time (transient response of the gyro): 00,
theoretical results of the previous theory [6]; ���, experimental results.
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However, the parameters which govern the transient response, especially the "rst part of
the transient (the early beginning), were not conveniently identi"ed because an important
part of the solution of the problem was not obtained, neither analytically nor numerically.
(Previous theoretical results [6] are given in Figure 1.) Due to the fact that these parameters
govern the shape of the transient response, especially the stabilization time, it is most
important to have an analytical model to describe the response of the acoustic gyro for
strong variations of the rotation rates.

Therefore, a procedure for analyzing these transient processes is needed, focusing on the
stabilization part (typically here 100 ms for the classical 1 cm� volume of the cavity used)
but valid over the transient response of each factor involved in the physical mechanisms
(approximately 3 s). This analysis provided in the present paper departs from the previous
one established in 1998 [6] in that (1) a simpli"ed space}time description of the unsteady
rotational velocity gradient of the #uid is used to emphasize the physical behaviour of the
earliest part of the transient, (2) a revisited description of the inertial}acoustic coupling is
proposed which conveys signi"cant accomplishments, (3) a new factor, which takes into
account the e!ect of the non-uniform rotating #ow on the acoustic "eld created by the
localized primary acoustic source (providing energy to the system) is introduced, making
important practical di!erences on the "nal result and allowing one to explain the
experimental results available recently. Moreover, because the unsteady, and r-dependent,
variations of the rotation rate �(r, t) of the #uid that occur during the transient response of
the acoustic gyrometer and the characteristic time for an acoustic resonance to rise in the
cavity are band-limited processes, they are associated with slow variations compared with
the acoustic pressure or acoustic velocity variations. Thus, the rotation rate �(r, z, t) and the
acoustic transient response are expressed in terms of their samples where the sampling
period is the period of the acoustic signal ¹. This allows an analysis of the acoustic problem,
in each interval ¹, as a stationary one, the acoustical primary source being of time periodic
nature, which leads to more tractable calculations than those used in the previous paper
mentioned above [6].
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Thus, the aim of the present work is to investigate analytically the transient behaviour of
the acoustic rate gyro when the cylindrical cavity is suddenly set in rotation around its axis.
The rotation rate of the walls of the cavity involving the Heaviside step function, the #uid
elements acquire velocities gradually: the unsteady motion of the #uid can be described
as a circular #ow �(r, z, t) leading slowly to (after several seconds) the ultimate state of
rigid-body rotation (when the cylinder and the #uid rotate together with a uniform angular
velocity �

�
), according to a di!using process from the walls of the cavity to its centre.

Because this transient variation of the rotation of the #uid � (r, z, t) occurs only near the
walls at the beginning of the transient, during this period the inertial}acoustic modes
coupling takes place essentially near the boundaries, emphasizing the role played, in several
inertial factors, by the thermoviscous boundary layers, where the entropic and vortical
components of the particle velocity reach the same level as the acoustic component.

The "nal goal of the paper is to analyze both the behaviour of each so-called inertial
factor generating the coupled inertial acoustic resonant standing wave, coupled to the
resonant wave generated by the loudspeaker, and the e!ect of the non-uniform rotating #ow
on the "eld created by the loudspeaker, which gives a measure of the rotation rate of the
gyrometer.

Note that part of the fundamental theory presented in the next two sections closely
follows, but completes and shortens, sections two and three of the previous paper on the
transient behaviour of acoustic gyrometers [6]: it provides the basic equations of the whole
problem. Nevertheless, as mentioned above, a more complete and somewhat di!erent
approach (which is part of the aim of the next two sections) is taken to derive di!erent
solutions for both the unsteady circular #ow and the &&acoustic'' motion (the word
&&acoustic'' being understood here globally because it includes the thermal and vortical
motions which accompany the acoustic movement itself ); these solutions greatly improve
the presentation of the subsequent theory and "nally provide additional theoretical results,
which are in agreement with the experimental results now available.

2. THE ACOUSTIC GYROMETER: DEVICE AND QUALITATIVE PRESENTATION
OF THE MECHANISMS INVOLVED

An acoustic rate gyro provides output signals that are measures of angular rates with
respect to an inertial frame. The heart of the acoustic gyros under consideration comprises
thin cylindrical cavities (see Figure 2) "lled with gas under one or several bars. The radius
of the cavities have the same order of magnitude as the wavelength of the acoustic
perturbation generated in it, and the height of the cavity is much smaller than the radius and
much greater than boundary layer thicknesses. The experimental results reported at the end
of this paper have been obtained with a cavity 1)4 cm in diameter with a height of 4 mm,
"lled with a suitable working gas (see for example reference [2]) that is here SF6 under
2)5 bar. Using an acoustic driver coupled to the cavity through a hole roughly 0)05 cm in
diameter set at the azimuthal co-ordinate �"0, the gas within the cavity is excited to
generate an harmonic acoustic standing wave (at the angular frequency �

�
), corresponding

to the resonance of the "rst azimuthal mode labelled &&c'' and given by the eigenfunction
J
�
(�

��
r/R) cos� corresponding to the values (0, 1, 0) of the quantum numbers (n

�
,n

(
, n

�
),

respectively, where J
�
is the "rst order cylindrical Bessel function of the "rst kind, �

��
the

"rst zero of the "rst derivative of J
�
(�

��
r/R ) with respect to the radial co-ordinate r, R the

radius of the cavity. Actually, the viscous and thermal dissipation in the boundary layers are
taken into account in the formalism presented in the following sections.
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When the cavity rotates around the z-axis of the cylindrical cavity, the angular velocity
�(r, z, t) of the non-inertial frames linked to the particles of #uid, with respect to the inertial
frame, depends on both the localization of the particle in the cavity and the time; three main
e!ects must be considered (sections 5 and 6 of the present paper): the dependence of the
main "eld created by the loudspeaker on this non-uniform rotating #ow, the Coriolis e!ect,
and the e!ect of the acceleration associated to the time rate of change of the rotational
velocity (d�/dt) on the acoustic "eld. (The e!ect of the centripetal acceleration, proportional
to �� times the particle displacement, does not contribute to the acoustic "eld detected by
the measurement microphone set at �"�/2.) The phenomena involved lead to energy
transfer from the mode labelled &&c'' mentioned above to the orthogonal mode labelled &&s''
given by the eigenfunction J

�
(�

��
r/R) sin� which can be measured with a microphone set

at the point �"�/2, even if its amplitude is much lower than the amplitude of the primary
mode &&c'' generated by the loudspeaker (which is null at �"�/2). (These twomodes &&c'' and
&&s'' are almost su$cient to describe a solution for the acoustic response of the rotating
cavity, in the &&ideal'' case of a perfectly shaped cavity; actually, in order to take into account
unavoidable small perturbations, more terms can be included into the eigenfunctions
expansion which is used to describe the acoustic "eld [3].)

