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Numerical and analytical studies are performed for the free vibration analysis of
non-cylindrical (conical, barrel and hyperboloidal types) helical springs. The stiffness matrix
method is used in the numerical analysis. A total of 12 degrees of freedom (six displacements
and six rotations) is described for an element. The exact element stiffness matrix and the
exact concentrated element inertia matrix are used in the formulation. The rotary inertia, the
shear and extensional deformation effects are considered in the analysis. Comparison of the
numerical results with the reported results obtained numerically and experimentally gives
satisfactory values. After verification of the numerical frequencies, the non-dimensional
fundamental frequencies of fixed—fixed non-cylindrical helical springs with circular section
are expressed in a simple formula with a maximum absolute relative error of 5% using those
numerical values for the constant helix pitch angles (5°, 10°, and 15°). These expressions
restricted to the fundamental frequencies are also verified with ANSYS results.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Helical springs are commonly used in many engineering applications. There have been few
theoretical and experimental studies on non-cylindrical helical springs (Figure 1) compared
to those on cylindrical helical springs.

Epstein [1] worked out the free vibration of conical helical springs. He obtained the
fundamental frequency of conical springs theoretically for several boundary conditions.
After his pioneering work, the vibration behavior of non-cylindrical helical springs has been
the subject of research in the last two decades. Nagaya et al. [2] studied the free vibration
problem of barrel- and hyperboloidal-type helical springs both experimentally and
theoretically. They used the Mayklestad method (the transfer matrix method for lumped
masses) in their numerical studies. The natural frequencies for conical- barrel- and
hyperboloidal-type springs were obtained in good approximations based on the stiffness
matrix method by Yildirim [3]. Yildirim and Ince [4] studied the effects of the rotatory
inertia, shear and axial deformation effects on the natural frequencies of helical springs with
arbitrary shapes. Employing both the transfer matrix and the complementary functions
methods, exact numerical solutions were given by Yildirim [5]. The distributed parameter
model for the free vibration analysis of non-cylindrical helical springs was used in this study.
Recently, Wu and Hsu [6] calculated the load-deflection relation of the conical spring.
They solved the dynamic equations by perturbation and numerical methods.
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Figure 1. Types of non-cylindrical helical springs: (a) barrel; (b) conical and (c) hyperboloidal.

For non-cylindrical helical springs, there is no analytical formula to predict the natural
frequencies whose values depend on many parameters such as helix pitch angle, the ratio of
wire diameter to one of cylinder characteristic diameters, the ratio of minimum cylinder
diameter to maximum cylinder diameter, the number of active turns, boundary conditions,
type of cross-sections, etc. It is difficult to obtain derived general formulas that comprise all
the effects mentioned above and their variation along the spring axis for natural frequencies
of non-cylindrical helical springs. This has also not been achieved for cylindrical helical
springs. At least, having some frequency expressions that can be used in some practical
ranges of significant parameters will be very useful for dynamic design of such springs.

The objective of the present study is to formulate the free vibration problem of
non-cylindrical helical springs in an accurate manner and obtain simple expressions for just
the fundamental natural frequency of clamped-clamped springs with circular section. It was
observed from Yildirim’s [ 7] study on cylindrical helical springs that it is possible to present
natural frequencies with approximate formulae if the numerical solution is accurate. In
order to achieve this, the exact non-cylindrical helical element stiffness matrix is obtained
based on the transfer matrix method. The element transfer matrix is computed by numerical
integration of the differential equations governing the statical behavior of non-cylindrical
helical springs. The exact mass of the element is used in the determination of the
concentrated element inertia matrix. The subspace iteration and Jacobi’s methods are used
in the solution of the large-scale eigenvalue problem [8]. This formulation yields the natural
frequencies, which are very close to Yildirim’s [5] exact numerical results.

2. FORMULATION OF THE PROBLEM

Representing the state vector by S, the governing equations of a helical spring can be
written in matrix notation as

dS(¢}/d¢ = DS(¢b), (1

where ¢ is the angular co-ordinate and D is the differential matrix. Derivation of
equation (1) is given in the appendix. The elements of the state vector are

S(¢) = {Ub Um Ub, Qta Qm Qb> TI> Tm Tba Mt) Mna Mb}Ta (2)

where T, T,, and T, (T = T,t + T,n + T,b) are the components of the internal forces on
the cross-section in the t-, n-, and b-direction (Frenet co-ordinates), respectively, and M,,
M,, and M, (M = Mt + M,n + M,b) are the components of the internal moments on
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Figure 2. Stress resultants at a section of a spatial bar.

this section on the t-, n-, and b-direction respectively (Figure 2). U,, U,, U, (U =U,t +
U+ Ugb) and @, Q,, Q, (2 =Qt+ Qn + Qb) are the Frenet components of the
displacements and rotational vectors respectively.

