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A theoretical model based on Hamilton’s principle and spectral analysis is used to study
the non-linear free vibration of hybrid composite plates made of Glare 3, a new aircraft
structural material. It consists of alternating layers of metal- and fibre-reinforced
composites. In previous work, the theoretical model has been used to calculate the first
non-linear mode of fully clamped rectangular composite fibre-reinforced plastic (CFRP)
laminated plates. This study concerns determination of the linear dynamic properties of the
Glare 3 hybrid composite rectangular panel (G3HCRP) such as natural frequencies and
mode shapes. The theoretical model is used to calculate the fundamental non-linear mode
shape and associated flexural behaviour of the fully clamped G3HCRP. A series of
experimental investigations have been conducted using a G3HCRP in order to determine
linear dynamic properties. The response due to random excitation was investigated and the
experimental measurements are analyzed and discussed. Comparisons are made with finite
element predictions and response estimates given by the ESDU method, the latter being
a “design guide” approach used by industry. Concerning the non-linear analysis, the results
are given for various plate aspect ratios and vibration amplitudes, showing a higher increase
of the induced bending stress near the clamps at large deflections. Comparisons between the
dynamic behaviour of an isotropic plate and G3HCRP at large vibration amplitudes are
presented and good results are obtained.

© 2002 Elsevier Science Ltd.

1. INTRODUCTION

The use of composite materials as an alternative to traditional metal materials is becoming
widespread. The main technological advantages of these materials are low weight, high
strength and high stiffness, environmental resistance and long life. Composites technology
will play an increasingly important role in the aircraft industry in the future [1]. It is
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predicted that there will be a considerable demand for aircraft structures which will be
manufactured from advanced composite materials [2]. The carbon-fibre-reinforced plastic
(CFRP) presents remarkable specific stiffness and a better fatigue performance when
compared with other composite materials and metals. Because of such superior priorities
and of the very high stiffness-to-weight ratio, which is a very important parameter in aircraft
design, CFRP has a very good performance. However, its impact resistance is inferior to
aluminium alloy [3].

New materials have been developed which combine the advantages of both metal and the
fibre-reinforced composite. Glare 3 is one of these materials. It was developed by Delft
University of Technology. It is a type of material known as fibre-reinforced metal laminates
(FML). Glare 3 is a hybrid composite material consisting of alternating layers of metal and
fibre-reinforced composites. This material has many properties that make it particularly
attractive to the aerospace industry. Glare 3 presents many advantages over reinforced
plastic: it has an excellent corrosion resistance, a good fire resistance, an impact damage
tolerance and high resistance to fatigue [4-7]. Glare 3 also has direct cost and weight
advantages: it is up to three times less expensive than other advanced composites, whilst
retaining at least the same weight-saving potential [8].

In service, aircraft structures are subjected to dynamic loading. The correct and effective
use of composite materials such as CFRP and FML requires more complex analysis
techniques in order to predict accurately the dynamic response of such structures to
external loading, especially in severe environments, which may induce geometrically
non-linear behaviour [9]. Considerable research has been carried out on the non-linear
dynamic response of beams, homogeneous and composite plates and shells. A summary of
existing knowledge in the field of vibrations of plates and shells has been presented in
references [10-16]. In reference [17], an excellent review of the technical literature on the
acoustic fatigue of beams and plates has been presented. Research on the dynamics of
isotropic and composite plates has been presented in references [ 18-22]. The free and forced
linear and non-linear vibration analysis of symmetrically laminated rectangular plates has
been investigated in references [23-28] using the hierarchical finite element method.

In a series of papers [29-39], a theoretical model based on Hamilton’s principle and
spectral analysis has been developed and used to study the non-linear free and steady state
periodic forced vibration of beams, and the non-linear free vibration of shells and
homogeneous and composite plates. In reference [32], the model developed in reference
[29] has been extended to the non-linear free vibration of cylindrical shells. The effects of
large vibration amplitudes on the first and second coupled transverse—circumferential mode
shapes of isotropic circular cylindrical shells of infinite length have been examined. In
reference [35], this model was used to calculate the second non-linear mode of fully clamped
homogeneous rectangular plate for various values of the aspect ratio, and to analyze the
effect of non-linearity on the induced bending stresses. In reference [36], the model
presented in references [29-31] was adapted to study the non-linear steady state forced
periodic response of C—C and S-S beams; the results obtained were close to those obtained
by other methods. More recently, this method has been extended to the free vibration of
clamped circular plates and C-C-C-SS plates [37-38]. Good agreement has been found in
each case when compared with previous published works. In reference [39], the
geometrically non-linear free vibration of symmetrically laminated rectangular plates with
the fully clamped boundary conditions has been examined both experimentally and
theoretically. The model was validated by comparison with experimental results.

In the present work, experimental investigations have been performed in an attempt to
understand the dynamic behaviour of the Glare 3 hybrid composite rectangular panel
(G3HCRP) tested. The fully clamped panel was driven by random excitation using a coil



DYNAMIC BEHAVIOUR OF A COMPOSITE PANEL 283

and magnet shaker. These tests allow determination of the dynamic properties of the panel
and the damping. The results are presented in terms of the basic function components of the
mode shapes with their associated natural frequencies and damping. The experimental data
have been analyzed using the modal analysis criterion (MAC) in order to evaluate the
degree of correlation between the modes and validity of the experimental data. Comparison
between theoretical results obtained from the solution of the linear eigenvalue problem,
finite element predictions and response estimates obtained by the ESDU method has been
made. The classical linear eigenvalue problem, based on the Rayleigh-Ritz method, in
which products of x and y beam functions are used as basic functions, has been solved in
order to obtain the G3HCRP theoretical first five natural frequencies and corresponding
mode shapes. A software called STAR has been used to obtain the linear mode shapes of the
G3HCRP from the experimental data.

The geometrically non-linear free vibration of G3HCRP with fully clamped boundary
conditions has been also examined. Fully clamped boundaries have been considered here
because they are adequate for modelling many real panel-type situations, such as aircraft
wing panels [40], and it is more realistic to attempt to achieve these in practice, compared
with simply supported boundaries, for experimental measurements, as discussed in
reference [35]. Results are given for various plate aspect ratios and vibration amplitudes.
The comparison of the fundamental non-linear mode shape of the G3HCRP with that of an
isotropic plate has shown that the G3HCRP exhibits more non-linearity than an isotropic
plate of the same thickness. Comparisons of the change in natural frequency at large
vibration amplitudes, between G3HCRP and isotropic plates are presented. Some
experimental measurements for the first non-linear mode shape are also reported and
discussed. The second and higher non-linear mode shapes will be presented later.

2. LINEAR DYNAMIC PROPERTIES OF THE GLARE 3 COMPOSITE PANEL

2.1. INTRODUCTION

As Glare 3 which is considered in the present work is a new material, it was necessary to
determine its linear dynamic characteristics before examining the geometrically non-linear
behaviour. In this section, experimental and numerical investigations of the linear dynamic
properties of the G3HCRP are presented. This material, in the form of a rectangular plate,
was tested experimentally using electrodynamic point excitation. The G3HCRP was driven
by random excitation using a coil and magnet shaker in the frequency range 0-700 Hz,
which included the first five natural frequencies of the panel. The data taken from the
experiments have been analyzed and compared with theoretical predictions.

The purpose of this study was determination of basic structural properties such as the
mode shapes, natural frequencies and damping.

2.2. EXPERIMENTAL INVESTIGATIONS

2.2.1. Description of the glare 3 panel

The G3HCRP tested was designed and manufactured by British Aerospace Airbus Ltd. It
was in the form of a rectangular plate, with dimensions 0-45 x 0-3 m. The material used was
a five-layered aluminium alloy/glass-reinforced plastic (GRP) material, with three layers of
aluminium alloy (0-3 mm thickness each) and two-layers of composite constituent glass
fibre/epoxy matrix (0-25 mm each). The S2-glass fibres of the G3HCRP were oriented in two
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TaBLE 1

Lay-up of Glare 3 hybrid composite material

Lay-up Materials Layer thickness Fibre orientation

(mm)

Glare 2 Glare 3

—1 2423-T3 0-30
—2 Glass composite 0-25 UD' 0° CP* 0/90°
—3 2423-T3 0-30
—4 Glass composite 0-25 UD 0° CP 0/90°
—35 2324-T3 0-30

fUD—unidirectional. *# CP—cross-ply.