Moreover, the inertial forces f can be interpreted in the acoustic wave equation as
a source term given by (see section (6))

1

�
�

� ) f"� ) �2��v#d
�
��

v

i�
�
�

"!�2�#

1

i�
�

d
�
�� (��v)

�
!�2��

�#

1

i�
�

�
�
�
�
�� v( , (1)

emphasizing that the vortical component v
�
of the particle velocity v(��v"��v

�
) plays an

important role in the inertial coupling. This vortical component is almost negligible
everywhere except inside the viscous boundary layers, which therefore play an important
role in the process. Hence, the contribution of the energy transfer from the mode &&c'' to the
mode &&s'' due to the inertial phenomena takes place inside the whole cavity, and especially
in the very thin boundary layers. On the other hand, the strength of this &&inertial resonant
"elda created in the cavity is proportional to both the amplitude of the primary resonant
mode &&c'' generated by the loudspeaker and the rotation rate of the cavity [2, 3]. Then, one
can say that the transfer function between the output signal of the microphone set at
�"�/2, which measures the amplitude of the mode &&s'', and the output signal of another
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microphone set at �"� which measures the amplitude of the primary mode &&c'', provides
the value of the rotation rate �, but only after the short period which corresponds to the
characteristic time for an acoustic resonance to rise in the cavity (section (6)).

The theory developed in the following sections, devoted to the description of both the
inertial}acoustic coupling and the e!ect of the non-uniform rotating #ow, when strong
unsteady variations of the rotation rates (which depend both on the time and the location
in the cavity) occur, provides details needed to understand more deeply the precedent
summary.

3. THE FUNDAMENTAL PROBLEM

3.1. THE BASIC PROBLEM

The cavity studied is a cylindrical one (height h, radius R), in which transducers are #ush
mounted to the base (z"0) near the circular lateral wall (rKR). The origin of the inertial
reference frame used is located at the centre of the base of the cylinder. The corresponding
natural co-ordinates chosen are Cartesian (X,>,Z) or cylindrical (r, �, z) and the (Oz/OZ)
axis is aligned along the geometric axis of the cylinder, which itself is coincident with the
rotation vector of the moving gas within the cavity �(r, z, t) (see Figure 2).

The gas of the cavity is excited by the loudspeaker, set at the azimuthal angle �"�
�
t

where �
�
is the rotation rate of the wall, non-null at times t*0 (note that �"�!�

�
t if

t*0, and �"� if t)0). It is excited on its "rst acoustic azimuthal mode (0, 1, 0) labelled
&&c'', in such a way that the measurement microphone, which is located at a right angle
(�"�/2) from the loudspeaker, sets on a node of pressure of that mode when the cavity is at
rest (t(0).

At time t"0, the cavity is set impulsively in rotation, with its angular speed being
brought from zero to �

�
. Then, the #uid goes through a transient stage where particles are

gradually driven by the walls, acquiring the angular velocity � (r, z, t), until reaching the
ultimate state of rigid-body rotation (when the cylinder and the #uid rotate together with
the uniform angular velocity �

�
). As the system has an axial symmetry, this angular velocity

is assumed to be independent of the azimuthal co-ordinate.

3.2. EQUATIONS OF MOTION

The motion of the #uid can be described as the superposition of a circular #ow linked to
the boundary condition expressing the rotation of the walls of the cavity, and an acoustic
perturbation generated by the acoustic source which is the rate of mass density creation
&&�

�
q'' (this acoustic "eld being largely perturbed by the rotation of the gyro and the

subsequent non-homogeneous circular #ow). It is governed by the following set of
fundamental equations:

the Stokes}Navier equation,

�
�
d
�
V
�
"!�P

�
#��V

�
#��#

�
3��(� ) V

�
), (2)

the mass conservation equation,

d
�
�
�
#�

�
� ) V

�
"�

�
q, (3)
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the heat conduction equation,

�
�

¹d
�
S
�

"	
¹ (4)

and the usual thermodynamical state equations, where

d
�
,�

�
#V

�
) � (5)

is the material derivative.
Here, V

�
, �

�
, P

�
, S

�
and ¹ are, respectively, the particle velocity, the density, the

pressure, the entropy per unit volume and the temperature associated to the #uid motion, 	,
� and � are, respectively, the coe$cients of thermal conductivity, shear viscosity and bulk
viscosity of the #uid.

3.3. THE UNSTEADY CIRCULAR FLOW

The unsteady circular #ow is governed by the set of equations (2) and (3) in the absence of
any acoustic source. Upon neglecting the #uid compressibility (� ) V"0) and assuming
consequently that the radial component <

�
of the particle velocity (denoted V) vanishes

(pure shear circular #ow), the only non-vanishing component of the velocity V is [6]

<�(r, z, t)"�(r, z, t)r, (6)

where � is the angular velocity of the particles set at the distance r from the centre and the
co-ordinate z from the wall z"0, and the radial and azimuthal components of the
Stokes}Navier equation (2) can be written, respectively, as [6]
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!

1
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�z��<� , (7)

where �"�/� is the kinematic viscosity coe$cient.
The solution <� of the second equation (7) which satis"es the boundary conditions (U(t)

being the Heaviside step function)

<�(r, z"0, t)"<� (r, z"h, t)"�
�
rU(t), (8a)

<� (r"R, z, t)"�
�
RU(t), (8b)

can be expressed as a double Fourier}Bessel expansion [7]:
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e��

�
�����U(t) (9)

with k�
��

"(m�/h)�#(	
�
/R)�, and where the coe$cients 	

�
are the zeros of the "rst order

cylindrical Bessel function of the "rst kind (J
�
(	

�
)"0). The "rst relationship (7) gives the

radial pressure gradient created by the centripetal acceleration; its e!ect is neglected in the
range of rotation rate under consideration in current application.

The "eld of the normalized angular velocity �/�
�
"(<�/r)/��

of the unsteady circular
#ow, calculated with 30�30 modes m�n in expansion (9), is given in Figure 3, showing its
shape as a function of the normalized co-ordinates z

	
"z/h and u

�
"r/R for four values of

the time t (0)01, 0)1, 0)3, 1 s). It is clear that the unsteady rotational velocity gradient
becomes roughly negligible only after a few seconds. But fortunately, as will be shown at the
end of the present paper, the transient response of the gyro is much shorter than that
(between 10 and 100 ms for the cavity used in the experimental investigation).



Figure 3. Field of the normalized angular velocity �/�
�
of the unsteady circular #ow, calculated with 30�30

modes (m�n) in expansion (9), as a function of the normalized co-ordinates z
	
"z/h and u



"r/R for four values of

the time t: (a) t"0)01 s; (b) t"0)1 s; (c) t"0)3 s; (d) t"1 s.
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Then, it is most important both to obtain accurate computational results for this
transient which adequately agree with the experimental data over a large time range (here
typically from 0 to 3 s) using expression (9) for the rotation rate �, and to carry out
analytical studies in order to interpret in detail each phenomenon involved in the "nal
results; even the analytical results which follow would be approximately valid over a short
time interval provided that it covers the transient response of the gyro (here up to 100 ms).
Such extremely useful analytical studies presented, in the next sections, are derived from
a simpli"ed and approximate expression for the rotation rate � which is valid greatly over
the transient response of the gyro (until 300 ms for the gyro used in the experiments
reported here). During this period, i.e., the early beginning of the transient regime for the
rotating cavity, the angular velocity � is null everywhere except near the walls because the
#uid elements acquire velocity <� gradually according to a di!usion process (equation (7))
from the walls of the cavity to its centre. Hence, this di!usion process can be assumed to
take place from each wall (z"0, h and r"R) independently, that is without any interaction
between them. This approximation enables one to simplify greatly the expression for the
rotation rate � close to each wall, valid for a time interval which, as mentioned previously,
widely covers the transient response of the gyro, namely [7, 8] (Appendix A):

�	�
	�

�
�

"erfc�
x

2��t�U(t), (10)

�	
�

�
�

"�
R

r�
�
�

erfc�
R!r

2��t�;(t). (11)

Here, the rotation rates near the surfaces z"0 (x"z) and h (x"h!z) are, respectively,
denoted by subscripts (0) and (h), and the rotation rate near the surface r"R is denoted by

the subscript (R). The function erfc(y)"1!(2/��)��
�
e��

� du is the complementary error
function.
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3.4. FUNDAMENTAL EQUATIONS GOVERNING THE ACOUSTIC MOTION

In the acoustic gyro, the whole motion of the #uid (represented by the particle velocity
V

�
) includes the unsteady circular #ow (V) presented in the previous section 3.3 and an

&&acoustic''motion (v), the word &&acoustic'' being taken here globally because it includes the
thermal (v

	
) and vortical (v

�
) motions which accompany the acoustic movement itself (v



).

