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In this paper, the problem of di!raction of a spherical wave by a hard half-plane is
considered. The starting point is the Biot}Tolstoy theory of di!raction of a spherical wave
by a #uid wedge with hard boundaries. In this theory, the "eld at a point in the #uid is
composed eventually of a geometrical part: i.e., a direct component, one or two components
due to the re#ections on the sides of the hard wedge, and a di!racted component due
exclusively to the presence of the edge of the wedge. The mathematical expression of this
latter component has originally been given in an explicit closed form for the case of a unit
momentum wave incidence, but Medwin has further developed its expression for the more
useful case of a Dirac delta point excitation. The expression of this form is given in the time
domain, but it is quite di$cult to "nd exactly its Fourier transform for studying the
frequency behaviour of the di!racted "eld. It is thus the aim of this paper to present various
useful approximations of the exact expression. Among the approximations treated, three are
most accurate for engineering purposes, and one of them is proposed, for its simplicity, as
appropriate for most occurring practical situations.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The problem of di!raction of a wave by a half-plane has been the subject of interest of
physicists and mathematicians for some centuries. The simple theory of geometrical optics
fails to describe certain phenomena occurring when light rays propagate over sharp edges.
In fact, an observer moving from the light to the dark regions of space does not really
experience a sudden change of light conditions but this transition may occur in
a progressive way with the possible appearance of dark and bright bands: the di!raction
fringes. Probably, the "rst mention of this phenomenon dates back to Leonardo da Vinci
and a "rst accurate description of it is due to the Italian Jesuit Professor F. M. Grimaldi in
the early 1660s, who used the word &&di!ractio'' to describe the bending of a wave whenever
it is obstructed in some way. On the other hand, Newton, considering the corpuscular
nature of light, attributed the phenomenon of di!raction to the possible attraction of the
light particles by the di!racting edge. This notion was also taken up by Young when in 1807
he presented his own theory of di!raction.
The problems arising in di!raction by in"nitely thin surfaces delimited by smooth edges

were "rst solved in a satisfactory manner only after the arrival of Kirchho!'s integral
equation. This integral equation is the mathematical formulation of Huygens' principle
which stipulates that for a propagating wave, every point on a primary wavefront serves as
the source of spherical secondary sources such as the fact that the primary wavefront at
some later time is the envelope of these wavelets.Moreover, the secondary wavelets advance
in the medium at a speed and frequency equal to those of the primary wave. Huygens'
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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principle is inadequate by itself as it fails to account for the process of di!raction. This
di$culty, being due to the ignorance of any wavelength consideration, was "rst solved by
Fresnel when in 1818 he considered the nature of the mutual interference between the
secondary wavelets. The Huygens}Fresnel principle adds that the amplitude of the "eld at
any point beyond the wavefront is the superposition of all the wavelets. Yet the
Huygens}Fresnel principle is purely hypothetical; it gives a satisfactory qualitative
description to a limited class of simple di!raction problems [1].
Hence, starting from the Helmholtz equation for the propagation of a monochromatic

scalar wave, and using Green's theorem, Kirchho! succeeded in 1883 to put the
Huygens}Fresnel principle on a sound mathematical basis. For a crude approximation of
the "eld di!racted by apertures in thin black screens, Kirchho! makes two further
assumptions to his integral formula: the strength of the "eld at the opening is that of the
"eld incident on it in the absence of the screen and is null at the shadowed face of the screen.
Thus, in respect to the mathematical operations, the integration of Kirchho! 's formula
becomes instead limited only to the surface of the aperture, a formulation usually known as
that of Fresnel}Kirchho!. It is worth noting that di!raction problems with complementary
surfaces have similar solutions; this is known as the Babinet principle. Unfortunately,
Kirchho! 's solution to this last formulation did not satisfy the reasonably assumed
boundary conditions. But the fact that his theory agreed quite well with experiment,
especially in the so-called Fresnel di!raction, where the line source}observer is not
appreciably remote from the di!racting edge, made most authors consider Kirchho! 's
solution as a fairly accurate "rst approximation [2]. Due to the non-exactitude of his two
assumptions, Kirchho! 's formula had thus to undergo many re"nements and modi"cations
during the years [3]. Among these new improvements, a high-frequency asymptote due to
Rubinowicz in 1917 states that in Kircho! 's formula for the aperture, the total "eld could
be decomposed into a geometrical part and a part made of a contour integral along the rim
of the aperture. This edge di!raction concept laid afterwards, in 1953, the ground for the
Geometrical Theory of Di!raction [4].
On the other hand, in 1896 Sommerfeld succeeded in giving a rigorous solution to the

two-dimensional problem of di!raction of a plane wave by a half-plane. The fame of this
achievement is due partly to the skill with which the solution was constructed in terms of
many valued functions and to that it could exactly and simply be given in terms of the
Fresnel integrals which were used in previous approximate theories [5]. Many
mathematicians followed Sommerfeld's approach and generalized the particular case of the
half-plane to the more general one of the wedge, and from that of the plane wave incidence
to that of the line or point sources; see, for instance, reference [6] for more details. In
acoustics, the development of theories for solving the more general problem of scattering by
wedge-shaped obstacles is often motivated by the urge of having at hand calculation
schemes for predicting the performance of simple noise barriers. Furthermore, these
theoretical models become even more attractive when they can handle the case of any
boundary conditions on the faces of the wedge. In this regard, it is worth mentioning the
recent work published by Mechel, in which the author considers the problem of scattering
of an incident wave by a wedge with either absorbing [7] or hard #anks [8]. The method of
attack is based on modal expansions of the sound "eld in the space bounded by the wedge,
and applications of practical importance include the shielding of urban noise by buildings,
or that of vehicles along road tra$c lines (regarding this latter, theoretical calculations
enable one, for instance, to prove the improvement of the insertion loss of a hard corner [9]
or a thin hard barrier [10] when the di!racting edge is covered by an absorbing cylinder).
The use of normal modes as generalized co-ordinates in Hilbert space is common in

acoustics to deal with the vibration of enclosures. Almost four decades ago, this method was