The following assumptions are used in the formulation: the relationship between the
forces and deformations is linear and the deformations are small. The bar is made of an
elastic, homogeneous and isotropic material whose cross-sectional area is circular and
uniform. Warping is neglected.

The non-zero elements of the differential matrix by these assumptions are given by
Haktanir [9]:

Dy, =R(@)/c(p)=—Dy1=Dys5s=—Dss=D75=—Dg7=D1011=—Dir.10
Dy 7 = c(¢)/EA,
Dy 3 =h(})/c(p) = —D32=Dss=—Dss=Dgo=—Dog=Di112=—Dis11,
Dys=c¢)=—D3s=Dy10=—Diss
D, g =k/c($))GA =D3o, Dyio=clp)/2GI, Ds ;1 =c(¢)/EI = Dg y,, (3)
where k' is the shear coefficient factor, E is Young’s modulus, G is the shear modulus, A4 is
the cross-sectional area, I is the second moment of inertia and the other quantities in
equations (3) are (Figures 1 and 3):
R(¢) = R, + (R, — R,)(1 — ¢/mn)* (for both barrel and hyperboloidal springs),
R(¢) = R{ + (R, — Ry)¢/2nn (for conical springs),
h(¢) = R(@)tano,  c(¢) = [R*(¢) + h*(¢)]""2, 4)

where n is the number of active coils and « is the pitch angle of the helix. The homogeneous
solution of equation (1) associated with the transfer matrix, F, is [10]

S(¢) = F(¢)S(0) )
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Figure 3. Degrees of freedom: t, n, b: local co-ordinates; X, Y, Z: global co-ordinates.

where S(0) is the state vector at ¢ = 0. As can be seen from equations (3), the elements of the
differential matrix are not constant due to the variable curvatures along the curve. In order
to obtain the transfer matrix for this case, the following differential equation must be solved
12 times for 12 different initial conditions.

dF*™ (¢)/d¢ = DF*™ (¢), (m=1,2,...,12), (6)
where F*™ denotes the solution when the mth element of the unknown vector equals 1 as its
other elements are all zero. That is, the initial conditions must be satisfied as F(0) =1
(I is the unit matrix) [9]. These solutions compose the exact transfer matrix for
non-cylindrical helical springs as

1 2 12
F=[FT(2X)1 FT%XI&"'sFT(ZXiJIZXIZ' (7)

The elements of the state vector at both ends for an element can be expressed by the
element end displacements, d; and d;, and the element end forces, p; and p;, as (Figure 3)

S(¢) = {dhdz, ds,dg,ds, d6>P1,P2aP3>P4,p5yP6}T = {di Pi}T,

S((I—')j) = {d%dsa dg,dlo,d11,d1z,P7,Ps,P9,P10,P11,P1z}T = {dj PJ}T~ (®)

Using the above definitions, equation (5) can be rearranged for an element as

S(¢)) = F(d; — ¢)S(y). ©

The element transfer matrix can be expressed in global co-ordinates as (Figure 3)

Fxydd;— ¢) =T (¢)Fu(d; — )T, (10)

where

(11)

o o o w
o o w o
o w o o
o o o
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and
— [R(@)/c(@)]sin g [R(P)/c(dp)]cosd  h(¢)/c(¢)
B= — cosep — sin¢ o | (12)
[W(@)/c(@)sing  — [h(¢)/c(p)]cos ¢ R(P)/c(¢h)
The clement stiffness equation is given by
p = kd, (13a)
or

{p: pj}" =k{d; d;}", (13b)

where k is the element stiffness matrix. The elements of k are obtained by solving
equation (9) 12 times for 12 boundary conditions which are determined by considering the
definition of the element transfer matrix [3, 97. It may be noted that the element end forces
at ¢; are obtained for positive sections in the transfer matrix method.