The instantaneous position of a particle is described by means of the vector
OP"OM#MP, where OM is the position vector of the particle driven along the circular
streamlines of the #ow without acoustic displacement and where MP represents the
displacement � of the element of #uid due to the acoustic motion. As the fundamental
equations (2)}(5) which describe the particle motion are expressed in an inertial reference
frame, the operator &&d

�
'' giving the material derivative will now be denoted &&(d

�
)
�
'', and the

particle velocity and the acceleration associated to the global motion are written,
respectively, as

V
�
"(d

�
)
�
OP, (d

�
)
�
V

�
"(d�

��
)
�
OP. (12, 13)

In order to reveal (among others) the expected inertial factors explicitly, the equations of
motion are expressed by using a moving reference frame (m), chosen in such a way that it is
linked at each time t to the unsteady rotational motion �(r, z, t) of the #uid elements located
at the same distance r and the same z-co-ordinate on the z-axis (i.e., situated on the same
circular streamline), the origin of this moving frame being the same as the one of the "xed
reference frame (Figure 4). Then, the velocity and the acceleration of the particle relative to
the inertial frame can be expressed as functions of quantities relative to the moving frame as

V
�
"(d

�
)
�
OP"[(d

�
)
�

#��]OP"v#��OP, (14)

(d
�
)
�
V

�
"[(d

�
)
�
#��] V

�

"(d
�
)
�

v#2��v#d
�
��OP#��(��OP), (15)

where � and v"(d
�
)
�
� represent, respectively, the displacement and the velocity of the

particle due to the &&acoustic''motion, (d
�
)
�
being the operator giving the material derivative

in the moving frame. (The time derivative of the rotation rate � satisfying the property
(d

�
)
�
�"(d

�
)
�
�, it can be written as either d

�
� or �

�
�.)

Therefore, invoking the properties of the position vector OM and the associated velocity
V"V

�
!v of the particle driven along the circular streamlines of the #owwithout acoustic
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displacement, namely

� ) V"� ) (�
 �OM)"0, (16)

(d
�
)
�
V"d

�
��OM#��(d

�
)
�
OM

"d
�
��OM#��(��OM) (17)

and (the Navier}Stokes equation where P is the pressure created by the centripetal
acceleration, equation (7))

(d
�
)
�
V"!

1

�
�

�P#�
 (��OM) (18)

and then using equations (14) and (15), and assuming that the acoustic density �"�
�

!�
�

is much lower than the unperturbed acoustic density and that ��OP is much lower than
the &&acoustic'' particle velocity v for the range of the rotation rate considered in current
application, the Navier}Stokes equation (2) yields the relevant corresponding equation for
the acoustic pressure p"P

�
!P, the &&acoustic'' particle velocity v and the `acoustica

particle displacement � [6]:

�
�
[(d

�
)
�
v#2��v#d

�
���#��(���)]"!�p#��v#(�#�/3)�� ) v. (19)

When considering the stationary regime, the cylinder and the #uid rotating together with
a uniform angular velocity �

�
, the #uid and the transducers (the localized acoustic source

and the microphone) rotate at the same angular velocity �
�

and each one remain
continuously motionless with regard to the others; then within the framework of the linear
acoustics, the material derivative with respect to the time in the moving frame (m) denoted
(d

�
)
�

is equal to the partial derivative (�
�
)
�

in the same frame. But, during the transient
regime, when the rotational velocity � (r, z, t) of the #uid is non-uniform and di!ers
everywhere (except for r"R, z"0 and h) from the angular velocity �

�
of the walls and so

from the angular velocity �
�
of the transducers, each particle has its own relative movement

with respect to the transducers, given by the angular velocity [�(r, z, t)!�
�
]; therefore, the

local velocity of the frame linked to the #uid with respect to the velocity of the frame linked
to the transducers is given by [�(r, z, t)!�

�
]r, and the requisite expression for the material

derivative (d
�
)
�

is

(d
�
)
�

K�
�
#(�!�

�
) re� .�"�

�
!�� �

(
, (20)

where (�
�
)
�
is denoted �

�
for simplicity, ��"�

�
!�(r, z, t), �

(
being the partial derivative

with respect to the azimuthal co-ordinate �"�!�
�
t (see Figure 2).

The correction term �� �
(
, which takes into account the e!ect of the non-uniform

rotating #ow on the acoustic "eld directly created by the localized primary acoustic source
(providing energy to the system), was assumed to be negligible in the previous paper [6]; in
fact, as demonstrated below, it plays an important role during the transient period of the
gyro, at the beginning of the transient of the rotating #ow.

Finally, the &&acoustic'' movement (that is the sum of the acoustic, entropic and vortical
movement) is governed by a set of three equations including the conservation of mass
equation (3) and the heat conduction equation (4), both restricted to the &&acoustic'' "eld and
expressed in the moving frame, and also the Stokes}Navier equation (19) in accordance
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with equation (20), namely
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with

�"(p!�K �) �/c�
�

(state equation), (24)
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�
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�
v), (26)
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�

"

�
�
�
c
�

, l
	
"

	
�
�
C

�
c
�

, (27)

where in the inertial correction terms �


and A�

�
, the &&acoustic'' displacement �"(d��

�
)
�
v

is written as �K���
�

v, disregarding the correction term linked to the motion of the #uid (in
equation (20)), and where C

�
is the heat coe$cient at constant pressure per unit of mass,

c
�
the adiabatic speed of sound, � the speci"c heat ratio and �K the increase in pressure per

unit increase in temperature at constant density.
The regular solutions of equations (21)}(23), when the time-periodic source activity is

given by the harmonic rate of creation of #uid per unit volume of the localized loudspeaker
set on the cylindrical wall

q"Q cos�
�
t"Q

�

�(r!R)

r
�(�) cos�

�
t, (28)

invoking expression (9) or (10}11) for the rotation rate � and subject to the boundary
conditions (on the walls z"0, h or r"R) for the temperature variation and the &&acoustic''
particle velocity, namely

�"0 and v"0 (29)

are the appropriate results that are needed to interpret the experimental data available (the
acoustic pressure given by the measurement microphone set at �"�/2); the remainder of
the paper is devoted to that purpose.