Figure 1. Geometry of the problem of di!raction of a spherical wave by a hard wedge.
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extended to deal with unlimited or partially limited mechanical media by "rst solving the
problem for an enclosure and then expanding some or all of its boundaries to in"nity [11].
In their early landmark paper, Biot and Tolstoy showed furthermore how to decompose
any kind of disturbance into a spectrum of generalized forces. When these two formulations
are applied together to the case of di!raction of a spherical explosive pulse in
a dissipationless #uid by a hard wedge, an explicit solution of the di!raction problem given
in a closed form is obtained which, furthermore, uses only elementary functions. At that
time no solution to such an apparently simple problem was presented. The attractiveness of
this solution in acoustics lies in its time domain formulation, where, as opposite to the
modal representation of the "eld, the presence of the reverberant decay is more strongly
enhanced. In practical applications, using di!raction in its time formulation permits with
the help of digital Fourier transform techniques to process important room acoustical
descriptors as assessed from the impulse response. Unfortunately, the elegant Biot}Tolstoy
theory of di!raction remained a long time in the acoustic literature without a real
appreciation of its advantages until 1981 when Medwin showed its usefulness for predicting
noise shadowing by "nite thin hard barriers [12]. Through simple mathematical
manipulations, he was able to express the Biot}Tolstoy solution for the instantly doublet
point source: i.e., an in"nite compression followed instantly by an in"nite rarefaction, to
that of a single in"nite Dirac-like pulse.

2. THE BIOT}TOLSTOY DIFFRACTION THEORY APPLIED TO
THE HARD HALF-PLANE

Figure 1 shows an in"nitely rigid wedge subtending a #uid with density �, and containing
a point source Q and a receiver R.
According to Biot and Tolstoy (B}T) di!raction theory, the acoustical "eld at the receiver

position R due to the point source Q would be made of three components: a direct "eld,
a re#ected "eld and a di!racted "eld. The possible contribution of the two former
components is dictated, respectively, by the fact that the receiver &&sees'' the source or its
image(s) through the side(s) of the wedge. It is consequently decided under pure geometrical



194 D. OUIS
considerations. On the other hand, the di!racted component is present everywhere in the
space "lled by the #uid.
Hence, consider that at Q a point-like delta function of pressure is radiated,

u"
�S
4�d

� �t!
d

c� , (1)

in which S is the strength of the source, i.e., the source volume #ow, and c is the speed of
propagation of sound. In equation (1) d is the distance from the source and � the Dirac delta
function. The total "eld is equal to the sum of the geometrical components and the edge
di!racted "eld: that is, u
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the distances to the "eld point from the real sound source and its image. The coe$cient
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) is equal to one whenever the "eld point &&sees'' the real sound source (its image through

the face of wedge), and zero otherwise. The di!racted wave due to the tip of the wedge
appears at a time �

�
after the source has emitted its spherically divergent pulse:
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Here �
�
is the least travel time over the wedge, and is given by the travel time of the wave in

its shortest travel path from the point source to the "eld point via the crest line of the wedge.
This quantity appears also in the classical theory of di!raction when in Rubinowicz's
representation of Kirchho! 's formula for the aperture in an in"nite plane, the surface
integral over the area of the aperture is replaced by a line integral over its rim; see, for
instance, reference [1] p. 452. A practical consequence of this is the well-known fact in
experimental physics that the sharp straight edge of a metallic sheet presents a bright
portion when illuminated by a small light source and observed from within the shadowed
side. For the wedge, the di!racted "eld u

�
(t) is given by [11, 12]
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Actually, the curly bracket ��� is the sum of four terms due to the four possible
combinations of the signs in (�$�$�

�
). The quantity 	 is a wedge index, and has the value

1/2 for the half-plane.
For the half-plane, �

�
"2� and equation (3) is developed in Appendix A for the

important case of the half-plane with z"0. The "nal result is expressed as
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where t
$

"(r$r
�
)/c and cos$"cos[(�$�

�
)/2]. For writing convenience, the factor � �

�
in equation (6) is the sum of two terms corresponding to the di!erent signs in the argument
of the trigonometric function. It may also be noted that in the present case where the source
and the receiver lie in the same plane normal to the edge of the half-plane on has t

�
"�

�
.

2.1. MEDWIN'S FIRST APPROXIMATION

Since often the theoretical and experimental results are presented in the frequency
domain, the Fourier transform,
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of u
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(t) is needed. With this de"nition of the Fourier transform, the temporal dependence of

the "elds becomes e����, and this factor will be omitted throughout. Evaluating u
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( f )

exactly is very cumbersome, if possible at all, and approximations are therefore necessary.
To circumvent this problem, it is informative to note from equation (6) that most of the
signal information, i.e., its energy content, lies in proximity of the least time �

�
. Thus,

Medwin proposed to decompose the time signal into two parts, one having a simple form
with a known exact Fourier transform, and the other component being just the left part of
the di!racted "eld, and the Fourier transform of which is to be made digitally [12, 13]. This
latter has, of course, to be truncated somewhere in the time domain depending on the
working frequency range, but mostly on the behaviour of the di!racted "eld, hence
depending on the geometry of the problem. Hence, developing u
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(t) in equation (6) for
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a form better suited for calculations. The Fourier transform of this last expression is
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With the change of variable �"t!�
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which, when decomposed into two (cos and sin) Fourier transforms leads to (reference [14],
f. 17.33.3, p. 1150)
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2.2. AN IMPROVED FIRST APPROXIMATION

With the same calculation strategy in mind, a new approximation of the initial short time
range di!racted "eld is suggested here. One can indeed develop equation (6) as
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and upon taking into consideration that for comparatively short times after the least time
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one can consider that 2t
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with all the parameters as de"ned earlier.
Calculations show that the form (14) is more e$cient than form (8) both for the short and

the long range time di!racted "eld. In the frequency domain, Fourier transforming the
expression in equation (14) leads to the sum of two terms of the form
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which when performed, and for �O�$�
�
, yields (reference [15], f. 2.1.3, p. 16)
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"2�f and erfc is the complementary error function with a complex argument which is
examined in Appendix B. For the argument of the erfc function, the sign of the square root

of the complex quantity is taken as positive, i.e., �!i
a
$

"#(1!i)�
a
$
/2. This

ensures the correct behaviour of the di!racted "eld in the vicinity of, and on jumping over
the geometrical boundaries: namely, that the amplitude of the di!racted "eld increases when
approaching the boundaries, a property which is not ful"lled for a negative argument. The
expression in equation (16) is composed of two terms, one with a