A

4/
-

fte—  Aluminium, t=0-3 mm
z ~T————— GRPlayers, t=0-125 mm

0°, 90° fibre orientations

Aluminium, t=0-3 mm

W > GRP layers, t=0-125 mm

0°,90° fibre orientations

X ~————  Aluminium, t=0-3 mm

Figure 1. Glare 3 hybrid laminate lay-up.

perpendicular directions, that is a cross-ply (0/90) orientation. The lay-up of Glare 3 is listed
in Table 1 and the construction of this material is shown in Figure 1.

The material properties of G3HCRP are listed below. Data were supplied by the
manufacturer of the material. The fibre volume fraction of the GRP is unknown as it was

not specified by the manufacturer.

o Aluminium alloy layer:

Modulus of elasticity : E = 72-:39 GPa
The Poisson ratio ;v =033
Density :p = 2700 kg/m?

* Glass fibre composite layer—cross plied (Glare 3):
Modulus of elasticity (longitudinal) : E, = 31-17 GPa
Modulus of elasticity (transverse) :E, = 3117 GPa

Modulus of elasticity (transverse) :E, = 9412 GPa
Shear modulus :Gyy = 5548 GPa

2.2.2. Experimental set-up

The Poisson ratio :v,, = 0-098

1y, = 00575
v, = 00575
Density :p=2000kg/m?

The excitation force was a stationary random signal. This type of signal has statistical
characteristics which do not change with time [41]. Low-level stationary random excitation
was used in order to characterize the linear dynamic properties of the G3HCRP by
determining the first five mode shapes and natural frequencies. The results are presented in
terms of the mode shapes with their corresponding natural frequencies and modal damping
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Figure 2. Spectral density of the excitation force for the modal tests of the Glare 3 hybrid composite panel.

o o o o e o o o o o o

150

300

O
o)
O
O
O
O
O
O
O
O

@ o] o o o o o o (o o

o/ o o o o o o o o o o o o o o

225 Dimensions in millimeters

450

Figure 3. Measurements grids for the Glare 3 hybrid composite panel. The position of the excitation point is
indicated by a circle.

ratios. The panel was driven by a random excitation force obtained by means of a coil and
magnet. The spectral density (PSD) of the excitation force is given in Figure 2 which shows
an almost constant spectrum in the range 0-700 Hz. A light coil was attached to a light
screw, which was glued to the panel. The coil protruded into the flux gap of an annular
permanent magnet, thus forming an electrodynamic exciter, which imposed no added
stiffness and little additional mass on the panel. The excitation point was chosen as shown
in Figure 3. This choice was made in such a manner that the first five modes would be
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Figure 4. Instrument arrangement for the modal tests of the Glare 3 hybrid composite panel

excited significantly. The response of the panel at the 126 measuring points across the
surface of the panel indicated in Figure 3, and for various levels of the excitation force, was
measured by an accelerometer, and a force transducer was used to measure the excitation
signal (see calibration of the measurement system in Appendix B). The instrument
arrangement for the modal tests of the Glare 3 hybrid composite panel is shown in Figure 4.
This allowed production of a series of transfer functions between the excitation and the
response. The modal parameters have been extracted using a modal analysis software called
STAR.

2.2.3. Modal test linearity check

Modal testing was used to determine the natural frequencies and mode shapes of the
plate considered. The validity of this method is restricted to the range of vibration
amplitudes within which the behaviour remains linear. It was therefore necessary to check
this condition. For a linear system, the response of the panel is linearly related to the
increase of the excitation level. Thus the response increases proportionally but the transfer
function, which is the ratio between input and output, must remain unchanged. To ensure
that the panel was vibrating in its linear range during the modal tests, the panel was driven
at three different excitation levels and the response at the closest point to the driving point
was measured. Figure 5 shows the measured transfer and coherence functions at three
driving force levels (r.m.s.) of 0-028, 0-054 and 0-071 N. It can be seen that the panel
responded linearly to the driving force in the range considered. In the modal tests
performed, the driving force was kept within this range.

2.2.4. Modal tests results

This section concerns the modal tests results. Measurements were made at a total of 126
points on the surface of the panel. In this study, the highest frequency of interest, based on
theoretical predictions of the first five natural frequencies of G3HCRP, was below 400 Hz.
So the time signals were low-pass filtered with a cut-off frequency of 700 Hz. A sampling
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Figure 5. Modal test linearity check of the Glare 3 hybrid composite panel (upper—coherence; lower—transfer
function): (a) driving force 0-028 (r.m.s.); (b) driving force 0-054 (r.m.s.); (c) driving force 0-071 (r.m.s.).

rate of 7000 Hz, 10 times the maximum frequency present in the data, was selected in order
to preserve accurate frequency information when digitally sampling the analogue signal,
and to avoid an aliasing phenomenon. Selecting a record length of 7s and a sampling rate of
7000 Hz, yield a total number of samples of 49000. The data were processed using the
mathematical signal processing programs in MATLAB to produce the transfer and
coherence functions. Two examples of the transfer and coherence functions are shown in
Figure 6. Figure 6(a) corresponds to measured data at a point very close to the driving
point, and Figure 6(b) corresponds to a point of 21 cm from the the driving point. The
STAR modal analysis system was used to extract the modal parameters. STAR employs
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Figure 6. Two examples for the transfer (lower) and (upper) coherence functions during the modal tests of the
Glare 3 hybrid composite panel (upper—coherence; lower—transfer function): (a) measurements point near the
driving point; (b) measurements point far from the driving point.

measured transfer functions to estimate the mode shapes and modal damping at specified
resonance frequencies.

The results are given in terms of mode shapes, natural frequencies and modal damping.
Figure 7 shows comparisons of the first five mode shapes obtained from experimental
measurements and those obtained from finite element analysis [42]. The overall viscous
average damping ratio across the modal frequencies measured for the G3HCRP was 0-7%.

To evaluate the degree of correlation between the modes, the modal assurance criterion
(MAC) data were used in order to check the orthogonality of the modes. If two modes are
identical or proportional, the MAC = 1, and if two modes are unrelated the MAC = 0. This
implies that the MAC table should have value 1 along the diagonal line and O for the
remainder of the data. For good experimental data, values close to 1 or 0 are expected. The
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Figure 7. Comparison between finite element predictions [42] and experimental results.
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TABLE 2

Modal assurance criterion (M AC) results: correlation between the modes

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode 1 1-00 0-00 0-00 0-00 0-00
Mode 2 0-00 1-00 0-00 0-00 0-00
Mode 3 0-00 0-00 1-00 0-00 0-00
Mode 4 0-00 0-00 0-00 1-00 0-00
Mode 5 0-00 0-00 0-00 0-00 1-00
TABLE 3

Comparison of the experimental natural frequencies results and those obtained by ESDU
method, finite element predictions and present numerical results

Mode number ESDU Finite element Present numerical Experimental
(Hz) (Hz) results (Hz) (Hz)
(11 105-60 105-37 104-64 93-50
(2'1) 16290 162-31 161:26 153
(1-2) 259-40 258-34 25663 245
(31) 260-30 259-13 257-52 253
(2:2) 31190 31045 30863 298

MAC table obtained for the tests carried out on the G3HCRP is listed in Table 2. For all
modes, the results are satisfactory.

2.3. NUMERICAL STUDIES

In order to obtain theoretically the first five natural frequencies of a fully clamped
G3HCRP, the classical linear modal analysis free vibration equation based on the
Raleigh-Ritz method, was used. The equation is given by [43]

% _ #2o0% o
akE=aw* mi, i=1,...,n (1)

in which kf; and m# are general terms of the non-dimensional classical rigidity and mass
matrices and the usual summation convention for repeated indexes is used (see Appendix
A for details).

The basic functions used in the non-linear rectangular plate analysis were obtained as
products of x- and y-clamped-clamped beam functions. These functions which satisfy all
the fully clamped theoretical boundary conditions, i.e., zero displacement and zero slope
along the four plate edges, have been used in previous studies on fully clamped rectangular
plate vibration [10] and have been demonstrated in many cases to be appropriate for the
determination of plate natural frequencies and mode shapes [13].