4. INTRODUCTION TO THE ACOUSTIC WAVE MOTION AND THE SUITABLE
GREEN FUNCTION

4.1. INTRODUCTION

Inspection of equation (21) with consideration of the orders of magnitude of the
quantities involved, reveals that the perturbations which depend on both the #uctuating
inertial phenomena (�) and the e!ects of the non-uniform rotating #ow on the acoustic "eld
directly created by the loudspeaker (��, �

(
v) can be expected to be much lower than the

main acoustic "eld, in the range of rotation rate � under consideration in current
application and for the angular frequency �

�
of the monochromatic wave tuned on the "rst
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azimuthal mode of the cavity (���
�
K10� s�� for the kind of gyro used in the experiment

reported here). Hence the e!ects (acoustic modes coupling) of these factors, which depend
on the unknown acoustic velocity itself, can be calculated by using the Born approximation,
that is by assuming that the expression of the acoustic velocity in these terms can be
replaced by its expression for �"0. Therefore, in the following sections, we proceed with
the derivation of the relevant solution of the equations which govern the acoustic "eld
inside the cavity at rest (section 5) before giving (in section 6) approximate solutions for the
correction terms which depend on the rotation rate � (the most important ones for
the purpose of the gyro). Moreover, to reduce the complexity of the remaining problems for
the #uid at rest and to obtain explicit representations of the acoustic "elds, taking into
account the e!ects of viscosity and thermal conduction, implies that several operations and
approximations are carried out in the derivation of the appropriate basic equations
involved as well as in their solutions.

The analysis of the cavity excitation relies on modal functions of the domain, together
with their related eigenvalues; and a prominent role is given to a Green function, which
incorporates these characteristic quantities, to obtain the solutions for both the acoustic
"eld without rotation and the correction terms involved when the cavity rotates. So before
solving the problem in the time domain governed by equations (21)}(29) (including equation
(9) or (10}11) for �) as indicated above, we derive the Green function in the time domain for
the non-rotating #uid, expressed as an eigenfunction expansion restricted to the resonant
modes of the cavity at the tuned frequency.

4.2. THE GREEN FUNCTION IN THE TIME DOMAIN AND ITS EIGENFUNCTION EXPANSION

In order to increase the acoustic particle velocity of both the main acoustic "eld (created
by the harmonic source) and the associated "eld (coupled with the main one by the rotation
of the cavity) giving the sensitivity of the gyro, the frequency is monitored to make these
"elds resonant (a microphone set at the angle �"� from the loudspeaker supplies
a feedback signal which maintains these resonances): namely, the angular frequency �

�
of

the monochromatic source is tuned to the "rst azimuthal mode of the cavity (0, 1, 0). So the
Green function has the particularity of presenting its maximum, proportional to the quality
factor of the cavity, which must behave accurately in order to provide theoretical
amplitudes, for the acoustic pressure, in agreement with the experimental results. It is
therefore consequent to express adequately the dissipation processes, namely the viscous
and thermal e!ects in the boundary layers near the rigid walls as well as a priori in the bulk
of the cavity. The propagation equation for the subsequent Green function is obtained from
the set of equations (21)}(23) for �"0 and ��"0, leading to [9]

��1#l
�	

1

c
�

�
��
!

1

c�
�

��
��� G(r, r0 , t, t�

)"!�(t!t
�
) �(r!r0), r3[0,R], z3[0, h], (30)

where the factor l
�	

"l
�
#(�!1)l

	
, with l

�
"1/(�

�
c
�
) (�#4/3�), accounts for the

dissipation process in the bulk of the #uid; and, in order to model the sound absorption in
the viscothermal boundary layers, this Green function is chosen to satisfy an appropriate
admittance-like boundary condition expressed in the frequency domain for the angular
frequency of interest, namely,

(�
�
#ik

�
�)GI (r, r0)"0, z"0 or h or r"R, (31)

where GI is the Fourier transform of G, k
�
"�/c

�
, �

�
being the outwardly derivative normal

to the wall considered.
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It is noteworthy "rst that such a boundary condition is restricted to "elds in cavities
whose height and radius are large enough with respect to the boundary layer thicknesses so
that these thicknesses are negligible as regards the spatial distribution of the acoustic
perturbation obtained (which is valid only outside the boundary layers), and second that the
small admittance � depends on the direction characterized by k	���

�
of the acoustic velocities

on the walls, namely

�"

1#i

�2
�k [k	���

�
�l


�
#(�!1)�l

	
], (32)

so its expression must be used carefully as shown in section 5.1. equation (62).
The analytic Green function in the frequency domain is approximately expressed as an

eigenfunction expansion where the orthonormal eigenfunctions �
�
(r,�, z) are solutions of

the Neumann boundary value problem

(
#k��
�
) �

�
(r)"0 inside the cavity,

�
�
�
�
(r)"0 on the boundaries, (33)

leading to [9]

GI (r, r0)"�
�

�
�
(r0 )��

(r)

k��
�

!k�#ik
�
��

�
���

�
dS

(34)

with k"k
�
(1!(i/2) k

�
l
�	
). As the admittance � is very small, the eigenfunctions �

�
can be

considered as a zero order expansion with respect to �; but, nevertheless, the eigenvalues are
modi"ed in the denominator of equation (34) with a small term proportional to the mean
weighted admittance. Note that as the derivative normal to the walls &&�

�
'' of the truncated

Green function is equal to zero, it might happen that, in some calculations, this
approximation would not be relevant, especially when some factors in the integral of
coupling (see further) become very important just near the walls. In these cases, the normal
derivative &&�

�
'' must be replaced by its expression (!ik

�
�) from the boundary conditions

(31), when the operator acts on pressure-like analytical functions or by kJ(�) when it acts on
the associated real function (the content of this remark is in fact included in the theoretical
formulation in the following sections because it follows from the solutions of the acoustic
problem for �"0 given in section 5.1, equation (61)).

The Green function in the time domain is given by integrating its expression (34) in the
frequency domain, by using the residue integration method, leading to the well-known real
causal function

G (r, r0 , t, t�
)"c�

�
U(t!t

�
)�
�

sin(�
�
(t!t

�
))
e��� 	�����

�
�

�
�
(r0 )��

(r), (35)

where

�
�

K��
�
!�

�
, ��

�
"k�

�
c
�
, (36)

and

�
�
"

c
�

2�2 ���
�2

1#i
���

�
dS#

c
�
2
k�
�
l
�	

K

c
�

2�2���
�2

1#i
���

�
dS. (37)

In this last approximate expression for �
�
, the contribution of the dissipation in the bulk

of the #uid (c
�
/2)k�

�
l
�	

is neglected because it is much lower than the contribution of the
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boundaries given by the term involving the integration, which lies over the surface S of the
walls, of the weighted speci"c admittance (using expression (32) for �, �

�
K50 s�� which is

much greater than (c
�
/2)k�

�
l
�	

K10�� s�� for the device studied here). Hence, the factor
l
�	

(1/c
�
) �

�
can be de"nitely cancelled in equation (30): the bulk dissipation due to viscous

and thermal e!ects can be neglected in this kind of cavity.
In the following, the Green function expansion is truncated to include only the "rst two

resonant azimuthal modes (as indicated before), namely, upon using the cylindrical
co-ordinates,

��
�
(r, �, z)"N��

�
J
�
(k

��
r) cos�, (38)

��
�
(r, �, z)"N��

�
J
�
(k

��
r) sin�, (39)

with

N
�
"J

�
(�

��
)�1!