�
, which changes sign at

the re#ection boundary (cos(�#�
�
)/2"0 for �"�!�

�
), and one with a

�
, changing sign

at the incidence boundary (cos(�!�
�
)/2"0 for �"�#�

�
). The function erfc(z) takes on

small values for large amplitudes of the argument z (high frequencies and/or away from the
geometrical boundaries), and erfc(z)P1 for zP0 and consequently, at each geometrical
boundary, the corresponding term becomes more signi"cant than the other term. It may be
pointed out that the function e�
� erfc(!iz) is also known as the plasma dispersion function
and "nds applications in other branches of physics.

2.3. THIRD APPROXIMATION FORMULAE

These two approximations are built from the development of the last term in
equation (6). First, if in this latter, the temporal term is neglected in front of the other terms,
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i.e., for ��#2t
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The frequency form of equation (18) may then be expressed according to (reference [14],
f. 1.2.15, p. 14)
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in which K
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is the modi"ed Hankel function of order 0, and which for the case at hand with

a pure imaginary argument can be reformulated in terms of the Bessel functions of "rst and
second kinds, J
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and Y
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, respectively, as (reference [16], f. 9.6.4, p. 375).
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2.4. FOURTH APPROXIMATION FORMULAE

The fourth approximation is obtained by considering instead the square root temporal
term in equation (6) and leaving the last term in its original form; i.e., by using
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To make it easier to "nd the Fourier transform of this last expression, the last term is
developed into the sum of two terms, namely,

�
1

��#2t
�

�#(t�
�

!t�
�
) cos$��"

1

2���
$
�

1

�#�
�

!

1

�#�
�
�"

1

2���
$
�

1

�#�
�	�
�
�

,

(22)

where it is understood from the notation ��
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the frequency form of which is, according to equation (16), given by
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where the quantities �
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should be non-negative. This is directly seen for �
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in equation (24)
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�
.

2.5. FIFTH APPROXIMATION FORMULAE

In the light of the developments in the previous section, one can then write equation (6) in
the more suitable form
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and a new approximation may be found by considering the short time development of the

term 1/��#2t
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, i.e., (reference [17], f. 12:6:2, p. 94)
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and upon considering the "rst two terms in this last development, u
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of which the Fourier transform is given by (reference [15], f. 2.1.2, p. 16)
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This "fth approximation can even be improved by taking the next term in the serial
development in equation (28) and one then gets in the frequency domain
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where the Fourier transform of ����/(�#�
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) is given by
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and is shown in Appendix C.
In equation (32), the modi"ed Bessel function K
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This process of considering more terms may be pursued for higher terms by using the
general integration formula (reference [18], f. 2.3.6.15, p. 325)
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2.6. SIXTH APPROXIMATION FORMULAE

This form is obtained on considering the "rst two terms of the serial development of
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and the new time domain approximation for the di!racted "eld becomes
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and by using for the "rst term in the bracket the result of equation (19) and for the second
term (reference [18], f. 2.3.6.11, p. 325)
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2 ��, (38)

one gets a transform in the frequency domain which appears as follows:
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Similar to the "fth approximation form, equation (39) may be improved by taking one more
term in the development (36). In this case, one needs an expression for the Fourier transform

of ����/��#2t
�
which is given by
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and is detailed in Appendix D.
Hence, the new approximation u�
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( f ) is expressed by
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(41)

However, for all the terms in the series of equation (36) it would be more suitable to
consider the general integration formula (reference [18] f. 2.3.6.9, p. 324)
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which leads to the generalized sixth approximation:
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The function � is the Gamma function, and � (n#1/2) satis"es a simple relation:

��n#
1

2�"

1)3)52(2n!1)

2�
��
1

2�"

(2n!1)!!

2�
�� , (44)

where � (1/2)"�� (reference [16], !. 6.1.12 and 6.1.8, p. 255).
Note that equation (42) is obtained by using, respectively, equations (C.1) and (C.2) in

Appendix C. The function U(n#1/2, n#1; z) is the Tricomi function (also called the
con#uent hypergeometric function and sometimes also denoted as � (a, b, z) or
z�	
�
F
�
(a, 1#a!b,!1/z)) which may be derived by recurrence from U(1/2, 1; z), this latter

being a simple expression of the modi"ed Bessel function K
�
introduced in equation (19).

This is explained in detail in Appendix E (from this same appendix one can see that
equations (39) and (41) may be recovered by considering the expressions of U(1/2, 1;
!i
2t

�
) and U(3/2, 2; !i
2t

�
) in terms of K

�
(
t

�
) and K

�
(
t

�
). It would be worth

noting also that equation (34) may be processed from the more general formula in
equation (42) by using the property (reference [18], Vol. III, f. 7.11.4.4, p. 584)
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and the recurrence relation for the incomplete gamma function � in equation (G.9) in
Appendix G.

2.7. SEVENTH APPROXIMATION FORMULAE

From the considerations which led to the "fth and sixth approximations, one can make
instead a serial development of the bracketed rational expression in equation (6), and
deduce therefrom a new approximation. Hence, the inverse quadratic expression
1/(ax�#bx#c) may be developed as (reference [17], f. 16:6:1, p. 126)
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which in combination with the binomial development formula
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may be written as
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where the symbol E(x) means the entire part of x.
The development in equation (45) or in equation (47) is valid only for small values of x, or

more precisely for x satisfying �ax�#bx �/ �c �(1. In respect of equation (6), this implies
that � be between the roots �

�
and �

�
of the equation ��#2t
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These roots are given by �
�	�

"!t
�

G��� with ��"t�
�
(1#cos$�)#t�

�
cos$�'t�

�
.