Calculations were made using 36 basic functions obtained as products of the first six
clamped-clamped beam functions, leading to square mass and rigidity matrices of
dimension 36. The eigenvalue problem (1) has been solved using MATLAB software.
Table 3 shows the comparison between the first five natural frequencies obtained
experimentally, and those obtained theoretically, based on finite element predictions and
the ESDU method [42]. It can be seen that the experimental values are reasonably close to
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the theoretical ones (the difference does not exceed 9-:8%) and that the theoretical values are
always greater than the experimental data, which is to be expected because of lack of perfect
clamping in the experiments and possible over estimation by the Rayleigh-Ritz method.

In the next section, the extension of the Rayleigh-Ritz method to geometrically
non-linear vibration, developed in reference [39], will be used to investigate the
fundamental non-linear mode shape and associated amplitude-dependent resonant
frequencies of a fully clamped G3HCRP.

3. THEORETICAL INVESTIGATIONS OF THE EFFECTS OF LARGE VIBRATION
AMPLITUDES ON THE FUNDAMENTAL MODE SHAPE OF A FULLY
CLAMPED G3HCRP

The purpose of this section is to apply the theory developed in reference [30] to calculate
the non-linear fundamental mode shape of a rectangular G3HCRP. In this part of the
paper, a brief review of the theory of the non-linear free response problem, corresponding to
large vibration amplitudes of composite rectangular plates, developed in reference [39], is
presented. Numerically results are given for various plate aspect ratios and vibration
amplitudes. The effect of non-linearity on the induced bending stress patterns is also
analyzed.

3.1. THEORETICAL FORMULATION

Consider an N-layer laminated composite with length a, width b and thickness H, shown
in Figure 8, with the principal axes coinciding with the Cartesian co-ordinate system (x, y, z)
such that the z-axis is perpendicular to the plane defined by x and y. W is the transverse

Figure 8. Geometry of laminated plate.
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displacement. Based on the classical plate theory [44], the equation for the strain for large
deflections can be expressed as [45]

{e} = {e% +z{x} + {1} 2)
in which {€°}, {k} and {A°} are given by
- ou - - ow -
0 0x . 0x?
o v * ’>w
=l = = |, W=|x|= —77 | (3.4)
20 ay y oy
xy a—U a— xy B aZW
L0x 0y ] L 0x0y]
1 (W]
70 2\ Ox ,
W 1/ow
0 |0 |2 (=
A
1 fawaw
L Ox Oy

U, V and W are displacements of the plate mid-plane.
Coeflicients Q% being the stiffness matrix elements, the stress-strain relation in the kth
layer is
(k)

(k)
Ox 011 Q12 Qs éx
Oy =021 Q22 026 &y - (6)
Oxy Q61 Q62 Oss Exy
Denoting by h; the distance from the middle plane to the upper plane of the kth layer as
indicated in Figure 8, the resultant moments and forces are defined as
(k) (k)

Mx N hk Ox Nx N hk Ox
M, =Y f o,y zdz, {N,}= ) f o, dz. (7, 8)
Mxy k=1 By O-xy ny k=1 By O-xy

The in-plane forces and bending moments in the plate are given by

[iﬂ - B lﬂ [{80}{:}“0}} ®)

where A is the extensional matrix, B is the extensional-bending coupling matrix and D is
the bending matrix of the plate, which are calculated as

N hk

(Aij, Bij, Dyj) = Z J Qﬁﬁ‘) (1, z, z%)dz. (10)
k=1 By

The expression for the bending strain energy V;, axial strain energy V, and the kinetic energy

T used in reference [39] have been defined as follows:

1 PW\? O*W *w O*W\?
Vb:i < Dll W +2D126—J}2W+D22 a—yz
O*W *w O*W *wW O*W\?
66 dS’

4D, S C 4, S oW
+ 4016 52 oxy + 426 oy* oxy + oxy

(11)
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¢ 2L{4 <6x> Ty dy Tl T e dy ox
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1 oW \?

T=—-pH — | dS 13
20 L( ar) , (13)

where S is the plate surface [0, a] x [0, b] and dS in the elementary surface dx dy.

In the above expressions, the assumption that the in-plane displacements U and V in the
energy expressions can be neglected has been made as for the fully clamped rectangular
isotropic plates analysis considered in references [30, 35]. The range of validity of this
assumption has been extensively discussed in the light of the experimental and numerical
results obtained for the frequency amplitude dependence and the bending stress estimates
obtained at large vibration amplitudes. The results obtained via this assumption were
compared with the previous ones based on various methods such as the finite element
method, the method based on Berger’s approximation, the ultraspherical polynomial
method and the elliptic function method. It was found that the percentage error in the
non-linear frequency estimates based on this assumption, for amplitudes up to 1-5 times
thickness, does not exceed 1-3% [39]. Also, in the same reference, a comparison between
previous results obtained with the present model and results obtained with hierarchical
finite element method has shown that the error is 1:01% in the non-linear frequency ratio
w,/w; estimates for amplitudes up to 1 times the plate thickness.

3.2. NUMERICAL MODEL

It is well known that the non-linear response of beams and plates at large vibration
amplitudes to harmonic excitation exhibits a harmonic distortion. However, the separation
of the higher harmonics carefully carried out at various points of the beam in reference [46],
and various points of a plate in reference [30], have shown that the contribution of the
higher harmonics to the non-linear response remains small compared with the predominant
first harmonic component. Thus, the scope of the present work was restricted mainly to the
dependence of the response first harmonic component on the amplitude of vibration and its
influence on the associated bending stress patterns. The transverse displacement W of the
plate was then approximated using only its first harmonic component as in reference [30],
which gives

W (x, y, t) = awy (X, y) sin ot (14)

in which the usual summation convention for the repeated index k is used. k is summed over

the range 1-n with n being the number of basic functions considered, g, is the contribution

corresponding to the kth basic functions, wy is the kth basic spatial function.
Discretization of the strain and kinetic energy expressions can be carried out leading to

Vi =Y aajk;sin? ot, V,=%aajaq,abjgsin*ot, T=3%aa;0*mjcos>ot  (15)

in which m;;, k;;, and by, are the mass tensor, the rigidity tensor and the geometrical
non-linearity tensor respectively. The expressions for these tensors are
aH’E aH’E

kij = T k:‘;, bijkl = T b;kjkl, mij = pH3 abm?‘j, (16—18)
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where the non-dimensional tensors mf, kj; and b, are given in terms of integrals of the
non-dimensional basic functions w¥’s, and their first and second partial derivatives (see
Appendix A).

Neglecting energy dissipation, the equation of motion derived from Hamilton’s principle
is

27
5J (V—-=T)dt=0. (19)
0

Discretization of the strain and kinetic energy expressions and insertion of these equations
in equation (19) using the non-dimensional expressions leads to the following set of
non-linear algebraic equations, as shown in Appendix A

3a,~ajakb?;k, + 2aik?; — 2(11‘(1)*2"’1?; = 0, i= 1, ..., N, (20)

which has to be solved numerically.

Details of the discretization procedure, and the expression of the linear parameters m;;, k;;
and the non-linear rigidity tensor b;j; are given in Appendix A.

In order to complete the formulation, as no dissipation is considered here,
a supplementary equation is obtained by applying the principle of conservation of energy,
which can be written as

Vmax = Tmax' (21)
This leads to the following equation:

* *
o = a;a;k¥ + a;a;ay a;by

- , (22)
a;a;mg;
where o* is the non-dimensional non-linear frequency parameter.

Substituting equation (22) into equation (21) leads to a system of n non-linear algebraic
equations allowing calculation of the contribution coefficients a;, i = 1-n. To obtain the first
non-linear mode shape of the plate considered, the contribution of the first basic function is
first fixed and the other basic function contributions are calculated via the numerical
solutions of the remaining (n — 1) non-linear algebraic equations.

3.3. NUMERICAL RESULTS AND DISCUSSION

3.3.1. Numerical details

The problem consists of solving the non-linear algebraic system (20). This system has
been solved numerically using the Harwell library routine NSO1A. This routine is based on
a hybrid iteration method combining the step descent and Newton’s method, which do not
require a very good initial estimate of the solution [47]. A step procedure, similar to that
described in references [29-31, 39] for beams and plates was adopted for ensuring rapid
convergence when varying the amplitude, which allowed solutions to be obtained with quite
a small number of iterations (an average of 55 iterations for 8 equations).