The solution of the free vibration problem is given by

(K — w*M)a =0, (14)
where K is the global stiffness matrix, M is the global inertia matrix, a is the amplitude
vector and w (rad/s) is the angular frequency.

Assuming that the total element mass is equally transferred at the two ends, the non-zero

terms of the concentrated element mass matrix m, which are the same in all the co-ordinate
systems, are obtained as

My =My = M3 3=M77=Mgg=MNgog= PALciemen/2,
My4 = Mio,10 = P Leiements Ms s = Mg e =M11,11 = M1212 = PILejemen/2,  (15)

where the total length of the conical element is

Lelement =

b _ _ - . - ,
1 [ R($)d 1 {4¢1R1nn+(Rz Ry)$? — 4R pimn + (R, Rz)‘f)l}

cos oy, ~ 4cosa nn
(16)

and that of the barrel and hyperboloidal elements is

1 1
Lelement = J\ R(¢) d¢ = {RZ(QSJ - ¢l) + %((rb; - d)ls)

cosa J, T cosa
Rl 3 3 RZ 2 2 Rl 2 2
+—3n2n2 (¢ _¢j)+E(¢i _¢j)+%(¢j _¢i)}~ (17)

For simplicity, a lumped mass model is used in this study instead of a distributed mass
model. As can be seen from equation (15), the lumped mass matrix comprises the rotatory
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inertia terms. Since the exact mass of the element derived by equations (15)—(17) and also the
exact element stiffness matrix are used together, the present formulation gives satisfactory
results.

3. APPLICATIONS

To compare the accuracy of the present results with the reported values, conical-,
barrel- and hyperboloidal-type springs having the same maximum cylinder diameter has
been examined and the results are presented in Table 1 in which natural frequencies given
by Nagaya et al. [2] in graphical forms were determined approximately. The shear and
rotary inertia effects were neglected in their study and also the transfer matrix method is
used with the discrete parameter model [2]. The free vibration problem was formulated by
Yildirim [3] based on the stiffness matrix method. The exact cylindrical element stiffness
matrix and the consistent element inertia matrix for straight beams are used in the analysis
[3]. A good agreement is observed with the reported results. The present numerical
frequencies coincide with the exact results [5].

Helical springs exhibit some very close frequencies. In some cases, it is difficult to obtain
those frequencies as can be seen in Table 2. Nagaya et al. [ 2] skipped the natural frequencies
associated with the third and fourth modes of barrel spring for all R,,;,/R,u.. ratios.

To express the fundamental frequencies in the analytical form, a number of examples
have been solved and presented in the non-dimensional graphical form for all types of
helices with circular section. The non-dimensional frequency is determined by

@ = \/(pARG./ED) 0. (18)

Variation of the numerical fundamental frequencies with the helix angle, R,,;,/R,.qx ratios,
and the number of turns is presented in Figure 4 for D,,,./d = 4.

TaBLE 1

Comparison of the present fundamental numerical frequencies (in Hertz) with the existing
results

Fundamental natural frequencies (Hz)

Rmin/Rmax

0-2 0-4 0-6 0-8
Hyperboloidal Yildirim [3]7 12177 92-83 71-68 5591
Present’ 121-39 92:73 71-65 5590

Nagaya et al. [2]} 71-0 64-0 59-0 52:0

Nagaya et al. [2] - 660 60-0 52:0
Barrel Yildirim [5]¢**¢ 71-86 65-53 59-62 52-11
Yildirim [3]° 72:96 6553 60-37 5216
Present’ 71-85 65-53 59-62 52-11
Conical Yildirim [3]° 110-56 88-30 6890 54-53
Present’ 10818 87-39 6852 54:39

100 elements *theoretical (78 elements), Yexperimental.
{E =2-1x 10" N/m?,v = 0-3 (the Poisson ratio), p = 7850 kg/m? (the mass density), « = 4-8°,n = 6-5, fixed-fixed,
Ryax = Dpa/2 = 25 mm (radius of the maximum cylinder), k' = 1-1, d = 2 mm (diameter of the section)}.
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TABLE 2

The first six natural frequencies (in Hertz) of barrel spring (R{/R, = 0-4)

1 2 3 4 5 6
Nagaya et al. [2]" 64-0 710 - - 129-0 134-0
Nagaya et al. [2]* 660 72:0 - - 129-0 136:0
ANSYS® 6707 7346 88-50 8857 133-04 138-64
Yildirim [5]% 65-53 71-52 86-94 8701 129-60 -
Present (numerical)* 6553 71-51 8693 86-99 129-58 135-00

ftheoretical (78 elements), ‘experimental, $100 elements.
Material and helix geometrical properties are the same as in Table 1.