Hence, �
�
(0 and �

�
't

�
'0. Thus, equation (6) becomes

u
�
(�)"

!S�
4��c

1

�t�
�

!t�
�
�
1

cos$�1#
�
�
���
�
�
������

�

��

�
n!m

m ��
1

2t
�
�



��
!2t

�
(t�
�

!t�
�
) cos$��

��


����
1

����#2t
�
�
�

. (49)

The Fourier transform of this latter then reads as
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where again use has been made of equation (42) for 	"n#1/2 and 
"1/2. One "nds
again the Tricomi function U(n#1/2, n#3/2; z), which this time for the case where its
parameters di!er by just unity reduces to a simple inverse power function (see Appendix F),
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and which when inserted in equation (50) gives
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Alternatively, if the quadratic polynomial ax�#bx#c has two roots x
�
and x

�
then
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with x
�	�

"(!b$��)/2a and �"b�!4ac. Hence, for small values of x one can use the
serial development in equation (36) in equation (53) and get
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which is valid for �x �(min( �x
�
�, �x

�
� ). The product of the roots x

�
and x

�
satis"es the

relationship x
�
x
�
"c/a and upon rearranging the product of the sums, equation (54) is

given again by
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Using these results with equation (42) in the expression for the di!racted "eld one "nds
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One recognizes already in this last expression the third approximation as given by
equation (19). This can be shown by taking n"0 and using equation (E.2) in Appendix E.

2.8. EIGHTH APPROXIMATION FORMULA

This last approximation is achieved by making a double serial expansion of the product
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)] and choosing a suitable series development for the range of

values taken by the variable �. First, from equation (28),
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Hence, calling u
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the new development of u
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one gets
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which one may write in a more compact form as
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with
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From equation (24) it is seen that 0(�
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and this implies that another pair of

serial development is needed for I
��
: i.e., by using (reference [17], !. 7:6:1 and 7:6:2, p. 55)
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Equation (59) may again be expressed as
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where the integrals to be evaluated are
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These are shown in Appendix G.
The "nal result for the n-term in the innermost bracket of equation (63) reads then as
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Figure 2. Variation of the amplitude of the di!racted "eld at approaching the edge of a hard half-plane.
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where the factor of (!
�
�	�
)
 is either the upper or lower term depending on whether

n!m#1/2 is positive or negative. � (�, z) and �(�, z) are the incomplete gamma functions
and are evaluated by a recurrence process as detailed in Appendix G.

3. NUMERICAL EXAMPLES

Before making numerical comparisons of the di!erent approximations, it would be
interesting "rst to make some general remarks concerning the behaviour of the di!racted
"eld on approaching the edge of the hard half-plane. This is illustrated in Figure 2.
In accordance with the principle of conservation of energy, the edge of the wedge should

neither absorb, nor radiate energy and this sets the condition on the di!racted "eld that on
approaching the edge, its amplitude should vary at most as the square root of the distance
to it [19]. This is clearly seen in the slope of the curve in Figure 2.
Figure 3 illustrates the behaviour of the edge di!racted "eld around the edge of the hard

half-plane at a constant distance from it.
In Figure 3, the curves of the approximations given by u

��
, u

��
and u

�

are indiscernible

from that of u
�
which is given by a continuous line. The departures between the curves

amount to less than 0)5 dB at the geometrical boundaries. The approximations u
��
, u

��
and

u
��
fail when approaching these boundaries, and the angular extension of these failure zones

diminishes with higher frequency. This is illustrated in Figure 4 for a frequency equal to
3400 Hz corresponding to r

�
"10
. This feature reminds one somehow of Keller's

Geometrical Theory of Di!raction [4]. In this latter, and depending on the geometry of the
problem and the frequency, the failure zones for a plane incident wave are delimited by
parabolae whose axes are the geometrical boundary lines, and whose foci are centred at the
edge of the half-plane (in the case of a line source parallel to the edge of the half-plane, the
failure zones are delimited by hypebolae) [20].



Figure 3. Di!raction of a spherical wave by a hard half-plane. Left, geometry, and right, amplitude of the edge
di!racted "eld normalized to the free "eld at r#r

�
. Frequency f"340 Hz corresponding to r

�
"
. - - - - - -, u

��
;

' ' ' ' ' ' ' , u
��
; -))-))-))-))-)), u

��
.

Figure 4. As Figure 3 but for f"3400 Hz corresponding to r
�
"10 
.
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The same calculations were carried out for the approximations u
��
, u

��
and u

��
for which

the same observations apply. The curves for these approximations are plotted in Figure 5
for f"340 Hz and in Figure 7 for f"3400 Hz.
Similar calculations have been made for "xed positions of the source and the receiver but

with the frequency as the variable quantity. The results are plotted in the curves of Figures 7
and 8.
These latter calculations have been performed for emphasizing the performance of the

various approximations for the engineering purposes of estimating the sound reduction of



Figure 5. As Figure 3, f"340 Hz, but with -))-))-))-))-)), u
��
; - - - - - -, u

��
; -) -) -) -) -) -) , u

��
(2)2 terms).

Figure 6. As Figure 5 but for f"3400 Hz.
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simple noise barriers. As may be seen, the di!erent approximations are relatively quite
accurate for frequencies above the frequency corresponding to the distance source}edge of
the barrier equal to a wavelength. It should, however, be pointed out that some
approximations, namely u

��
, u

��
, u

��
and u

��
give an overestimation of the di!racted "eld at



Figure 7. Di!racted "eld in the shadow region of a hard half-plane normalized to free "eld at r#r
�
.**, u
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;

- - - - - - - -, u
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; - ))- ))- ))-, u
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.