3.3.2. Choice of the contributing basic functions and analysis of convergence of the series
expansion

Consider the fully clamped rectangular plate, shown in Figure 3. For such a plate, the
deflections in the x and y directions have been represented here by the clamped-clamped
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beam functions. Beam functions have been used and shown to be appropriate in previous
studies of the non-linear vibration of fully clamped rectangular plates [30, 35, 39]. These
functions satisfy all the fully clamped theoretical boundary conditions, ie., zero
displacement and zero slope along the four clamped edges. In this paper, the index i used in
the series expansion of the plate deflection function W, i.e., equation (14), is replaced by
a double index ij:

wi (X, y) = wi; (x, ) (23)

in which w;; is the product of the ith and jth clamped-clamped beam functions. The
analytical expressions and the shapes of the clamped-clamped beam functions are given in
reference [30]. In previous studies, dealing with the first and second non-linear mode shape
of fully clamped isotropic plates [30, 35] and the first non-linear mode of rectangular
composite plates [39], it was found in each case that the functions which contribute
significantly to a given non-linear mode shape are those which contribute significantly to
the corresponding linear mode, i.e., nine symmetric-symmetric functions for the first
non-linear mode shape of an isotropic plate, nine antisymmetric-symmetric functions for
the second mode of an isotropic plate, and 18 basic functions for the first non-linear mode of
a CFRP composite plate having a lay-up (0/+45/90);,,, due to the non-symmetry induced
by the fibre orientation. To start the present work, a procedure based on this conclusion
was adopted. So, before considering the non-linear case, a linear analysis was made using 36
basic functions in order to determine the basic functions which have to be used in the
non-linear case. It had led to the conclusion that only nine functions needs to be taken into
account. This has been attributed to the fact that although the plate considered is
a composite plate, it has a particular cross-ply lay-up, which leads to D4 = D,¢ = 0. Then,
to confirm the validity of this conclusion, calculations have been made in the non-linear
case using 25 basic functions in order to check that the omitted functions have negligible
contributions, as discussed below.

TAaBLE 4

First linear mode shape of a fully clamped Glare 3 hybrid composite panel (. = 0-6): typical
numerical results obtained with 36 basic functions

of 7-583
1 ay, 1 19 a,, — 3:9509E — 11
2 a, —1-3684E — 10 20 Ay, —3-3979E — 18
3 a5 52839E — 03 21 a,s 2:0876E — 12
4 a, — 47107E — 12 2 a,, 8-6467E — 19
5 ays 6:9653E — 04 23 ays 5-1182E — 13
6 a, 5-5464E — 11 24 a,, —1-1737E - 20
7 ay, — 7-0045E — 10 25 as, 5-0492E — 03
8 ay, 23285E — 18 26 a., 1:3355E — 12
9 dys —73278E — 12 27 s —1-1269E — 03
10 dyy 3-3996E — 19 28 a., 50116E — 13
11 dys — 1-0479E — 12 29 ays — 2-8726E — 04
12 dyy —29915E — 20 30 day —41164E — 13
13 asq 3-1892E — 02 31 dgq 6:6546E — 11
14 ay, 9-7385E — 13 32 e, — 1-8522E— 19
15 dys — 1:9421E — 03 33 ey — 7-8555E — 13
16 s, 6-8114E — 13 34 ey 82710E — 20
17 dys — 3-5816E — 04 35 des — 9-1700E — 14

18 sy 67363E — 13 36 e 2:9994F — 21
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3.3.3. Results of linear analysis of fully clamped G3HCRP vibrations

Table 4 summarizes the results of linear analysis obtained for a plate having an aspect
ratio o = 0-6. It appears clearly in this table that only nine functions obtained as products of
the three first symmetric beam functions in both x and y direction contribute significantly to
the first mode shape of the fully clamped G3HCRP. The ratio of the highest contribution of
the omitted functions to the smallest contribution of the significant functions (a;,/ass) is
about 3-82x 1077,

3.3.4. Typical non-linear results obtained with 25 functions

To check the validity of the conclusion reached in section 3.3.3, according to which nine
functions are sufficient to obtain a good estimate of the fundamental non-linear mode
shape, typical calculations have been made using 25 basic functions obtained as products of
the first five clamped-clamped beam mode shapes, which has led to the solution of 24
non-linear algebraic equations.

Typical values of the g;;’s obtained are given in Table 5 for different values of w,.. It can
be seen that the only significant contributions, as may be expected due to the symmetry of
the plate’s first non-linear mode shape, are those corresponding to the first nine symmetric
basic functions in both the x and y directions. To check that the addition of the

TABLE 5

First non-linear mode shape of a fully clamped G3HCRP (« = 0-6): typical numerical results
obtained with 25 basic functions (obtained as product of the first five clamped—clamped beam

functions)
Wi 00228 07665 27749
wljof 1-000076 1-079 1-:6404

1 ay, 0009 03 1:05

2 ay, —2:0648E—12 —56230E—11 —3-7560E—10
3 as 4-7615E—05 3-4600E —03 37671E—02
4 Ayy —77319E—13 —4-1184E—12 —6:0689E—11
5 dys 6:2942E — 06 1-:0683E—03 2:1258E—02
6 ayy 8-1996E—11 —2:0773E—10 —6-8508E—10
7 ay, 1-4787E—11 —7-4143E—17 2:8568E—19
8 ays 1-9859E—12 —3-7249E—12 —3-2702E—11
9 Ayy —4-2381E—13 —1-4456E—17 59813E—20
10 ays —1-3493E—13 —1-0177E—12 —1-5957E—11
11 sy 2:8725E—04 1:6143E—02 1-:2903E—-01
12 as, —83692E—13 —1-7113E—12 —52579E—11
13 sy —1-7466E —05 —69134E—05 1-:3673E—02
14 Azy —1-7496E — 13 9-0084E — 13 3-8424E—12
15 ass —3-2299E —06 —2:9644E — 04 —2:0251E—03
16 ayq 4-7325E—12 —1:6268E—11 —9-6766E—11
17 Ay, 1-1360E—13 —4-6643E—17 5-1851E—20
18 ays 6-8989E — 13 1-:2335E—13 —1-0188E—11
19 Aya 1-8332E—14 7-5834E — 18 9-7924E —21
20 Ays —1-7084E —13 1-7691E—13 —1-4390E—12
21 as, 4-5461E—05 2:2197E—03 2:5186E—02
22 ds, 4-8163E—13 2:2870E—13 —1-0560E—11
23 dss —1-:0145E—-05 —3-7457E—04 2:4329E—03
24 Asy —85231E—13 1-:2998E—13 8-0932E—13

25 ass —2:5845E—06 —7-2546E—05 —3-5977E—04
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TABLE 6

First non-linear mode shape of a fully clamped G3HCRP (« = 0-6): typical numerical results
obtained with 9 well-chosen basic functions

wk 0-0220 0-7213 2:4059
wkjoF 1-000076 1-079 1-6404
1 a, 0-009 0-3 1-05
2 dys 47615E—05 3-4600E — 03 3-7671E—02
3 as 6-2942E —06 1-0683E—03 2:1258E—02
4 as, 2:8725E—04 1-6143E—02 1-2903E—01
5 ass —1-7466E — 05 —6:9134E—05 1-3673E—02
6 dys —3-2299E —06 —2:9644E — 04 —2:0251E—03
7 asy 4-5461E—05 2:2197E—03 2:5186E—02
8 dssy —1-0145E—05 —3-7457E—04 2:4329E—03
9 ass —2-5845E—06 —7-2546E—05 —3-5977E—04
TABLE 7

Comparison of contribution coefficients to the first mode shape of a fully clamped G3HCRP for
o= 02,0 =006 and o = 0-8; (a) linear results calculated here (b) present results obtained from
non-linear analysis

% =02and w¥, =00263  o=06and wk, =00245 o=08and w¥, =00246

(a) (b) (a) (b) (a) (b)
o 6648 6649 7-583 7-584 8745 8-746
ay, 1 1 1 1 1 1
ays 000058758 000059474 000528385  0:00529212 000910448  0:00911414
dys 000007370 000007721 000069653  0-00070002 000123451  0-00123789
ay, 009237948 009281924 003189222 003192192 002017104  0-02018732
ay;  —000005858 —0-00005773 —0-00194215 —0:00194028 —0-00276109 — 0-00275858
ays  —000000775 —0-00000831 —0-00035816 —0:00035905 —0-00064874 — 000064957
as, 002435734 002438565 000504923  0:00505173 000293743  0:00294032
as;  —000015673 —0:00015675 —0-00112691 —0:00112726 —0-00109317 — 000109371
ags  —000002207 —0:00002205 —0-00028726 —0:00028715 —0-00037648 — 000037636

antisymmetric functions does not affect the results, calculations have been made with only
nine symmetric functions in both the x and y directions. The results presented in Table 6
show no significant change in both the value of the resonance frequencies and the basic
function contributions. This confirmed the conclusion that good estimates of the non-linear
mode shapes can be obtained by solving only eight equations corresponding to nine
well-chosen basic functions.