1 1 1
(@ R,./R,.=03 ® R,./R,.=05 © R,/R,.= 07
g 01} 01F 01
001 1 1 L L L 1 1 L 1 lr 001 1 1 1 1 1 L L IV ( l" _ 001 1 L 1 1 1 1 V I 1 ir
1 1 1
(@ R, /R, .= 09 (e R,/R,..= 03 (f) R,./R,.=05
Olpe.
) I T O 01
0-01 | - T T
0001 1 1 L 1 L 1 1 1 1 L 001 1 1 1 1 1 L L I l l’ : 001 1 L 1 1 1 1 ‘I ] I‘ II
1 1 11—
® R,./R,.=07 () R,./R,.=09 ® R,./R,..=03
(S S 0l ..
) PRI — S - 01} = _
001 R 0-01
0001 1 1 L 1 L 1 1 1 1 L 0001 1 1 1 1 1 L L L L L 001 1 L 1 1 1 1 L 1 L 1
1 — 1 1
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0-1 s
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Figure 4. Variation of dimensionless fundamental frequencies with helix pitch angle, o, R,,;,/R,..x ratios and
number of active turns, n, for D,,../d = 4. Figures (a)-(d) refer to conical springs, (e)—-(h) Barrel springs and (i)—(1)
hyperboloidal springs. Key for helix pitch angle, oc ——, 5% ----, 10°% -+, 15°

4. RESULTS

The following simple expression is obtained for the fundamental natural frequencies of
non-cylindrical helical springs (the Poisson ratio = v = 0-3).

wlexpression _ [a ln(n _ 48/02) + b](l + CF), (19)
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where the correlation factor is (the argument of cosine is in radians)

CF = A/100cos[2n/T(n — 4-8/0-2) + 2n(1 — F/T)]. (20)

The constants a and b in equation (19) are presented in Tables 3-5 for the values of
D,a/d =4, 6, 8, 10, 12, o = 5°, 10°, 15°, and R,,;,/Rpax = 0-3, 0-5, 0-7, 0-9. The values
of constants 4, T, and F in equation (20) are given in Table 6 with respect to the values of
o and R,,;,/R,..~. These values are valid for D,,,./d = 4, 6, 8, 10, and 12. The valid intervals
of the number of active coils for Table 6 and the maximum absolute relative errors in
these intervals are presented in Table 7. The maximum absolute relative error is
determined as

expression __ __numeric

(241

Relative error = x 100. (21)

ZD.1numeric

A comparison of the numerical and analytical results obtained in this study with the
ANSYS results is presented in Table 8. The absolute relative errors are given in parentheses
with respect to the present numerical frequencies. It is observed from Table 8 that the
present formula gives acceptable results for engineering applications. If the ratio R,,;,/Ruax
decreases while D,,./d, n and « are still constant, the relative errors of ANSYS’ results
increase. The maximum absolute relative error of analytical frequencies cannot be more
than 5% for a given interval of the number of coils presented in Table 7.

TABLE 3

The constants a and b in equation (19) for hyperboloidal springs

a=5° o= 10° o=15°
Dmax/d Rmin/Rmux a b a b a b
4 0-3 — 00427 0-2379 — 00496 0-2428 — 00466 02135
0-5 —0-0335 0-1842 — 0-0390 0-1839 — 00337  0-1512
0-7 — 0-0269 0-1451 — 0-0304 0-1404 —0-0248  0-1103
09 —00217 01153  —00237 01084  —00187 00829
6 0-3 —0-0434 0-2417 — 0-0504 0-2463 —0-0471  0-2155
0-5 — 00341 0-1869 — 00395 0-1860 — 00340 01523
0-7 —0-0273 0-1470 — 0-0307 0-1416 —0-0250  0-1109
0-9 — 00220 0-1165 —0-0239 0-1092 —0-0188  0-0833
8 03 — 0-0437 0-2431 — 0-0507 0-2475 — 00473 0-2163
0-5 —0-0343 0-1879 —0-0397 0-1868 — 00341 0-1527
0-7 —0-0274 0-1477 — 0-0308 0-1421 — 00250 0-1111
09 — 00221 0-1170 — 00240 0-1094 — 00189 00834
10 03 — 0-0438 0-2437 — 0-0509 0-2481 —0-0474  0-2166
0-5 — 00344 0-1884 — 00398 0-1872 — 00341 01529
0-7 —0-0275 0-1480 — 0-0309 0-1423 — 00250 01112
09 — 00221 0-1172 — 00240 0-1095 — 00189 00835
12 03 — 0-0439 0-2441 — 0-0509 0-2484 — 00474  0-2168
0-5 —0-0344 0-1886 — 0-0398 0-1874 —0-0342  0-1530
0-7 —0-0276 0-1481 — 0-0309 0-1424 — 00251  0-1120