Figure 8. As Figure 7 but **, u
��
; )) - )) - )) , u

��
; - - - - - - , u

��
; - ) - ) - ) , u

��
.
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very low frequencies. A plausible explanation is that the failure zones discussed earlier at
such frequencies extend to an angular opening with such width that the receiver position
falls in these very zones.
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4. DISCUSSION AND CONCLUSIONS

In this paper, the problem of di!raction of a spherical wave by a hard half-plane has been
considered as a special case of the Biot}Tolstoy theory of di!raction by a hard wedge.
Several authors have contributed to the understanding of the general phenomenon of wave
propagation around wedges in the presence of di!erent sound sources. One can cite some of
the latest interesting contributions to this subject such as Ambaud and Bergassoli's [21]
(equation (8) of this latter reference ought to be the expression of the Fourier transform of
equation (3) in the present text) and Hadden and Pierce's [22]. Friedlander's work [23] also
contains valuable information and illustrative examples on the e!ect of obstacles on the
propagation of sound pulses of various shapes (Friedlander devotes chapter 5 of his book to
the problem of di!raction of an instantaneous spherical wave in the presence of a wedge.
The solution expressed in terms of Green functions is rather complicated but Hadden and
Pierce give useful approximations to the case of the monochromatic point source).
To return to the problem of the hard half-plane, a more tractable form is presented in this

work for the exact expression given by Biot and Tolstoy for the di!racted "eld. From this
time-domain expression of the di!racted "eld several approximations are derived, mostly
for the short time range after the arrival of the front of the di!racted "eld. These
approximations are inspired from the approximation produced by Medwin which has been
considered as the "rst in the series of the present approximations. In the frequency domain,
comparisons are made between the numerical integration of the exact expression of the
di!racted "eld and the Fourier transform of its approximations. The numerical Fourier
transform of the exact expression of the di!racted "eld uses Gauss and Konrod point rules
and is of the automatic and adaptive type [24]. As the di!racted "eld resulting from an
instantaneous pulse is zero at times earlier than that corresponding to the fastest path
source}receiver via the edge of the half-plane, then a change of variable permits one to bring
the Fourier transform to a one-sided transform, or equivalently to a Laplace transform. At
exactly the arrival time of the front of the di!racted "eld, this latter tends towards in"nity
and special routines may be used depending on the behaviour of the function at such
singularities.
As to the results in the calculations, one can "rst make the general observation that the

amplitude of the di!racted "eld as given by all the approximations becomes smaller and
smaller as the frequency takes higher values. This ascertains the fact that the di!raction of
sound waves by sharp edges is a low-frequency phenomenon. Among the di!erent
approximations to the expression of the di!racted "eld presented in this work, three
approximations seem to be accurate enough for most practical engineering purposes. These
are the ones labelled u

��
, u

��
and u

�

, this latter with its generalization, as given,

respectively, by equations (16), (26), (30) and (35). These approximations have almost
comparable performances except at proximity to the geometrical boundaries where very
slight di!erences may be noticed. Some calculations are illustrated in Figure 9 for the
receiver position near the re#ection boundary of the con"guration of Figure 4.
As expected, the di!racted "eld exhibits its strongest amplitude around the geometrical

transition regions. This is the well-known Fresnel di!raction phenomenon. Another
observation is the peculiar behaviour of the di!racted "eld on traversing these transitional
regions. In fact, the discontinuity of this latter with the eventual combination of that of the
geometrical incident and/or re#ected "elds ensure the smooth transition of the total "eld
through all space. If one takes the exact time domain expression as given in equation (3), at
exactly the geometrical boundaries, that is at �"�$�

�
, the di!racted "eld su!ers sudden

amplitude and phase changes leading to compensating e!ects in the total "eld due to the
abrupt presence or disappearance of the ray acoustics "elds. To take an example, one can
consider the behaviour of the di!racted "eld as approximated by u

��
in equation (16). Near



Figure 9. Close look at the behaviour of u
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, u

��
and u
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at transiting across the geometrical re#ection

boundary. f"340 Hz corresponding to r
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the incidence boundary, that is at �"�#�
�
, a

�
in equation (17) takes relatively large

values and the corresponding contribution to the total di!racted "eld varies slowly. On the
other hand, a

�
takes small values and, at two symmetrically lying positions about the

geometrical boundary, the corresponding contributions to the di!racted "eld become larger
than those due to a

�
. In the neighbourhood of the geometrical boundary, the amplitude of

a
�
component is almost constant, whereas the phases at two symmetrical positions are

opposite. Hence, if one denotes the corresponding part of the di!racted "eld by
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then on crossing the geometrical boundary the di!racted "eld su!ers a jump which in the
limit is equal to
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which is exactly the incident "eld. In equation (67), use has been made of (see reference [17],
p. 399)

lim

��
e
 erfc(�z)"1. (68)

The same reasonsing applies to a
�
at the re#ection geometrical boundary and the re#ected

"eld.
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It would also be interesting to note two further important features of the di!racted "eld.
The "rst is its vanishing amplitude at points lying in the extension plane of the di!racting
half-plane. This feature can be predicted by using the principle of reciprocity and the fact
that for a point source situated on the extension of the half-plane, the total "eld anywhere in
space is only that due to the direct "eld and that the scattered "eld is zero everywhere as
ascertained in earlier works (see reference [6], p. 335). In the time domain, this can easily be
veri"ed by assigning the value � to the angle � in the exact expression of the di!racted "eld
as given by equation (6) (note that in this latter expression, due to the parity of the cosine
function the di!racted "eld obviously satis"es the reciprocity principle). The second remark
is the symmetrical behaviour of the amplitude of the di!racted "eld about this plane. This
characteristic can also be predicted theoretically by setting the value of � in equation (6)
equal to 2�!� and upon using the relationship between the cosines of two supplementary
angles, i.e. cos(�!�)"!cos(�). Hence, at two positions symmetrical about the half-plane,
the di!racted "eld has the same amplitude, whereas, as may be veri"ed, the phases are
opposite. Again, this is in full agreement with earlier results that the sum of the total "elds at
two opposite positions about the half-plane is equal to the sum of the incident "eld and its
image through the half-plane (see reference [6], p. 334). As a direct consequence, the
di!racted "eld su!ers, upon traversing the half-plane, a discontinuity, the exact value of
which may be approximated by

u
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� cos�
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where �"(t�
�

!t�
�
)/2t

�
and use has been made of the parity relation

erfc(!z)"2!erfc(z). (70)

For a plane incident wave, r
�

PR and � P2r/c which makes the expression given in
equation (69) tend in the limit to the exact form (see reference [20], p. 556). In reference (6)
an approximate expression is given for the value of the total "eld at a point on the half-plane
and for a source remote from it. This value is equivalent to the approximation u

��
as given

by equation (19). It is worth noting that as expressed by equation (6), the value of the
di!racted "eld at �"0 is di!erent from that at �"2�. Although in the real physical space
these two positions coincide they are distinguished from each other upon the introduction
of the "ctive in"nitely thin half-plane. The halving of its angular parameter makes the
di!racted "eld have a 4� period, and this reminds one of Sommerfeld's approach to the
half-plane di!raction problem.
Some calculations made on the series of u

��
and u

��
show that these approximations have

a poor convergence, which becomes worse for lower frequencies.
In conclusion, among the approximations presented here for the di!racted "eld caused by

the presence of a hard half-plane in the acoustical "eld of a spherical wave, u
��
, u

��
and u

�

are most adequate for engineering purposes. For not too low frequencies, and for receiver
positions that are not too near the geometrical boundaries of the incident and re#ected
"elds, u

��
is accurate enough despite the simplicity of its form over that of u

��
and u

�

.
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APPENDIX A: EXPRESSION OF EQUATION (3) FOR THE CASE OF A HALF-PLANE
AND z"0

This case is of the most occurrence in experimentation and a simpli"cation of the
complicated expression is often desired. With �

�
"2� equation (3) becomes

u
�
(t)"

!S�c
8��

���
1

rr
�
sinh y

e���� , (A.1)
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where � is now

���"

sin[(�$�$�
�
)/2]

1!2e���� cos[(�$�$�
�
)/2]#e��

"

sin[(�$�$�
�
)/2]

2e�����cosh(y/2)!cos[(�$�$�
�
)/2]�
(A.2)

with (see reference [14], f. 1.622.6, p. 47]

y"arccosha"log[a#�a�!1], a"
c�t�!(r�#r�

�
)

2rr
�

, (A.3)

cosh(y/2)"�(cosh y#1)/2, (A.4)

sinh y"
e�!e��

2
"�cosh� y!1"�a�!1. (A.5)

For the di!erent sign combinations in the argument of the sin and cos of (�$�$�
�
)/2 one

gets

## #! !# !!

sin[(�$�$�
�
)/2] cos# cos! cos! cos!

cos[(�$�$�
�
)/2] !sin#!sin! sin! sin#

with

cos

sin
$"

cos

sin �
�
2
$

�
�
2 �.

Hence,

���&

1

2 �
cos#

x#sin#
#

cos!

x#sin!
#

cos!

x!sin!
#

cos#

x!sin#� , (A.6)

where x stands for x"cosh (y/2)"�(a#1)/2 � then becomes

���&x�
cos#

x�!sin#�
#

cos!

x�!sin!�� (A.7)

and u
�
(t) then takes the form

u
�
(t)"

!S�c
8��

x�
cos#

x�!sin#�
#

cos!

x�!sin!��
1

rr
�
�a�!1

. (A.8)

Next,

rr
�
�a�!1"rr

� ��
c�t�!(r�#r�

�
)

2rr
�

�
�
!1�

���
"

c�

2
�(t�!t�

�
) (t�!t�

�
) (A.9)

with

t
$

"(r$r
�
)/c (A.10)
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and because

rr
�
"c� (t�

�
!t�

�
)/4 , (A.11)

x may also be expressed in terms of t
�
and t

�
, namely,

x"cosh(y/2)"�(a#1)/2"
c

2
�(t�!t�

�
)/rr

�
"�

t�!t�
�

t�
�

!t�
�

. (A.12)

Then, inserting equation (A.9) and (A.11) in equation (A.8) one gets

u
�
(t)"

!S�
4��c �

t�
�

!t�
�

t�!t�
�
�

cos[(�#�
�
)/2]

t�!t�
�

!(t�
�

!t�
�
) sin�[(�#�

�
)/2]

#

cos[(�!�
�
)/2]

t�!t�
�

!(t�
�

!t�
�
) sin�[(�!�

�
)/2]�, (A.13)

which when using sin�"1!cos� gives equation (6).
The expression for the short time range after the least time �

�
"t

�
"(r#r

�
)/c, is given

as an expression of �"t!�
�
, which when introduced in equation (6) with the necessary

transformations leads to equation (8).

APPENDIX B: EXPRESSION OF erfc(�!i
a) IN TERMS OF THE FRESNEL
INTEGRALS FOR A REAL POSITIVE ARGUMENT

For the complex argument �!i
a"(1!i)��fa ( f"
/2� is the frequency), the
function erfc(z) de"ned by

erfc(z)"
2

�� �
�




e��� du (B.1)

is sometimes not available in calculation softwares and a reformulation in available
functions is desirable. With, respectively, the following arti"ces (see reference [16], f. 7.1.3,
p. 299, and f. 7.3.22, p. 301]

erfc(!iz)"e
�w (z), (B.2)

C(x)#iS(x)"
1#i

2 �1!e�
���� w�
��
2
(1#i)x�� , (B.3)

where the Fresnel cosine and sine integrals are de"ned by

C, S(x)"�
�

�

cos, sin�
�
2
u��du . (B.4)

Then by setting z"(1#i)��fa in equation (B.1), and rearranging equation (B.3) one gets
"nally

erfc(�!i
a)"erfc[�!i2�fa]"1!
2

1#i
[C(x)#iS(x)] (B.5)
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or

erfc(�!i
a)"erfc[�!i2�fa]"1![C(x)#S(x)]#i[C(x)!S(x)] (B.6)

with x"2�fa.