1

��
��
��R�

h

2
,

(40)

k
��

"

�
��
R

, �
��

"1)84, (41)

leading to, in the frequency domain, for the angular frequency �
�
of interest,

GI (r, r0 )"
��
�
(r)��

�
(r0 )#��

�
(r)��

�
(r0 )

k�
��

!k�
�
#(i!1)��

�

, (42)

and in the time domain,

G(r, r0, t, t�
)"

c�
�

�
�

sin(�
�
(t!t

�
)) e��� 	���� �

�(��
�
(r0)��

�
(r)#��

�
(r0 )��

�
(r))U(t!t

�
), (43)

where

��
�
"k

���
�

�
1#i

��
�
dS"2k

�

�
�
c
�

, (44)
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�
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h��l�
�
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R(��
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�
#(�!1)�l

	�� , (45)

the working angular frequency of the gyro �
�
"c

�
k
�

being equal to �
��

!�
�
"

c
�
k
��

!�
�
which is nearly equal to the eigenvalue �

��
because the attenuation factor �

�
is

much lower than the resonance angular frequency:

c
�
k
�
"�

�
K�

��
"c

�
k
��

. (46)

In the remainder of the paper, the eigenvalue �
��

, used for simplicity of the calculation
because it is given by its simple expression (c

�
�
��

/R), means the approximate value of the
true angular frequency �

�
(the angular resonant frequency). The direction k	���

�
of

the acoustic velocities on the walls (equation (32)) has been replaced, in expression (45) of the
attenuation factor, by its expressions, namely (1/��

��
) on the lateral wall (r"R) and by unity

on the walls z"0 and h.
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5. THE ACOUSTIC PRESSURE AND PARTICLE VELOCITY FIELDS IN THE
NON-ROTATING FLUID-FILLED CAVITY

5.1. THE PARTICLE VELOCITY: GENERAL EXPRESSION NEAR A WALL

The inertial factors (equation (25) and (26)) involve the expression of the whole &&acoustic''
particle velocity. This particle velocity is written as the sum of the laminar acoustic and
laminar thermal velocities v



and v

	
, and the vortical velocity v

�
. As mentioned in section

2 (equation (1)), the vortical component v
�
of the particle velocity v plays an important role

in the inertial coupling. This vortical velocity, like the thermal one, is negligible in
comparison with the laminar acoustic velocity in the whole domain under consideration
(the volume of the cavity) except in the boundary layers near the walls. On these walls, the
particle velocity and the temperature variations vanish (equation (29)), namely
v


#v

	
#v

�
"0 and �



#�

	
"0, and moreover, because the thermal and vortical velocities

created on the boundaries by the acoustic perturbation are directly expressed in terms of
di!usion process along the inward normal to the wall, these velocity components v

	
and

v
�
die out over a very short distance from the wall (i.e., the boundary layer thicknesses

denoted, respectively, as �
	
and �

�
), which are much lower than the height h and the radius

R of the cavity. Hence, the periodic acoustic "eld outside the boundary layers is the solution
of the set of equations (neglecting the bulk viscous and thermal e!ects as recommended
above, section 4.2)

(
#k�
�
)p



"0, (47a)

with

�
�
p


"0 on the walls, (47b)

the temperature variations and the acoustic velocity being given, respectively, by

�!1

�K �
p



and
i

�
�
�

�

�p


. (47c, d)

These quantities, the acoustic pressure p


, the temperature variation �



and the particle

velocity (i/�
�
�)�p



, are considered below as the given external boundary expressions for the

calculation of the velocity v and of the temperature #uctuations � near a wall (inside the
boundary layers) [10].

The linear equation which gives an accurate description of the small amplitude
disturbances inside the viscous and thermal boundary layers must satisfy several
assumptions in order to avoid overly intricate formulations, namely: (1) as the pressure
variation can be assumed constant over the boundary layer thicknesses (because the
wavelength is much greater than these thicknesses), the component normal (inwardly
directed) to the wall considered v

�
of the particle velocity v is much lower than its

component v
�
parallel to the wall, that is the #ow is assumed to be essentially tangential to

the wall and then, in the Navier}Stokes equation (21), the only w-components tangential to
the wall are considered (nevertheless, in order to assume the conservation of volume #ow,
the normal component of the velocity v

�
has to be taken into account in the conservation of

mass equation); (2) spatial variations in the normal direction u of both the velocity v and the
temperature variation � are much greater than spatial variations in tangential directions
and hence the spatial variation of these quantities in the tangential directions can be
neglected in the Navier}Stokes equation and in the Fourier heat conduction equation.
Therefore, the complete set of equations and boundary conditions governing the #uid
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motion inside the boundary layers, involving these approximations, is straightforwardly
obtained from equations (21)}(23) (without rotation), leading to, for an harmonic
perturbation,

�1#

1

k�
�

��
��� v

�
(u, w)"!

1

i�
�
�
�

�
�
p(w), (48)
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�#�

�
� ' v"0, (49)
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�!1

�K �
p, (50)

�"

�
c�
�

(p!�K �), �(u"0)"0, (51, 52)

v
�
(u"0)"0 and v

�
(u"0)"0. (53)
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�
(u'�

�
)"

i

�
�
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�
�
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�
)"�



(54, 55)

with k
�
"(1!i) �k

�
/(2l�

�
) and k

	
"(1!i) �k

�
/(2l

	
), where u"0 means &&on the wall

considered''. The solutions of equations (48) and (50), invoking equations (47) and subject to
the boundary conditions (52)}(55) are given by

v
�
"

i

�
�
�

�

�
�
p


(1!e�����), (56)

�"

�!1

�K �
p


(1!e���	�), (57)

the acoustic pressure p


being considered here as a zero order expansion (with respect to the

very small admittance �) of the pressure variation p (time dependence e��� � is implicitly
included in the factor p



).

Combining these results and equations (49) and (51), along with equation (47a) that is
[�

�
) �

�
#k�

�
] p
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, yields
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, (58)
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where k�
�
p


"!�

�
) �

�
p


(k

�
being the component of the wave number k1 parallel to the

wall), and then, taking into account that (�
�
p


)
	���� �K0 (47d, 47b), the integration of

equation (59) from u"0 to every value of u greater or lower than the viscous or thermal

boundary layer thicknesses (respectively, �
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and �
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) leads to
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The &&components'' u (60) and w (56) of the vortical (v
�
) and thermal (v

	
) velocities are given

by the factors involving e���� � and e���	 � respectively. The sum of the other factors
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represents the acoustic velocity in the visco-thermal #uid; for example the u-component of
the acoustic velocity (equation 60)) is given by

v
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1

ik
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 . (61)

It is noteworthy that the expression for u"0 of the ratio !�
�
c
�
v

�
/p



is equal to the

speci"c admittance � introduced in equation (31) to express the boundary condition for the
Green function in the frequency domain. Then, employing equation (61) and taking into
account the property (�

�
p


)
���

"0, it follows that

�"k
��
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�
k�
�

1

k
�

#

�!1

k
	
�, (62)

which is equal to the slightly transformed version for � given by equation (32) used in
section 4.2. Moreover, this result is an a posteriori demonstration of the comments given in
section 4.2 under equation (34).

5.2. THE ACOUSTIC FIELD IN THE NON-ROTATING CAVITY

With respect to the properties of the harmonic acoustic pressure "eld of the #uid-"lled
cavity at rest, the complete de"nition of the pressure variation p



(equation (47)) implies that

its own properties (spatial distribution, resonant frequency) are those of the Green function
GI chosen in section 4.2, equation (42). It follows that, for the source strength given by
equation (28), the analytical expression for the pressure variation p



is given by
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(r, t)"i�

�
�
�
e��� �Q

�
GI (R, �

�
"0; r, �), (63)

where only the eigenfunction ��
�
is involved in the Green function GI .