09 — 0-0221 0-1173 — 0:0240 0-1096 — 00189  0-0835
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TaBLE 4

The constants a and b in equation (19) for conical springs

487

a=35° o =10° o=15°
Dmax/d Rmin/Rmax a b a b a b
4 0-3 — 00422 0-2249 — 0-0453 0-2093 — 00369 0-1645
05 — 0-0338 0-1785 — 0-0361 0-1653 — 00286 0-1270
0-7 — 00268 0-1415 — 0-0288 0-1314 — 00226 0-1001
09 —0-0216 0-1140 —0-0233 0-1061 — 00182 00805
6 0-3 — 00430 0-2291 — 0-0459 02118 — 00373 01657
0-5 — 0-0345 0-1817 — 0-0366 0-1671 — 00289  0-1278
0-7 — 00272 0-1434 — 0:0291 0-1325 — 00228  0-1006
09 —0-0218 0-1152 — 0-0235 0-1068 — 00183  0-0808
8 03 —0-0433 0-2304 — 0-0461 02127 —00374 01662
05 —0-0347 0-1829 — 00367 0-1677 — 00289 01280
07 — 00274 0-1441 —0-0292 0-1329 — 00228  0-1007
09 — 00219 0-1157 — 0-0236 0-1071 — 00183 0-0810
10 03 —0-0435 0-2311 — 0-0462 02131 —00374 01664
05 — 0-0348 0-1834 — 0-0368 0-1680 — 00290 0-1282
07 — 00274 0-1445 —0-0293 0-1331 — 00228  0-1008
09 — 00220 0-1159 — 0-0236 0-1072 — 00183 0-0810
12 0-3 — 00435 0-2314 — 0-0463 02133 — 00375 01665
05 — 0-0349 0-1837 — 0-0369 0-1682 — 00290 0-1282
0-7 — 00275 0-1446 — 0-0293 0-1332 — 00228  0-1009
0 — 0-0220 0-1160 — 0-0236 0-1072 — 00184 00811
TABLE 5
The constants a and b in equation (19) for barrel springs
o=>5° o =10° o =15°
Dmax/d Rmin/Rmux a b a b a b
4 03 — 0-0294 0-1599 — 00350 0-1600 — 00278 01230
0-5 — 00278 0-1476 —0-0311 0-1408 — 00238 0-1052
07 — 0-0252 0-1322 — 0-0268 0-1211 — 00205  0-0905
09 — 00213 0-1123 — 00228 0-1037 — 00177 00781
6 03 —0-0295 0-1606 — 0-0352 0-1612 — 00280  0-1237
0-5 — 00279 0-1484 — 00314 0-1420 — 00240 0-1058
07 — 0-0255 0-1337 — 00270 0-1221 — 00206  0-0909
09 — 00216 0-1135 — 0-0230 0-1044 — 00178  0-0785
8 0-3 — 00295 0-1609 — 0-0353 0-1615 — 00281 01240
05 —0-:0279 0-1486 — 0-0315 0-1424 — 00240  0-1060
07 — 0-0256 0-1342 — 00271 0-1224 — 00207 00911
09 — 00217 0-1139 —0-0231 0-1046 — 00178  0-0786
10 03 — 0-0295 0-1610 — 0-0354 0-1617 — 00281 0-1241
0-5 —0-0279 0-1487 — 0-0315 0-1425 — 00241 01061
07 — 0-0257 0-1344 — 0-0271 0-1226 — 00207 0-0911
09 —0-0217 0-1141 — 00231 0-1047 — 00178 00786
12 03 — 0-0295 0-1610 —0-0354 0-1618 — 00281 01242
0-5 — 00279 0-1488 — 0-0316 0-1426 — 00241 0-1061
07 — 0-0257 0-1346 — 0-0272 0-1226 — 00207 0-0912
09 — 00218 0-1142 — 0:0231 0-1048 — 00178 0-0786
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TABLE 6