3.3.5. Comparison of results obtained from the non-linear model at small amplitudes with
linear results

In previous works [29-32, 35, 37-39], the model has been validated both numerically and
experimentally. In this section, in order to validate the theory and the numerical results
obtained in the present work, comparison is made between results obtained here from the
non-linear model when the amplitudes of vibrations considered are very small and data
obtained from the linear analysis. Table 7 shows a comparison of numerical results obtained
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from the solution of the set of non-linear algebraic equations (20), corresponding to the
non-linear problem, obtained for small vibration amplitudes, with those based on the linear
analysis. It can be seen that the resonance frequencies and the contributions of the basic
functions obtained via both analyses are very close.

3.3.6. General presentation of numerical results

Numerical results for a fully clamped G3HCRP corresponding to assigned values of a;;
varying from 0-05 to 1-05, which correspond to maximum displacement amplitude to
thickness ratios varying from 0-1233 to 2-:5184, obtained at (x*, y*) = (0-5, 0-5), and « = 0-2,
0-6 and 1, are summarized in Tables 8-10. In each Table, a;; represents the contribution of
the basic function obtained as product of the ith and the jth x and y clamped-clamped beam
functions. w},, is the maximum non-dimensional amplitude obtained at the plate centre
and w}/off is the ratio of the non-linear non-dimensional frequency parameter defined in
equation (22) to the linear non-dimensional frequency parameter obtained by solution of
the linear eigenvalue problem. It can be seen that in the non-linear numerical results
corresponding to the square plate (« = 1), the contribution coefficients a;; are, as may be
expected due to the quasi-complete symmetry of the problem in this case, almost identical
to a;; (fori=1,2,3 and j =1, 2, 3) for all values of vibration amplitudes. This may be
considered as an additional check of the good convergence of the iterative method used for
solving the set of non-linear algebraic equations.

3.3.7. Amplitude dependence of the fundamental mode shape and comparison with
experimental results

Comparison with experimental measurements is the best way to verify numerical results.
The model has been validated in previous published works [29-31, 35, 39]. In this section,
a comparison between numerical and experimental results has been made. Measurements
were carried out on a G3HCRP described in section 2.2.1. The plate was harmonically
excited by a coil and magnet exciter in the region of its first resonance determined by
frequency response tests. For the first non-linear mode shape measurements, the excitation
point was chosen to be at the middle of the plate. The electrodynamic exciter imposed no
added stiffness and little additional mass on the structure. In order not to load the plate with
a response measurement transducer, a non-contacting Laster Velocity-Transducer set type
3544 was used for measuring the non-linear dynamic response along sections across the
plate area. The output from the laser velocity-transducer is a voltage-time signal
proportional to either the velocity or displacement of the target surface. The experimental
measurements are presented in this section and compared to numerical results. Figures 9(a)
and (b) show the measured normalized separated first harmonic component along the x and
y direction for a maximum non-dimensional amplitude wi,. of 0-35 together with the
normalized theoretical non-linear mode shape. As may be expected, due to the rigidity
introduced in the theory by the truncation of the series in the spectral expansion of the
displacement function, the theoretical curve is higher than the experimental values in the
intermediate regions of the normalized curves but it can be seen that the non-linear
prediction and measured values are close. The non-linear experimental values and
theoretical curve do not coincide exactly, due to various experimental errors and theoretical
approximations. It can be seen, however, that the trends of deformation of the non-linear
mode shapes are very similar.

The good qualitative agreement between the non-dimensional first non-linear mode
shape calculated from the theoretical model and experimental measurements of a fully
clamped G3HCRP, confirms the conclusion reached in reference [39], according to which



TABLE 8

Contribution coefficients to the first non-linear mode shape of fully clamped G3HCRP, oo = 0-2

Winax om/of - ag, dys dys dsy a3 dss sy dss3 dss

0-1174 1-0024 005 3-8212E—05 80169E—06  51448E—03 —1-8274E—06 —1-:0156E—06  1-2564E—03 —7-8390E—06 —1-1083E—06
0-2295 1:0093 010 12716E—04 41131E—-05 1-2937E—02 3-7403E—06 —4-3943E—06  2-8029E—03 —1-5130E—05 —2-7605E—06
0-3352 1:0202 015 3:0980E—04  1-2149E—04  2:4243E—02 2:6517E—05 —77087TE—06  5:0622E—03 —1-9093E—05 —6-7063E—06
0-4369 1-:0348 020 6:2122E—04  2-6860E—04  3-8381E—02 77542E—05 —47281E—06  83733E—03 —14419E—05 —1-4163E—05
0-5371 1-:0528 025 1-0895E—03  5:0015SE—04  5-4251E—02 1:6689E—04  1-1314E—05 1-2803E—02  5-3830E—06 —2-4256E—05
0-6374 1-0740 030 1-7347TE—03  8:3166E—04  7-0986E —02 3-:0269E—04  4-6033E—05 1-8197TE—02  4-6490E—05 —3-4428E—05
0-7384 1-0980 035 2:5686E—03  1-2761E—03  8-8060E —02 49093E—04 10372E—04  24316E—02  1-1389E—04 —4-1571E—05
0-8402 1-1246 040 3-5945E—03  1-8435E—03  1-0520E—01 7-3567TE—04  1-8767E—04  3-0931E—02 2-1110E—04 —4-2807E—05
0-9427 1-1535 045 4-8091E—03  2-5410E—03  1-2226E—01 1:0392ZE—03  3-0044E—04 3-7862E—02  3-4029E—04 —3-5805E—05
1-0459 1-1846 0-50 6:2033E—03  3-3730E—03  1:3921E—01 1-4021E—03  44407E—04  44978E—02  5-:0243E—04 —1-8800E —05
1-1495 12175 055 77645E—03  4:3414E—03  1-5603E—01 1-8239E—03  62014E—04  52192E—02  6:9758E—04  9-4853E—06
1-3577 12880 0-65 1-1327E—02  6:6844E—03  1-8930E—01 2-8357TE—03  1-0740E—03  6-6715SE—02  1-1838E—03  1-0317E—04
1-:5667 1:3638 075 1:5367TE—02  9-5469E—03  2:2218E—01 40510E—03  1-6669E—03  &1193E—02  1-7882E—03  2-4923E—04
17764 14438 085 19764E—02  1-2887E—02  2:5478E—01 54391E—03  2-3989E—03  9-5550E—02  2-4959E—03 4-4873E—04
19865 15271 095 24415E—-02  1-6651E—02  2:8719E—01 6:9676E—03  3-2653E—03  1-0977E—01  3:2902E—03  7-0094E —04
2-1969 1-6131 105 29241E—02 2:0783E—02  3-1946E—01 8-6059E—03  42581E—03  1-2387E—01  4-1549E—03  1-0039E—03
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TABLE 9

Contribution coefficients to the first non-linear mode shape of a fully clamped G3HCRP, o = 0-6