Then the use of equations (38)}(42), along with the condition k�
��

!k�
�
!��

�
"0 which

implies that the cavity is excited at its resonance angular frequency �
�
K�

��
, yields
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cos� e���� �, (64)

with
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"
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�
(1!1/��
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)�R�h

, (65)

where �
�
is given by equation (45).

Invoking equation (56), and considering the limits wherein "rst, the height h of the cavity
is much greater than the boundary layer thicknesses (but much lower than the wavelength)
and second, the radius is expected to approach in"nity, the r- and �-components of the
particle velocity are expressed by
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), (66)
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with

F
�
"e�����#e���� 		��� (68)

and then, writing that R is the "nite radius of the real cavity, equations (60) and (56) imply,
respectively, that
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) (69)
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Because the height h of the cavity is greater than the viscous boundary layer thickness
(1/��k

�
��), the function (1!F

�
) vanishes on the walls z"0 and h, which therefore are not

directly involved in the inertial modes coupling.
These results are appropriate to the particle velocity which satis"es the requirements

involving the inertial forces mentioned in section 2, especially inside the boundary layers
which play an important role in the acoustic e!ects of the non-uniform rotating #ow � (as
the vortical e!ect is emphasized by the term ��v).

6. INERTIAL- AND FLOW-INDUCED ACOUSTIC MODES COUPLING
IN THE UNSTEADY ROTATING CAVITY

6.1. SOLUTIONS FOR THE ACOUSTIC PRESSURE MEASURED

Discarding terms which depend on viscosity and thermal conduction (as indicated in
section 4.2) and operators of orders higher than (1/c�

�
)���

(
when operating on the acoustic

pressure p, the set of equations (21)}(23) straightforwardly reduces to the propagation
equation
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1
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�
��#2���

�
] �

(
p!�

�
� ) �, (71)

the right-hand side of the equation being known upon assuming the Born approximation,
that is by substituting into it results (64) and (69, 70) for the pressure variation and the
particle velocity respectively.

The acoustic pressure variation is expressed as a sum of "ve terms:

p"p
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��
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��
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��
, (72)

which are governed, respectively, by propagation equations as follows (p


and v being given

by equations (64), (69) and (70): for the unperturbed acoustic pressure in the cavity at rest p



(solution 64)) created by the loudspeaker
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for the correction p
��

due to the e!ects of the non-uniform rotating #ow on the acoustic
pressure p
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, (74)

for the perturbation p
��

due to the Coriolis e!ect
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�], (75)

where the right-hand side is equal to (!�
�
� ) �

�
) (equation (26));

for the perturbation p




due to the e!ect of the angular acceleration,
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where the right-hand side is equal to (!�
�
� ) �



) (equation 26));

for the perturbation p
��

due to the e!ect of the centripetal acceleration,
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where the right-hand side is equal to (!�
�
� ) �

�
) (equation (26)).

It is noteworthy that the contributions of p


and p

��
to the acoustic pressure vanish at

�"�/2 (where the measurement microphone is located) because p


, v

�
, �

�
v
�
and �

(
v
(
involve

only the eigenmode ��
�
which is proportional to cos� (see equations (64), (69) and (70)): at

that position �"�/2, only p
��
, p

�

and p




have non-zero contribution to the acoustic "eld

as these functions involve the eigenmode ��
�
which is proportional to sin�. So, the function

(p
��

#p
�


#p



) gives the pressure variation under consideration in the acoustic gyro.

Taking into account the properties of the Green function chosen (equation (43)), as
regards the properties of the acoustic "eld in the cavity, the real parts of the solutions of
equations (74), (75) and (76), denoted here indi!erently as p

�
, are given by the convolutions

with respect to the four variables (r, �, z, t) of their right-hand side (denoted here
indi!erently as [!F (r, t)]) and the Green function G in the time domain restricted to the
mode ��

�
(which does not vanish at �"�/2), namely
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(78)

This result emphasizes that terms proportional to ��
�
in the function F does not contribute

to the result p
�
as a consequence of the orthogonality of the eigenfunctions ��

�
and ��

�
. In

this solution, the integral along the t-axis lies on the de"nite interval [0, t], the endpoints
&&0'' and &&t'' being set, respectively, by the Heaviside step function U(t) in expressions (9)}(11)
for � (included in the function F) and U(t!t

�
) in expression (35) or (43) for the Green

function G in the time domain, both being explicit representations of the causality. The
triple integral is de"ned over the closed region (D) in space which represents the whole
volume of the cavity.

The signal provided by the measurement microphone is analyzed with a lock-in ampli"er
(or equivalent) providing one with the amplitude of both the components in phase with the
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primary signal (cos�
��
t, equation (28)) and the component in quadrature (sin�

��
t). In fact,

it appears that only the in-phase component has to be considered (that is to say its root
mean square) because the other one is negligible. Nevertheless, it is suitable to give explicit
in-phase and in-quadrature representation of the measured signal. Moreover, as the
variations of both the unsteady rotation velocity �(r

�
, t

�
) included in the function F (the

rotation rate � reaching the steady motion after several seconds) and the acoustic decay
factor e!�

�
(t!t

�
) (the wave created at each time damping out exponentially after several

10 ms) are much slower than the variation of the signal itself (the acoustic period being given
by 2�/�

��
K0)1 ms here), the functions which imply only cosine and sine of the variable

(�
��
t
�
) which appears in the integrand can be replaced by their mean value over their period

(2����
�

). This last assumption (sampling) greatly reduces the complexity of the analytic
calculation (Appendix B). It allows to obtain numerically quickly with any personal
computer, results involving more than 1000 terms in the Fourier}Bessel serie (equation (9))
for �, covering the transient period of the unsteady rotation, typically here 1 s. It also allows
to obtain simple analytical results (after lengthy but tractable calculations) when the
function � is expressed as a function of the complementary error function (equation (11))
valid for a time interval which covers the transient period of the gyro, here typically 100 ms),
yielding, at the measurement point (r"R, �"�/2):

for the correction p
��

due to the e!ects of the non-uniform rotating #ow on the acoustic
pressure p




p
��
P
�
�R, �"

�
2
, t�K!�(1!e!�

�
t)
��
��
2 �1!

J
�
(�

��
) J

�
(�

��
)

J�
�
(�

��
) �

!�
2

�
�
�
R

��
��
t� cos�

��
t, (79)

K!�1)2(1!e!�
�
t)!�

2

�
�
�
R

��
��
t� cos�

��
t, (80)

for the "rst term of the Coriolis perturbation (75), which depends on �,

p(�)

��
P
�
�R, �"

�
2
, t�K!(1!e!�

�
t) cos�

��
t, (81)

for the second term of the Coriolis perturbation (75), which depends on �
�
�,

p(���)

��
P

�
�R, �"

�
2
, t�K�(1!e!�

�
t)!

15

8 �
�
�
R�

�
�

��
t� cos�

��
t, (82)

where

P
�
"

4Q
�

(��
��

!1)

�
�

�
��

P



(83)

is the acoustic pressure at the measurement microphone during the permanent regime,
P


being given by equation (65) and Q

�
"�

��
/2�

�
being the quality factor.