Values of constants A, T, and F in equation (20)

% (°) Ryin/Ronax Hyperboloidal Conical Barrel
A T F A T F A T F
5 03 71 760 11-0 115 620 21-5 11-2 60-5 21-5
0-5 9-1 79-0 16:0 11-5 62-0 21-5 11-2 60-5 21-5

0-7 10-6 780 13-0 11-5 620 21-5 11-2 60-5 215
0-9 11-6 780 130 11-5 620 21-5 11-2 60-5 215

10 03 11-0 790 11-6 10-5 570 11-8 91 580 11-4

05 9-5 79-0 11-6 10-5 570 11-8 9-1 58-0 114
0-7 11-0 77-0 1-6 10-5 57-0 11-8 91 580 11-4
09 11-0 77-0 1-6 10-5 570 11-8 9-1 580 114
15 0-3 83 750 2-1 63 50-0 111 63 480 111
0-5 73 69-0 0-8 63 50-0 11-1 63 48-0 11-1
0-7 10-3 665 0-0 63 50-0 11-1 63 480 111
09 10-3 630 0-0 63 50-0 111 63 480 11-1
TaBLE 7

The valid interval of n for Table 6 and maximum absolute relative errors in the interval

Hyperboloidal Conical Barrel

o (°) Rypin/Rinax Interval Maximum Interval Maximum Interval Maximum
for n rel. error for n rel. error for n rel. error

5 03 5-8-16:0 4-8 52-152 50 52-15-0 50

05 5-6-156 49 5-2-152 50 5-2-14-6 4-5

07 6:2-15-2 47 5-2-15:0 49 52-14-6 50

09 62-15-2 49 5-2-15-0 49 52-14-8 49

10 0-3 6:2-16:0 49 56-154 4-8 56-16-0 50

05 6:0-16-0 49 5-4-16:0 47 54-16-0 47

0-7 6:0-16-0 47 54-16:0 4-9 54-16-0 50

09 6:0-16-0 42 5-4-16:0 50 54-16-0 4-5

15 0-3 6:0-16-0 42 54-15-8 39 5-4-156 4-5

05 5-4-16:0 42 5-4-156 46 5-4-154 4-6

07 5:8-16-0 50 5-4-154 47 5-4-154 4-6

09 5-6-15-8 50 5-4-154 50 54-156 4-6

5. CONCLUSIONS

Considering rotary inertia, shear deformation and axial effects, the free vibration analysis
of non-cylindrical helical springs has been studied numerically by the stiffness method. The
numerical procedure presented in this paper offers accurate natural frequencies associated
with higher modes. The present numerical frequencies have compared well with other
published results obtained theoretically and experimentally. Using these numerical results,
an analytical study which is restricted to the fundamental frequencies has been performed
for practical use in design. A simple analytical expression has been presented with
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TABLE 8

Comparison of the present numerical and expressional fundamental frequencies (in Hertz) with
the ANSYS results

Rmin/Rmax

o=15°

0-5 09 0-5 09

Present (Numerical) 24591 150-11 127-08 66-13

Hyperboloidal ANSYS 26572 (8:1%) 160-74 (7-1%) 131-07 (3:1%) 68-11 (3:0%)
Present 257-03 (4-5%) 151-39 (0:9%) 125-94(—0-9%) 63-31 ( — 4:3%)
[equation (19)]
Present (numerical) 234-03 147-96 102-00 6392
Conical ANSYS 25000 (6:8%) 158:01 (6:8%) 10595 (3:9%) 6591 (3:1%)
Present 244-57 (4-5%) 154-46 (4-4%) 10475 (27%) 66:41 (3:9%)
[equation (19)]
Present (numerical) 196-49 145-36 83-22 61-81
Barrel ANSYS 212:04 (7-9%) 154:69 (6:4%) 8570 (3:0%) 6365 (3-0%)
Present 201-29 (2:4%) 151-59 (43%) 8569 (3:0%) 6372 (3-1%)

[equation (19)]

{E=21x10"" N/m?, v = 03, p = 7850 kg/m?, R, = 13 mm, d = 2:6 mm, D,,,./d = 10, n = 10}

max

a maximum absolute relative error of 5%. The analytical expression works in a wide range
of the vibrational parameters, which have been chosen as the D,,,./d ratios (4, 6, 8, 10, 12),
R,in/Romax ratios (0-3, 0-5, 0-7, 0-9), the number of active turns (n = 5-2-16) and the helix pitch
angles (o = 5°, 10°, 15°). The soundness of the analytical expressions are justified with the
ANSYS results.