Winax om/of - ag, dys dys dsy a3 dss sy dss3 dss

0-1225 1-0024 005 27445E—04  39183E—05 1-6319E—03 —94771E—05 —19009E—05 2:5560E—04 —5-6744E—05 —14232E—05
0-2444 1:0095 010 6:0914E—04  1-0421E—04  3-4818E—03 —1-7545E—04 —4-4440E—05 53021E—04 —1-1568E—04 —2-7741E—05
0-3655 1:0210 015 1-0581E—03  2-1950E—04  57407TE—03 —2-2771E—04 —81829E—05 &4356E—04 —17810E—04 —4-0092E—05
0-4855 1-:0367 020 1-6648E—03  4-0689E—04  8§85529E—03 —2-3695E—04 —1-3517TE—04 1-2162E—03 —2-4376E—04 —5-1305E—05
0-6041 10562 025 24595E—03  6:8437TE—04  1-2008E—02 —1-8867E—04 —2:0659E—04 1-6685E—03 —3-1054E—04 —6:1857E—05
0-7213 1:0791 030 3-4600E—03 1-0683E +05 1-6143E—02 —69134E—05 —29644E—04 22197E—03 —3-7457TE—04 —7-2546E—05
0-8373 1-1049 035 46730E—03  1-5683E—03  2-0953E—02 1-3401E—04 —4-0347E—04 2-8863E—03 —4-3057E—04 —84279E—05
0-9522 111334 040 6:0964E—03  2-1928E—03  2-6400E —02 43112E—04 —52533E—04 3-6806E—03 —4-7235E—04 —9-7873E—05
10660 1-1642 045 77217TE—-03  2-:9465E—03  3-2430E—02 83019E—04 —6-5888E—04 46110E—03 —49341E—04 —1-1390E—04
11791 1-1969 0-50 9-5365E—03  3-8315E—03  3-8975E—02 1-3367TE—03 —8-0061E—04 56813E—03 —4-8734E—04 —1-3263E—04
1.2915 12315 055 1-1526E—02  4-8476E—03  4-5968E—02 1-9538E—03 —9-4688E—04 6:8913E—03 —4-4825E—04 —1-5396E—04
1-5152 13051 065 1-5961E—02  7-2636E—03  6-1040E —02 3-:5209E—03 —1-2391E—03 9-7149E—03 —2-5150E—04 —2-0273E—04
17379 1:3051 075 2:0901E—02  1-:0162E—02  7-7185E—02 5:5167TE—03 —1-5102E—03 1-:3029E—02 1-22650E—04 —2-5471E—04
1.9604 14661 085 2:6227E—02  1-3497TE—02  9-4053E—02 7-9058E—03 —1-7403E—03 1-6762E—02 7-0040E—04 —3-0275E—04
2-1830 1-5519 095 3-1843E—02 1-7214E—02  1-1139E—-01 1:0641E—02 —1-9150E—03 2-0838E—02 1-4719E—-03 —3-3975E—04
2-4059 1.6404 105 3-7671E—02  2-1258E—02  1-2903E—01 1-3673E—02 —2:0251E—03 2-5186E—02 2-4329E—03 —3-5977E—04
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TasLE 10

Contribution coefficients to the first non-linear mode shape of a fully clamped G3GHCRP, oo = 1

Winax om/of - ag, dys dys dsy a3 dss sy dss3 dss

0-1233 1:0023 005 69880E—04  9-9457E—05 69880E—04 —14690E—04 —4-5938E—05 9-9457TE—05 —4-5938E—05 —19938E—05
0-2464 1:0093 010 14846E—03  2-2232E—04  14846E—03 —27291E—04 —9-7061E—05 2:2232E—04 —9-7061E—05 —3-8954E—05
0-3690 1:0206 015 24359E—03  3-9099E—04  24359E—03 —3:5744E—04 —1-5792E—04 3-9099E—04 —1-5792E—04 —5-6237E—05
0-4911 1-:0361 020 3-6162E—03  62588E—04  3-6162E—03 —3-8062E—04 —2-3193E—04 6-2588E—04 —2:3193E—04 —7-1144E—05
0-6126 10554 025 50704E—03  94475E—04  50704E—03 —3-2377TE—04 —3-2108E—04 9-4475E—04 —3-2108E—04 —8:3207E—05
0-7335 1-0781 030 6:8246E—03  1-3622E—03  6:8246E—03 —1-7003E—04 —42586E—04 1:3622E—03 —4-2586E—04 —9-2066E —05
0-8537 1-1038 035 §8-8878E—03  1-8895SE—03  8-8878E—03 9-5158E—05 —54541E—04 1-8895E—03 —54541E—04 —9-7382E—05
0-9735 111323 040 1'1256E—02  2-5344E—03  1-1256E—02 4-8363E—04 —67774E—04 2:5344E—03 —67774E—04 —9-8746E —05
1-0928 1-1631 045 1:3914E—02  3-:3017E—03  1-3914E—02 1-0043E—03 —82004E—04 3-3017E—03 —8:2004E—04 —9-5609E —05
12117 1-1959 050 1-6842E—02  4-1932ZE—03  1-6842E—02 1-6630E—03 —9-6899E—04 4-1932E—03 —9-6899E—04 —8-7255E—05
1-3304 12306  0-55 2:0016E—02  52085E—03  2:0016E—02 2:4630E—03 —1-1210E—03 52085E—03 —1:1210E—03 —7-2795E—05
1-5675 13046 0-65 2:7000E—02  7-5987E—03  2-7000E —02 44869E—03 —1-4198E—03 7-5987E—03 —14198E—03 —2-1347E—-05
1-8045 1-3836 075 34671E—02  1:0436E—02  3-4671E—02 7-0568E—03 —1-6896E—03 1-0436E—02 —1-6896E—03  67841E—05
2:0419 144667 085 42862E—02  1-:3669E—02  4-2862E—02 1:0130E—02 —19079E—03 1-3669E—02 — 1-9079E—03  2-0386E —04
2-2798 1-5531 095 51437E—02 1-7244E—02  5-1437E—02 1-3652E—02 —2-:0586E—03 1-7244E—02 —2-:0586E—03  3:9451E—04
2-5184 16423 105 6:0292E—02 2-1104E—02  6:0292E—02 1-7561E—02 —2-1309E—03 2:1104E—02 —2-1309E—03  6-4552E—04
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Figure 9. Comparison of the normalized first harmonic component along the section (a) x* = 0-5 and o = %
G3HCRP. wi,, = 0-35; (b) y* = 05 and « = 3 G3HCRP. w,, = 0-35.
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Figure 10. Comparison of the change in natural frequency at large amplitudes for G3HCP and isotropic plates
o = 0-6. —e— isotropic plate studied in reference [34]; —-— Glare 3 panel.

the theoretical model based on Hamilton’s principle and spectral analysis can be a good
tool for analyzing geometrically non-linear free vibration problems of composites. The
dependence of the non-linear frequency on the amplitude of vibration is plotted in
Figure 10, for both the first mode of a fully clamped isotropic rectangular plate and a fully
clamped G3HCRP (o = 0-6), with the ratio of non-dimensional non-linear frequency to the
linear frequency w}i/wj* against the vibration amplitude coefficient a,;. The curves of this
figure show that the first non-linear mode of fully clamped G3HCRP exhibits a greater
change in frequency with amplitude than does the first non-linear mode of an isotropic
plate of the same thickness. It can be seen that for a;; =1, which corresponds to
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Figure 11. (a) Normalized amplitude first non-linear rectangular G3HCRP, o = 0-2, y* = 0-5: (curve 1) lowest
amplitude; (curve 4) highest amplitude. (b) Normalized amplitude first non-linear rectangular G3HCRP, o = 0-6,
y* = 0'5: (curve 1) lowest amplitude; (curve 4) highest amplitude. (c) Normalized amplitude first non-linear square
G3HCRP, o = 1, y* = 0-5: (curve 1) lowest amplitude; (curve 4) highest amplitude.

a non-dimensional amplitude at the plate centre equal to 1-5x1-5x1=225
approximately, the increase of non-linear natural frequency for the isotropic plate is
somewhat above 28% while the corresponding increase for the G3HCRP is about 60%.
Figures 11(a)-(c) show the normalized fundamental mode shape for various aspect ratios
o =02, 0-6 and 1, respectively, of G3HCRP along the middle line (y* = 0-5) for different
amplitudes. The mode shapes are normalized by division by the maximum value, obtained
at the centre of the plate. The four lines represent the mode shapes corresponding to
a;, =005, 03, 055 and 1-05 which correspond to the maximum non-dimensional
amplitudes given in Table 11. It can be seen that the curvature near the edge increases
gradually with increase of the amplitude. Similar curves corresponding to y* = 0025 and
o = 02,06 and 1 along the x* normalized section are presented in Figures 12(a)—(c). It was
generally noticed that the deformation of the mode shape, for a given value of the
normalized amplitude of vibration, increases as the aspect ratio o decreases. Also, it appears
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TaBLE 11

Maximum displacement amplitude w},. corresponding to the normalized curves given in
Figures 11, 12, 14 and 15

Aspect ratio o 02 06 1

Curve 1 01174 01225 01233
o Curve 2 06374 07213 07335
Curve 3 1-1495 12915 1:3304
Curve 4 21969 24059 25184
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Figure 12. (a) Normalized amplitude first non-linear rectangular G3HCRP, « = 0-2, y* = 0-025: (curve 1)
lowest amplitude; (curve 4) highest amplitude. (b) Normalized amplitude first non-linear rectangular G3HCRP,
o =06, y* =0025: (curve 1) lowest amplitude; (curve 4) highest amplitude. (¢) Normalized amplitude first
non-linear square G3HCRP, o = 1, y* = 0-025: (curve 1) lowest amplitude; (curve 4) highest amplitude.
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clearly that the non-linear mode shape in the neighbourhood of the clamps can be very
different from that usually expected in linear theory.