APPENDIX C: EVALUATION OF THE FOURIER TRANSFORM OF t���/(t#�
�	�
)

From the general formula (see reference [15], f. 1.2.10, p. 13),

�
�

�

t
(t#a)�e���dt"�(�#1)a

�����(!i
)�

�������e�
��	���W

��
���	

�������

(!i
a),

(C.1)

where � is the Gamma function and=�	� is the Whittaker function, then one gets for the
case where �"3/2, 	"!1 and a"�

�	�
,

�
�

�

t���

t#�
�	�

e���dt"��
5

2�����
�	�
(!i
)�
��e�����	���W

�
��	���
(!i
�

�	�
). (C.2)

Next, the Whittaker function may be expressed in terms of the Tricomi function U (see
reference [16], f. 13.1.33, p. 505) as

W�	
 (z)"e�
��z����
U�
1

2
#�!�, 1#2� ; z� (C.3)

and for the present case

W
�
��	���

(!i
�
�	�
)"e����	��� (!i
�

�	�
)
��U�

5

2
,
5

2
;!i
�

�	��. (C.4)

For the nth derivative, the Tricomi functions satisfy the recurrence relation increasing the
orders of both parameters of the function (see reference [16], f. 13.4.22, p. 507)

U
��(a, b; z)"(!1)� (a)
�
U(a#n, b#n; z), (C.5)

where (a)
�
denotes the Pochammer polynomial. For U in equation (C.4) one then gets

U�
5

2
,
5

2
;!i
�

�	��"

1

(1/2)
�

U
�� �
1

2
,
1

2
;!i
�

�	�� (C.6)

and U(1/2, 1/2,!i
�
�	�
) may be expressed in terms of the incomplete gamma function

� (see reference [18], Vol. III, p. 584)

U�
1

2
,
1

2
;!i
�

�	��"e�����	���
1

2
,!i
�

�	��. (C.7)

Furthermore, for the di!erentiation operation, the function � (	, z) satis"es (see reference
[18], Vol. II, p. 726)

��(	, z)"!z���e�
 . (C.8)
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Hence, using this property for equation (C.5) one gets

U�
5

2
,
5

2
;!i
�

�	��"

4

3�e
��
1

2
,!i
�

�	��!
1

�!i
�
�	�
�1#

1

2i
�
�	�
�� (C.9)

and with (see reference [18], Vol. II, p. 726)

��
1

2
, z�"�� erfc(�z) (C.10)

one sums up for the integral in equation (C.2)

�
�

�

t���

t#�
�	�

e��� dt"������
�	� ���e�����	� erfc(�!i
�

�	�
)!

1

�!i
�
�	�
�1#

1

i
�
�	�
�� ,
(C.11)

where use has also been, respectively, made of (see reference [16], formulae 6.1.12, 6.1.22,
and pp. 255, 256).

��
5

2�"
3��
4

and of �
1

2�
�

"

3

4
. (C.12)

APPENDIX D: EVALUATION OF THE FOURIER TRANSFORM OF t���/�(t#2t
�
)

Using equation (C.1) one gets

�
�

�

t���

�t#2t
�

e���dt"��
5

2�(2t�)���(!i
)����e�����W
��	�

(!i
2t
�
). (D.1)

Then, with the help of equation (C.3)

W
��	�

(!i
2t
�
)"e���� (!i
2t

�
)���U�

5

2
, 3;!i
2t

��. (D.2)

Then using equation (C.5) leads to

U�
5

2
, 3;!i
2t

��"
1

(1/2)
�

U
�� �
1

2
, 1;!i
2t

�� . (D.3)

U(1/2, 1; z) may be expressed in terms of the modi"ed Bessel function K
�
(see reference [16],

f. 13.6.21, p. 510),

U�
1

2
, 1; z�"

1

��
e
��K

�
(z/2) (D.4)

and using the di!erentiation properties of K
�
and K

�
, namely that (see reference [16],

f. 9.6.27, p. 376)

K�
�
(z)"!K

�
(z)NK�

�
(z/2)"!

K
�
(z/2)

2
(D.5)
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and (see reference [16], f. 9.6.28, p. 376)

K�
�
(z)"!K

�
(z)!

K
�
(z)

z
NK�

�
(z/2)"!

1

2 �K�
(z/2)#

K
�
(z/2)

z/2 � (D.6)

in equation (D.3) gives the "nal result

�
�

�

t���

�t#2t
�

e���dt"
1

2
(2t

�
)�e����� �K�

(!i
t
�
)!K

�
(!i
t

�
) �1#

1

i
2t
�
�� . (D.7)

APPENDIX E: EXPRESSION OF U�n#
1

2
, n#1; z� IN TERMS OF U�

1

2
, 1; z�

In order to express U(n#1/2, n#1; z) in terms of U(1/2, 1; z) which one can call, for
brevity, respectively, U

�
and U

�
one needs the recurrence relation (see reference [16],

f. 13.4.21, p. 507)

U�(a, b; z)"!aU(a#1, b#1; z) (E.1)

and an expression for the "rst element in the series of U(n#1/2, n#1; z) which is given by
(see reference [16], f. 13.6.21, p. 510)

U�
1

2
, 1; z�"

1

��
e
��K

�
(z/2), (E.2)

z stands here for z"!i2
t
�
.

Also one has relations (see reference [16], f. 9.6.27, p. 376)

K�
�
(z)"!K

�
(z)NK�

�
(z/2)"!

K
�
(z/2)

2
(E.3)

and (see reference [16], f. 9.6.28, p. 376)

K�
�
(z)"!K

�
(z)!

K
�
(z)

z
NK�

�
(z/2)"!

1

2 �K�
(z/2)#

K
�
(z/2)

z/2 �. (E.4)

These last two relations are important inasmuch as they help to express the U
�
of any order

just in terms of K
�
and K

�
. The "rst few U

�
's are then given by

U
�
"!

1

��
e
��[K

�
(z/2)!K

�
(z/2)],

U
�
"

1

3

1

��
e
�� �2K�

(z/2)!K
�
(z/2) �2#

1

z/2��,

U
�
"!

1

3)5

1

��
e
�� �K�

(z/2)�4#
1

z/2�#K
�
(z/2)�!4!