Since there is no formula to be used for predicting the natural frequencies of
non-cylindrical helical springs in the literature, the frequency expressions obtained in this
study can be a valuable tool for spring designers.
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APPENDIX A: DERIVATION OF EQUATIONS FOR STATICAL ANALYSIS
OF NON-CYLINDRICAL HELICAL BARS

For the space rod analysis, it is suitable to use Frenet co-ordinates, (t,n, b), defined by the
derivatives of the position vector, r, to the position as in equation (A.1).

t=dr/ds, n=(dt/ds)(dt/ds), b=txn, (A.1)

where t, n, and b denote the tangential, normal and binormal unit vectors respectively
(Figure 1) and ds is the infinitesimal arc length. The relationship among the Frenet unit
vectors is given as

dt/ds = yn, dn/ds = b — #t, db/ds = — 1n, (A.2)

where y and 7 represent the curvature and tortuosity of a curve in space. These quantities
are functions of parameter s (or ¢) for non-cylindrical helical springs. The equations of
compatibility assuming small displacements and rotations are expressed as

dQ/ds = o, dU/ds + txQ =, (A.3)

where y and o are the displacement angular rotation vectors per unit length of the bar.
Assuming that (1) the centroid and the shear center of the cross-section coincide, (2) the
principal axes of inertia and (n,b) match, (3) the warping of the cross-section due to the
torsion is negligible, and (4) the bar material is elastic and isotropic, the components of the
non-isothermal resultant constitutive equations are written as

Vi = Ai;lTj; w; = Ci}le (i,j=1,23). (A.4)
Here
1/EA 0 0 1/GJ 0 0
Al = 0 k'/GA 0 ; c'=|o0 1/EI, 0o |, (A.5)
0 0 k'/GA 0 0 1/EI,

where 4 is the undeformed cross-sectional area of the cross-section. I, and I, represent the
inertia moments about the normal and binormal axes respectively. E and G represent
Young’s modulus and shear modulus respectively. k' is the shear correction factor and J is
the torsional inertia moment of the cross-section. For the circular cross-section

I,=I,=1, J=2IL (A.6)
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By inserting the constitutive equations (A.4) into the equations of compatibility, (A.3),
dU/ds = A7'T + Q xt, dQ/ds = C™'M, (A.7)

relative shear and twist vectors can be eliminated. The equations of equilibrium are
dT/ds =0, dM/ds + txT =0, (A.8)

where distributed external forces and moments acting on a unit length of the bar are
neglected to obtain the element stiffness matrix. Equation (A.7) reduced in this manner and
equation (A.8) can be written in scalar forms for spatial bars with curved axes as

dU/ds = (P)Un + Ti/Ars,  dU/ds = = (HU, + dP)Us + 2y + T/ Az,
dU,/ds = — uP)U, — Q, + Ty/Ass,  dQ/ds = y($)Q, + M,/C,,
dQ,/ds = — 1(P)2 + UP)2y + M,/Caz,  dQy/ds = — 2(P)2, + M,/Css,
dT/ds = y(@)T,,  dTw/ds = UD)Ty — 1 H)T,  dTy/ds = — UP)T,
dM,/ds = x(¢)M,,
dM,/ds = 1(p)M, — (PM, + Ty,  dMy/ds = — 1(p)M, — T, (A.9)

These make up a set of 12 simultaneous differential equations with variable coefficients
each one involving first degree derivatives with respect to position. The infinitesimal length
of the non-cylindrical helix may be rewritten as

ds = c(¢) dep. (A.10)

The curvature and tortuosity of the wire wrapped helically on the non-cylindrical surface
can be written in the form [see equation (4) in the main text]

1d) = R(@)/c*(¢), o) =h(@)/c*(¢). (A11)

Finally, considering equation (2) in the main text and equations (A.9-A.11), the statical
equations will generalize to

dS(¢)/d¢ = DS(¢). (A.12)
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