3.3.8. Bending stresses associated with the first non-linear mode shape
Using the stress—strain relationship (6), the maximum bending stress ¢,, and ¢, obtained
for z = H/2 are given by
H 0*W H o*w H *W H o*w
Oxp =5Q11 o +5Q1za—yza Oyb ZlezW +§sza—yz~ (24, 25)

In terms of the non-dimensional parameters defined in the previous work [117],

non-dimensional stresses o3, and ¢}, can be defined by

O*W* OPW* ,PWF W

*

T U O M

with o = b/a. The relationship between the dimensional and non-dimensional stresses is
EH>

S

2(1 —v?) b2

which is valid for both dimensional and non-dimensional pairs of stresses defined by

equations (24)—(27).

ok =o?

(26, 27)

(28)

o =

35

Non-dimensional bending stress o,

. ! . 1 . I . I .
0 02 04 0-6 0-8 1-0
y*

Figure 13. Non-dimensional bending stress distribution associated with the fully clamped square G3HCRP
first non-linear mode for « = 1 along the section x* = 0-025: (curve 1) lowest; (curve 2) highest.
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The non-dimensional bending stress distribution for G3HCRP is plotted in Figures 13,
14(a), (b), 15(a) and (b). As was found in references [30, 397, it can be seen in Figure 13 that
the bending stress distribution can exhibit in the neighbourhood of the clamps
a distribution with positive values along the whole section, due to the Poisson ratio effect
and due to high curvatures in the y direction. In Figures 14(a), (b), 15(a) and (b) the
non-dimensional bending stress distribution is plotted for various plate aspect ratios and
various sections of the mode. All curves show the amplitude dependence of the stress

30
35
*2 *R
; 30 ; 20
[0 [
5 s
w 23 o 10
.5 g
g 20 E
[5) (5]
© ; 0
s 15
g g
2 1.0 g -10
2 05 7
= ]
o r S =20
Z 00 F ~
—05 I 1 1 1 1 I =30 L 1 L 1 L 1 . 1 "
0 01 02 03 0-4 05 0 01 02 03 0-4 05
y* y*

Figure 14. (a) Non-dimensional bending stress distribution associated with the fully clamped rectangular
G3HCRP first non-linear mode for « = 0-2 along the section x* = 0-025: (curve 1) lowest; (curve 4) highest.
(b) Non-dimensional bending stress distribution associated with the fully clamped rectangular G3HCRP first
non-linear mode for o = 0-6 along the section x* = 0-025: (curve 1) lowest amplitude; (curve 4) highest amplitude.

Non-dimensional bending stress 3%,

Non-dimensional bending stress %,

L 1 L 1 N 1 N 1 N —40 1 1 1 1
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Figure 15. (a) Non-dimensional bending stress distribution associated with the fully clamped rectangular
G3HCRP first non-linear mode for o« = 0-2 along the section y* = 0-25: (curve 1) lowest amplitude; (curve 4) highest
amplitude. (b) Non-dimensional bending stress distribution associated with the fully clamped rectangular
G3HCRP first non-linear mode for & = 1 along the section y* = 0-25: (curve 1) lowest amplitude; (curve 4) highest
amplitude.
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TABLE 12

Comparison of the rate of increase of the non-dimensional bending stress ¢, with increasing

wik . at various points: A(x*, y¥) = (0-025; 0-025); B: (0-25; 0-025); C: (0-5; 0-025); D: (0-025;

0-25); R(w*): rate of increase of wk,.; R(c%,): rate of increase of o%,. The reference value is the
first value. G3HCRP o = 0-6

op/of Wi RW¥) o 0¥(4) R(e*(4)) o*(B) R(e*(B) ¢*(C) R(¢*(C) o*(D) R(q*(D)

max

1:00245  0-1225 0-0201 0-5984 1-0415 0-7185
1-1969 1-1791 96253 0287 142079 7-1057 11-8745 112176 10-7706 9-0717 12-6259
1-6404  2:4059 19:64 09577 47-6467 184912 309011 26-3403 25:2907 24-7280 34-4161

distribution, and a high increase of the bending stress near the clamps, compared with the
rate of increase expected in linear theory. Table 12 summarizes some numerical data
concerning the non-linear increase in bending stress with the amplitude of vibration.
Considering a G3HCRP corresponding to o = 3, it appears that the non-dimensional
bending stress o, obtained at the point A4 (x* = 0025, y* = 0-025) of the plate, increases
from 0-0201 to 0-9577, when the maximum non-dimensional amplitude wi,, increases from
0-1225 to 2-4059. This shows that the non-linear analysis predicts an increase in o3, which is

higher than that expected from a linear analysis.

4. CONCLUSIONS

The main objective of this paper was to investigate both experimentally and numerically
the linear and non-linear dynamic response of fully clamped G3HCRP. In the linear study,
experimental modal tests have been carried out on a fully clamped G3HCRP. The natural
frequencies and mode shapes obtained by the experimental and theoretical predictions were
close. The modal damping data were obtained. A typical damping ratio for the G3HCRP is
0-7%. Modal assurance criterion (MAC) data were used and have shown that all of the
modal results are satisfactory. Concerning the non-linear results, the geometrically
non-linear free vibration analysis (first mode) of G3HCRP has been successfully carried out
using the model based on Hamilton’s principle and spectral analysis. Good agreement has
been found between experimental and numerical results. The study has shown that the
fundamental mode shape is amplitude dependent. Also, the non-dimensional bending stress
distribution associated with the G3HCRP first non-linear mode for different amplitudes of
vibration has been investigated. It was also shown that the bending stress could exhibit in
the neighbourhood of the clamps, a distribution with positive values along the whole
section. This is due to the Poisson ratio effect and due to high curvatures in the other
direction.

Comparison of the changes in non-linear resonant frequency at large vibration
amplitudes for isotropic and G3HCRP show an increase of the non-dimensional non-linear
frequency parameter with increasing a,; for the first mode, which is much greater for the
G3HCRP than that obtained for an isotropic plate.

It has also been found that accurate results can be achieved by using the present model
with only nine basic functions which was attributed to the particular plate lay-up which
leads to Dyg = D, = 0. In a previous work [39] it was shown that for some plates having
different fibre orientation, 18 basic functions were necessary to estimate the fundamental
CFRP non-linear mode shape. Based on these results, further work is needed to investigate
the behaviour of higher modes and the effects of fibre orientations.
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APPENDIX A

A.1. EXPRESSIONS OF THE NON-DIMENSIONAL TENSORS

m;, k;; and b;j, are the mass tensor, the rigidity tensor and the geometrical non-linearity
tensor respectively. The expressions for these tensors are

aH’ E aH’E
kij =13 kl*j) bijkl = T

b3 b, mij = pH? abm; (A.1-A3)

ijs

where the non-dimensional tensors mf, kf; and by, are given in terms of integrals of the

non-dimensional basic functions w}’s, defined as in reference [39], and their first and second
partial derivatives by

mf = j wi wkdx*dy*, (A.4)
S*

52Wl* azw* 62W:l< 52W*
k¥ = D}, o* c—% |+ D% | —r—2
! L*{ e |:5x* ox* R oy* ady*
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2 ox* oy* oy* oy* 4 | Oy* Ox* oy* oy*
A;; D;j are the coefficients of the symmetric matrices A and D respectively. They are given by
H/2
(B D) = | 08 (1227 @) (A7)
—H/2
where the Q% are the reduced stiffness coefficients of the kth layer in the plate co-ordinates.
Af; = (A;;/HE) and D}; = (D;;/H>E), in which H is the plate thickness and E is a reference
Young’s modulus, whose numerical value was taken as 7 x 101° N/m, which is a typical
value for aluminium alloys.
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A.2. NUMERICAL DETAILS OF THE FULLY CLAMPED SYMMETRICALLY LAMINATED
RECTANGULAR PLATE ANALYSIS

A.2.1. Plate functions used
The chosen basic functions f** were the linear clamped-clamped beam functions [307:

_ [eh(v; x/L) — cos(v;x/L)]  [sh(v; x/L) — sin(v;x/L)]
- (chv; — cosvy) B (shv; — sinvy)

[ , (A.8)
where v; fori =1, 2, ... are the eigenvalue parameters for a clamped-clamped beam. The
values of the parameters v; were computed by solving numerically the transcendental
equation coshv; cosv; = 1 and are given in reference [39].