The expression for p




is not given here as it is negligible compared with the contribution
of perturbations (80)}(82) (it presents a very sharp shape near the origin of time, as expected
because it depends on �

�
� and �

�
�
�
�).
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Figure 5. Root mean square amplitude of the normalized pressure (p
�
/P

�
) (equations (65) and (78)) as function of

the time (transient responses), with the Fourier}Bessel expansion (9) for �. �***, &&f l'': correction (p
��
/P

�
) due to

the e!ects of the non-uniform rotating #ow on the acoustic pressure p


; �**, &&co(�)'': Coriolis acoustic perturba-

tion (p		 �
��

/P
�
) which is proportional to �; **, &&co(�

�
�)'': Coriolis acoustic perturbation (p	/�	 �

��
/P

�
) which is

proportional to �
�
�; 00, &&co'' : total Coriolis acoustic perturbation (sum of the two preceeding ones).
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6.2. RESULTS, DISCUSSIONS AND CONCLUSION

For each contribution to the amplitudes of the pressure variations p
��
, p		 �

��
and p	/�	 �

��
,

discarding the second term on the right-hand side of solutions (80)}(82) which are negligible
over the time interval from t"0 until the contribution given by the decay factor e��� � dies
out, the transient behaviour is given by the function 1!e��� �: it is clearly governed by the
acoustic transient of the cavity, that is the time period needed to stabilize the acoustic
resonance, here roughly 100 ms. This result can be seen in Figure 5, curves &&#, co(�),
co(�

�
�)'', � being given by its Fourier}Bessel expansion (9) in order to show the variations

of each factor all over the unsteady rotation � of the #uid, the parameters used being given
in Appendix C. These transient responses are not governed by the velocity distribution of
the #uid rotation (with circular streamlines), generated by the rotation of the rigid
boundaries, which reaches steady motion after more than 1 s here. Nevertheless, the
contribution of the Coriolis e!ect p

��
"p	

��
#p	/�	 �

��
to the transient response of the gyro,

given in Figure 5 (curve &&co''), shows the sensitivity increasing regularly but slowly : this is
con"rmed by the "rst terms on the right-hand side of equations (81) and (82) which are the
opposite to each other (this result is valid during the time period which covers the transient
of the gyro, roughly 100 ms here). After that period the factor p	/�	 �

��
vanishes, and, as

expected, the asymptotic value of the contribution p		 �
��

to the sensitivity of the transient
response is exactly equal to the one obtained from the method used to calculate the steady
state behaviour, which is itself in very good agreement with experimental results [2].

It is remarkable that the contribution of the correction term p
��

(equation (80)) is 1)2 times
the contribution of the Coriolis term p		 �

��
(equation (81)) during the time period which

covers the transient of the gyro (K100 ms); one can say roughly that this term is opposite to
the term p	/�	 �

��
in such a way that, during this period (early beginning) the only Coriolis

pressure p		 �
��

gives, in "rst approximation, the behaviour of the gyro and that after this
period this last term predominates as the others vanish. The theoretical (curve &&th'') and
experimental [11] (curve &&ex'') results for the total pressure are shown in Figure 6; the
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Figure 6. Root mean square of the amplitude of the normalized total acoustic pressure at the location of the
measurement microphone (r"R, �"�/2) as a function of the time (transient response of the gyro). **:
theoretical results; �: experimental results.
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Figure 7. Root mean square of the amplitude of the normalized total acoustic pressure at the location of the
measurement microphone (r"R, �"�/2) as a function of the time (transient response of the gyro). Experimental
results for three rising times; �** : t

�
"0)025 s; *�*: t

�
"1 s; �** : t

�
"2 s.
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agreement is very good. The slight overstep around 100 ms can be explained by the factor
(��

��
/2) [1!J

�
(�

��
)J

�
(�

��
)/J

�
(�

��
)�]K1)2 on the right-hand side of equation (80), as

mentioned in the above discussion. Note that the experimental results have been obtained
by using a rotating table which can reach a rotation rate �

�
"2003/s after only 2)5 ms.

In conclusion, this paper provides a complete and quite simple model, not available until
now, to describe the response of the acoustic gyro for strong variations of the rotation rates.
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This model has been validated experimentally after several experiments which always
con"rm the experimental results given above: all of them show the special shape of the
beginning of the transient (exceeding of the permanent regime level). Some experimental
results are given in Figure 7, corresponding to di!erent rising times: t

�
"0)025, 1 and 2 s; the

one that has been compared to the theoretical result is the shortest one.
The theoretical results convey an interpretation of the physical phenomena, namely the

shape of the transient response and the characteristics of its stabilization time, giving the
role played by each component of the inertial- and #ow-induced acoustic modes coupling.
Then "nally, requirements that have to be taken into account in the design of acoustic gyros
can now be addressed, using the theoretical results obtained in this work.
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APPENDIX A: SIMPLIFIED ANALYTICAL EXPRESSION OF THE ROTATION RATE,
FOR SMALL TIME INTERVAL FROM THE ORIGIN t"0

A.1. ROTATION RATE CLOSE TO THE PLANE WALLS z"0 OR h

Near the plane walls z"0 and h, for small time interval near the origin (i.e., for time
interval which covers the transient period of the gyro, here about 100 ms), the azimuthal
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component of the #uid velocity <� can be assumed to be both independent of the r and
� co-ordinates (except in the corner of the cavity). Thus, equation (7) and the associated
boundary conditions (8a) that govern the velocity distribution are, respectively, written as

�
�
�t

!�
��

�z��<�"0 near the surfaces z"0 and z"h, (A.1)

<�(z"0 or z"h, t)"�
�
R;(t) on the surface z"0 or z"h. (A.2)

These equations are equivalent to those of the problem of a plane boundary suddenly set
in translation parallel to its plane in a #uid at rest [7], whose solution near the plane walls
leads to

�	�
	�

�
�

"erfc�
x

2��t� U(t), (A.3)

where x"0 or h!z, respectively, near the surfaces z"0 and h, and where
erfc(y)"1!(2/�)��

�
e��

� du is the complementary error function.

A.2. ROTATION RATE CLOSE TO THE LATERAL CYLINDRICALWALL (r"R), FOR SMALL TIME

INTERVAL FROM t"0

Close to the lateral cylindrical wall (r"R), the azimuthal component of the #uid velocity
<� is assumed to be independent of the z co-ordinate. The velocity distribution is still
governed by the di!usion equation (7) that takes the form

�
��
�r�

#

1

r

�
�r

!

1

r�
!

1

�
�<�
�t �<�"0. (A.4)

The Laplace transform of equation (A.4), along with the associated boundary conditions
(8b), gives the following subsidiary system (taking into account that <�(t"0, r(R)"0):

�
��
�r�

#

1

r

�
�r

!

1

r�
!���<M �"0 for 0)r(R, (A.5)

<M �"
�

�
R

s
for r"R, and <M � "nite at r"0, (A.6)

where s is the Laplace variable, <M � the Laplace transform of <� , with ��"s/�. The solution
of this set of equations is given by

<M �"
�

�
R

s

I
�
(�r)

I
�
(�R)

, (A.7)

where I
�
is the "rst order modi"ed Bessel function of the "rst kind. Then, using properties

of the Laplace transformation and the asymptotic expansion of the Bessel function

I
�
(u)"(e�/�2�u(1!3/(8u)#2)#o(e�), the expression of <� for small values of (�t/R�)

takes the approximate form

<�(t)"�
�
R�R/r �erfc�

R!r

2��t�!
3

8
��t

(R!r)

Rr
2�

�

(R!r)/2��t

erfc(u) du�

+�
�
R �

R

r
erfc �

R!r

2��t� (A.8)
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giving an approximate expression of the rotation rate �	
� near the cylindrical lateral wall
valid in a small time interval from t"0 (0(t(300 ms in our application):

�	
�

�
�

"�
R

r�
�
�

erfc�
R!r

2��t�U(t). (A.9)

APPENDIX B: ANALYTICAL EXPRESSION OF THE ACOUSTIC PRESSURE VARIATION
(72): THE CORIOLIS PERTURBATION (p(�)

��
) (PROPORTIONAL TO �, EQUATION (75))

This appendix is given as an example of the calculations which lead to the analytical
expressions that are obtained for the acoustic pressure variation (72). It deals only with the
"rst term of the Coriolis perturbation (p(�)

��
) which depends on � (equation (75)), because it

can be easily extended to the other terms p
��

and p(��
�)

��
.