3

z/2�� . (E.5)
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If one supposes for n'4 that

U
���

"

(!1)���

1 )3 ) 52(2n!3)

1

��
e
���K�

(z/2)
���
�
���

�
���	�

(z/2)���
#K

�
(z/2)

���
�
���

�
���	�

(z/2)���� (E.6)
or, which when using the property (see reference [16], f. 6.1.12 and 6.1.8, p. 255)

(2n!3)!!"1)3)52(2n!3)"2���
� (n!1/2)

��
, (E.7)

may be rewritten as

U
���

"

(!1)���

2���� (n!1/2)
e
�� �K�

(z/2)
���
�
���

�
���	�

(z/2)���
#K

�
(z/2)

���
�
���

�
���	�

(z/2)���� , (E.8)

then using equations (E.1), (E.3) and (E.4) one can show that

U
�
"

(!1)�

2�� (n#1/2)

e
�� �
K

�
(z/2) �

���
�
���
�
�
���	�

!�
���	�

(z/2)���
!

(i!1)�
���	�

(i!1)

(z/2)� �!

�
���	���
(z/2)��� �

#K
�
(z/2) �

���
�
���
�
�
���	�

!�
���	�

(z/2)���
!

�
���	�

(i!2)

(z/2)�
#

�
���	���
(z/2)���

!

�
���	���

(n!3)

(z/2)��� ��
(E.9)

and identifying with

U
�
"

(!1)�

2�� (n#1/2)
e
�� �K�

(z/2)
���
�
���

�
�	�

(z/2)���
#K

�
(z/2)

�
�
���

�
�	�

(z/2)���� (E.10)

one gets for the expressions of the coe$cients in U
�
:

for i"1

�
�	�

"�
���	�

!�
���	�

, �
�	�

"�
���	�

!�
���	�

for i"2, 3,2, n!2

�
�	�

"�
���	�

!(i!2)�
���	���

!�
���	�

, �
�	�

"�
���	�

!(i!1))�
���	���

!�
���	�

,

for i"n!1

�
�	���

"!(n!3)�
���	���

!�
���	���

, �
�	���

"!n�
���	���

#�
���	���

,

and for i"n

�
�	�

"!(n!3)�
���	���

.
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APPENDIX F: EVALUATION OF U(a, a#1; z)

From the important transformation formula relating two Tricomi functions of the same
argument (see reference [16], f. 13.1.29, p. 505)

U(a, b; z)"z���U(1#a!b, 2!b; z), (F.1)

one gets for b"a#1

U(a, a#1; z)"z�	U(0, 1!a; z) (F.2)

and setting n"0 and b"1!a in (see reference [18], Vol. III, f. 7.11.4.12, p. 584)

U(!n, b; z)"(!1)�n!L���
�
(z), (F.3)

one gets

U(0, 1!a; z)"L�	
�
(z) (F.4)

and the generalized Laguerre polynomial L	
�
(z) satis"es (see reference [18], Vol. II, p. 733)

L	
�
(z)"1. (F.5)

So, to sum up,

U(a, a#1; z)"z�	. (F.6)

APPENDIX G: EVALUATION OF THE INTEGRALS I
��
�

, I
��
�

AND I
�
�
AS GIVEN

BY EQUATION (63a}c)

(a) Evaluation of I
��
�

"�
��	�

�

���
���� e���d�

One has (see reference [18], f. 13.2.3, p. 137)

�
�

�

t	��e���dt"
1

�	
� (
, �t), (G.1)

where � is the incomplete gamma function, so one gets

I
��
�

"

1

(!i
)��
����
� �n#m#

1

2
,!i
�

�	�� . (G.2)

The function � satis"es also the recurrence relation (see reference [18], p. 726)

�(	#1, z)"	�(	, z)!z�e�
 (G.3)

with

��
1

2
, z�"�� erf(�z). (G.4)
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With the help of equation (B.5) this gives for z"!i
�
�	�

erf(�!i
�
�	�
)"1!erfc�!i
�

�	�
"C(x)#S(x)!i[C(x)!S(x)] (G.5)

with x"2�
�
�	�
/2� and C and S, respectively, the cosine and the sine Fresnel integrals as

de"ned in equation (B.4).

(b) Evaluation of I
��
�

"�
���

��	�
���
���� e���d�

For n!m#1/2'0 one uses the results in (a) for I
��
�

. For n!m#1/2)0,

I
��
�

"�
���

�

!�
��	�

�

���
���� (cos#i sin)(
�) d�. (G.6)

Using (see reference [14], !. 2.632.2 and 2.632.4, p. 183)

� t	��
cos

sin
(
t) dt"!

1

2
	 �
e�	
��
e�
	���
��

� (
,!i
t)#
e��	
��
e�
��	�
��

� (
, i
t)� (G.7)

for 
"n!m#�
�
one gets

I
��
�

"!

e�
��
�����
��

��
����

� �n!m#

1

2
,!i
�� 	

���

��	�
, (G.8)

The incomplete gamma function � (	, z) satis"es also a recurrence relation, namely (see
reference [18], p. 726)

�(	#1, z)"	�(	, z)#z�e�
 (G.9)

with (see reference [18], p. 726)

��
1

2
, z�"�� erfc(�z) (G.10)

and where erfc(�z) for z"i
� may be evaluated according to equation (B.5).

(c) Evaluation of I
��


"�
�

���

���
�� e���d�

This integral may be evaluated by using (see reference [18], f. 1.3.2.4, p. 137)

I
��


"(!i
)��
��� (!n!m!1,!i
2t
�
) (G.11)

and the recurrence relation (G.9) with now for an integer order of the incomplete gamma
function (see reference [18], p. 726]

� (0, z)"!Ei(!z). (G.12)
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Ei is the exponential integral and for a pure imaginary argument, it may be expressed in
terms of the cosine and sine integrals of a real argument according to (see reference [17], f.
37:11:6, p. 358)

Ei(iy)"Ci(y)#i�Si(y)!
�
2
sgn(y)� (G.13)

with

Ci(y)"!�
�

�

cos (x)

x
dx and Si(y)"�

�

�

sin(x)

x
dx. (G.14)

(In equation (G.13) y"2
t
�
is positive.)
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