The fully clamped rectangular plate functions wi were defined as

| - .
Wi O, %) = 5 e (06) S (%) (A.9)

in which x* = x/L, y* = y/L, w¥ (x*, y*) = w;/H (x/L, y/L) and G is a normalization scaling
factor given by

G = /Js (S5 (x*) /i (y¥)* dx* dy*. (A.10)
The functions w; were normalized in such manner that

1
mp = j WE (%) wE () dxc® = ;. AL

0

A.2.2. Details of the application of Hamilton’s principle

The dynamic behaviour of the structure is governed by Hamilton’s principle, which is
symbolically written as

2n/w
6J V—-T)=0 (A.12)
0

in which ¢ indicates the variation of the integral. Introducing the assumed series (14) into
the energy conditions (A.12) via equation (15) reduces the problem to that of finding the
minimum of the function ¢ given by

2n/w 1 1
¢ = f <§ aa;k¥ sin® ot + 3 a;ajaabfyy sin® ot — 3 w?*a;a;mf; cos? wt) dr (A.13)
0

with respect to the undetermined constant g;. Integrating the trigonometric functions
sin? wt, sin* wt and cos? wt over the range [0, 2n/w] leads to the following expression:

3
4) = % <aiaj k:‘; + Zai(lj a, a; bl?kjkl — wzaiajml?kj>. (A14)

In this expression, ¢ appears as a function of only the undetermined constant, a;,
i=1,...,n Equation (A.12) reduces to

9
da,

0, r=1,...,n, (A.15)
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which can be written as

27 (Oa; da; 3 dq; 3 da; 3 Oay,
E <6a aj k:’; i aal k:’; + Z % ajaka,b?‘jkl + Z aa aka,b”k, + - Cl a a alb,Jk,
3 0 da; da;
+ o it GZI by — <GZ a;mi + a; aZ’ mf‘;>> =0, r=1,...,n (A.16)
As we have
da; oa; da da
% = Oip, a_aj = 5jr5 a_ak = 5kr5 a_al = 5!7’7 (A17)

where 0 is the Kronecker symbol defined by 6;; = 1 if i =j and J;; = 0 if i # j, equations
(A.16) lead to

3
* * % *
+ — (aara; by + aaa by + a;a;a, b5 + a;a;a;b)

(a;k% + a; kF) 3

—? (amf +amf) =0, r=1,...,n (A.18)

Generally, and this is case for all the applications of this theory given in reference [48], and
presented in this present work, the tensors k¥ and m are symmetric, and the tensor b, is
such that:

biu = bjy; and by = b (A.19)

Taking into account these properties of symmetry, it appears that equations (A.18) are
equivalent to the following set of non-linear algebraic equations:

2a;k% + 3aa;a by, — 20%amE =0, r=1,...,n (A.20)

A2.3. Symmetrization procedure for the bending and non-linear rigidity tensors k¥ and by,

A.2.3.1. Tllustration of the symmetrization procedure. Consider the bending strain energy
(expression (11)). The discretization of terms proportional to Dy, D,, and D¢ leads to
symmetric expressions with respect to i and j; but the discretization of the other terms leads
to expressions which need to be symmetrized in order to obtain a symmetric rigidity matrix
k¥ For example, the discretization of the term

02w *w
2D, 77 a2 (A.21)
leads to
62Wi62W
2Dy, aa; 5 (')xzj (A.22)

If only two different given values are assigned to the indices i and j, the expression obtained
is not symmetric. But, expression (A.22) involves a summation over the repeated indices
i and j. So, it may also be written as

(A.23)

O*wi Pwr 0*wF 0*w}
2D a;a;% = |: : ’:|

5 o -+ o oy

This is the form adopted in equations (A.5) for this term.
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A similar procedure has been adopted for the other terms, in order to obtain s symmetric
rigidity tensor. Also, a similar procedure has been applied when discretizing the non-linear
axial strain energy V, in order to fulfil the symmetry requirements by, = by;; and by, = bl

APPENDIX B: CALIBRATION OF THE MEASUREMENT SYSTEM

Before undertaking experimental measurements, some necessary calibrations have been
done in order to check the instruments and experimental set-up. It was necessary to know
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Figure B1. Accelerometer and force transducer calibration.
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Figure B2. Calibration of the transducers for the modal tests of the Glare 3 hybrid composite panel
(upper—Ilinear scale; lower—logarithmic scale).



314 B. HARRAS ET AL.

the sensitivites of the transducers used, in order to obtain accurate results during the
measurements of the transfer functions. For this work, the accelerometer and force
transducer were used. However, it is important to calibrate those transducers before
beginning any measurements. The sensitivity of a transducer might change after being used
for some time and other instruments might also induce errors. The indirect calibration
method was used because it is difficult to measure the sensitivity of each individual
transducer. This method may be described as follows.

A cylindrical mass was suspended on a wire, and an accelerometer and vibration exciter
were attached at each end of the mass as shown in Figure B1. The relationship between the
excitation force f'and the response acceleration “a” of mass “m” should follow Newton’s law:
“f = ma”. The transfer function therefore can be expressed as “a/f = 1/m”, in the frequency
range concerned. Figure B2 shows the calibration result of the transducers for the modal
tests of the G3HCRP. The relation between a/f and 1/m represents the overall sensitivity
S (m/s%/N). This means that the transfer function (accelerance) a/fis given by (a/f),./S, where
(a/f) 1s the measured transfer function. For the modal tests, only the transfer functions are
of interest and this calibration method is satisfactory. For the transducers used in this work,
the overall sensitivity was 0-01 (m/s?/N).

APPENDIX C: NOMENCLATURE

{e} column matrix of total strains

{e%} column matrix of strains due to the in-plane displacements u, v, w

X, ¥, Z point co-ordinates

{x} column matrix of bending or twisting

{10} column matrix of strains induced by large displacements W

€35 €y Vy tensors strain components

¥, 0¥, g% stresses in the kth layer

[Q] 6 x 6 matrix of transformed stiffness

[Q1, 6 x 6 matrix of transformed stiffness for the kth layer

N®, NV, N® force resultant for the kth layer

MP, MP, ME, moment resultant for the kth layer

hy distance from the mid-plane to the layer surface of the kth layer

A;j» Bijy Dy extensional, coupling and bending stiffness coefficients for the laminate plate

Af, D non-dimensional extensional and bending stiffness coefficients

a;; contribution coefficient of the plate deflection function as a product of the ith
and jth beam model shapes in the x and y directions respectively

a, b length, width of the plate

E Young’s modulus

H plate thickness

kij, m;; and b, general term of the rigidity tensor, the mass tensor and the non-linearity tensor
respectively

k, mf5 and b, general term of the non-dimensional rigidity tensor, mass tensor and
non-linearity tensor respectively

S, S* dimensional and non-dimensional surfaces [0, a] x [0, b] and [0, 1] x [0, 1]
respectively

U(x,y,t), V(x,y,t)  in-plane displacements at point (x, y) of the plate
U(x, y, t) = u(x, y) sin®wt
V(x, y, 1) = v(x, y) sin® wt

V,V,and V bending, axial and total strain energy respectively
T kinetic energy
Wi(x, y, t) transverse displacement at point x on the plate
W(x, y, t) = w(x, y) sinwt
WH*(x, y, t) non-dimensional transverse displacement at point x on the plate
£

wk . maximum of the non-dimensional transverse displacement

max
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contribution corresponding to the kth basic functions

kth basic spatial function.

non-dimensional parameter (aspect ratio) given by o = a/b

major Poisson ratio

longitudinal modulus

transverse modulus

shear modulus

cylindrical mass

overall sensitivity

mass density per unit volume of the plate

frequency and non-dimensional frequency parameters respectively
linear frequency and non-linear frequency parameters respectively
dimensional bending stresses

non-dimensional dimensional bending stresses.
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