B.1. GENERAL EXPRESSION

The expression of the acoustic pressure due to the Coriolis perturbation proportional to
� is given by the general equation (78) considering F"!2�

�
�(�?v)

�
(equation (75)):

p(�)

��
(r,�, t)"!

c�
�

�
��

R��
�

�

dt
�
e!�

�
(t!t

�
) sin(�

��
(t!t

�
))��

�
(r)����

	��

2�
�
�(�?v)

�
��
�
(r
�
) dr

��.
(B.1)

Assuming that the viscous and thermal boundary layers are much smaller than the
acoustic wavelength (i.e., k

�

k

��
and k

	

k

��
), and taking into account that the coupling

factor (�?v)
�
involves only the vortical component v

�
of the acoustic velocity v (equations

69}70), it takes the the form (�?v)
�
"(�?v

�
)
�
+(k

�
/�

�
�

��
)) e!ik

�
(R!r) (1/r) �

(
p


.

Then, giving both the expressions of the eigenfunctions ��
�
(equations (39}41)) and the

acoustic pressure p


, equation (64), the integration of expression (B.1) with respect to

the � co-ordinate, for any expression of the rotation rate � equation (11 or 9), yields at the
measurement point (r"R, �"�/2)

p(�)

��
P
�
�R,

�
2
, t�"R��

�

�

e!�
�
(t!t

�
) sin (�

��
(t!t

�
))ei�

��
t
���
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J
�
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/R)r

�
)

J
�
(�

��
) �

�
k
�
e!ik

�
(R!r

�
)

��
1

h �
	

�

(1!F
�
)

�
�

�

dz
��dr�dt�� , (B.2)

where P
�
is the acoustic pressure at the measurement microphone, for the steady state

regime, given by equation (83).
The term F

�
(equation (68)) is negligible everywhere outside the thin viscous boundary

layers near the surface z"h and 0. Then, inside the whole integration domain [0, h]
with respect to the z co-ordinate, its contribution can be neglected, which leads to the
approximation �	

�
(1!F

�
) (�/�

�
) dz

�
K�	

�
(�/�

�
) dz

�
.

Moreover, assuming that the acoustic and inertial transient phenomena vary much
slower than the acoustic signal, the functions which depend on the variable �

��
t
�
can be
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replaced by their mean value over one acoustic period 2�/�
��
: then equation (B.3)

becomes

p(�)

��
P
�
�R,

�
2
, t�"R �

1

2
(sin(�

��
t))!i cos(�

��
t)) �

�
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�
)
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�

dz
��dr� dt�� (B.3)

and can be expressed in terms of two components as

p(�)

��
P
�
�R,

�
2
, t�"A

�
cos(�

��
t)#A

�
sin(�

��
t), (B.4)

where the in-phase component and the component in quadrature take, respectively, the
approximate forms

A
�
"!�
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R/�
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�
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dz
��dudt� , (B.6)

upon setting u"(R!r)/�
�
.

Numerical results with no time limitations (see section 6.2) can be obtained from these
last expressions.

B.2. APPROXIMATE EXPRESSION

Furthermore, for small time intervals from t"0, expression (11) leads to the following
simpli"ed expressions:

A
�
K!�

� �
�

�

e!�
�
(t!t

�
) �

R/�
�
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�
J
�
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��
(1!(�
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�2 e�� cos�

�
4
!u�

�erfc �
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2��t
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�dudt� , (B.7)
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R/�
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J
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�
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��
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�
�2 e�� sin�

�
4
!u�

�erfc �
R!r

�
2��t

�
�dudt� , (B.8)

where the term e�� implies that the integrand of the integral with respect to the u-co-
ordinate normal to the boundary is negligible everywhere outside the viscous boundary
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layer (i.e., u
1). Then, inside this boundary layer, the Bessel function J
�
can be replaced by

its Taylor expansion around uK0, J
�
(�

��
[1!(�

�
/R)u])KJ

�
(�

��
), which allows one to

simplify the calculation of the integral along the u-co-ordinate, leading to

A
�
"!�

� �
�

�

e!�
�
(t!t

�
)�[1!(1!C!S) cos(�

��
t
�
)!(C!S) sin(�

��
t
�
) dt

�
], (B.9)
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e!�
�
(t!t

�
)�[!(1!C!S) sin(�

��
t
�
)#(C!S) cos(�

��
t
�
) dt

�
], (B.10)

where C"C(�2�
��
t
�
/�) and S"S (�2�

��
t
�
/�) are the Fresnel integrals de"ned by

C(y)"��
�
cos�(�t�) dt and S(y)"��

�
sin� (�t�) dt.

Moreover, the use of the appropriate Fresnel integrals approximate properties [12]
greatly simpli"es the expressions for the two components A

�
and A

�
:
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� erfc (i��

�
t). (B.12)

Finally, as the component in quadrature appears to be always much smaller than the
in-phase component, the expression for the "rst term of the Coriolis perturbation (p(�)

��
), for

small time interval from the origin t"0, takes the following approximate form:

p(�)

��
P
�

(R, �
�
�, t(300 ms)K!(1!e!�

�
t) cos(�

��
t). (B.13)

with

P
�
"

4Q
�

��
��

!1

�
�

�
��

P


. (B.14)

APPENDIX C: VALUES OF THE GEOMETRICAL AND PHYSICAL PARAMETERS USED

This appendix contains the data used in the numerical simulations and the experimental
set-up (see section 6.2).

Geometrical parameters of the cavity:
R"0)007 m radius of the cylindrical cavity: h"0)004 m height of the cylindrical cavity.

Physical parameters of the -uid SF6 [13]:
M"146�10�� kgmol�� molar mass;
�
�
"14)6 kgm�� density (2)5 bar, 300 K);

C
�
"91)5 Jmol��K�� heat coe$cient at constant pressure per unit of mass of the #uid

(300 K);
�"1)1 speci"c heat ratio (300 K);
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�"9)3�10�� m�/s coe$cient of kinematic viscosity of the #uid (300 K);
	"13)4�10�� W/m/K coe$cient of thermal conductivity of the #uid, (2)5 bar, 300 K);
c
�
"135 m/s adiabatic speed of sound (2)5 bar, 300 K).

Experimental parameters:
P
�
"2)5�10� Pa static pressure;

¹
�
"300 K static temperature;

�
�
"3)5 rad/s angular frequency of the walls of the cavity.

Other parameters:
�
�
"7)3�10�� m viscous boundary layer thickness;

�
��

"(1)84/R) c
�
"35 485 rad/s working angular frequency;

���
�

"2�10�� s reverberation time;
�)"P

�
/¹

�
"kgm�K�� increase in pressure per unit increase in temperature at constant

density;
�
�
"1/P

�
"4�10�� Pa�� isothermal compressibility.
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