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An exact approach for free vibration analysis of a non-uniform beamwith an arbitrary number
of cracks and concentrated masses is proposed. A model of massless rotational spring is adopted
to describe the local #exibility induced by cracks in the beam. Using the fundamental solutions
and recurrence formulas developed in this paper, the mode shape function of vibration of
a non-uniform beam with an arbitrary number of cracks and concentrated masses can be easily
determined. The main advantage of the proposed method is that the eigenvalue equation of
a non-uniform beam with any kind of two end supports, any "nite number of cracks and
concentrated masses can be conveniently determined from a second order determinant. As
a consequence, the decrease in the determinant order as compared with previously developed
procedures leads to signi"cant savings in the computational e!ort and cost associated with
dynamic analysis of non-uniform beams with cracks. Numerical examples are given to illustrate
the proposed method and to study the e!ect of cracks on the natural frequencies and mode
shapes of cracked beams.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The problem of vibration of cracked beams has been extensively investigated because of its
relevance to mechanical and aeronautical engineering. Dimarogonas [1] gave
a state-of-the-art review of methods developed to analyze cracked structures. Thus, only
some previous works that are directly related to the present study are mentioned below.

Cracks present a serious threat to proper performance of structures and machines. Most
early investigations were concentrated on the analysis of the e!ect of a single crack on the
dynamic behavior of simple structures, such as shafts and beams. Several studies introduced
cracks into the mathematical model through a simple reduction of the sti!ness on a given
zone of cracked structures. In order to investigate dynamic characteristics due to the
presence of real damage, the evaluation of changes in natural frequencies of a simple
cantilever beam due to the presence of one or two cracks was addressed in several papers
(e.g., references [2, 3]). Rizos et al. [4] developed an approach for vibration analysis of
a cracked beam. Their approach leads to a system of (4n#4) equations for establishing the
eigenvalue equation in the case of n cracks in a uniform beam. An improved analytical
method for calculating natural frequencies of a uniform beam with an arbitrary number of
cracks was proposed by Shifrin and Ruotolo [5]. This procedure was presented based on
the use of massless rotational spring to describe the local #exibility induced by cracks and,
as a main feature, leads to a system of (n#2) linear equations for determining the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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eigenvalue equation for a uniform beam with n cracks. It should be noted that these studies
mentioned above have been con"ned to uniform beam with cracks.

In this paper, an attempt is made to present an exact approach for free vibration analysis
of a non-uniform beam with an arbitrary number of cracks and concentrated masses.
Shifrin and Ruotolo [5] used Dirac's delta function [� (x)] to express the governing
equation for free vibration of a uniform beam with cracks, and the frequency equation of
a uniform beam with n cracks can be determined from a system of (n#2) linear equations.
This paper adopts the fundamental solutions and recurrence formulas developed here to
express the jump of the slope due to a crack and that of shear force due to a concentrated
mass. Based on a model of massless rotational spring to describe the local #exibility induced
by cracks in the beam, the frequency equation of a non-uniform beam with n cracks and
n concentrated masses can be conveniently established from a second order determinant. As
a consequence, the decrease in the determinant order as compared with previously
developed procedures (e.g., references [4, 5]) leads to signi"cant savings in the
computational e!ort and cost associated with dynamic analysis of cracked beams. On the
other hand, Shifrin and Ruotolo [5] are con"ned to free vibration of a clamped-free beam
with cracks, while the present method can be used to analyze free vibration of
a non-uniform beam with any kind of two end supports, any "nite number of cracks and
concentrated masses. The numerical examples show that the e!ects of number, depth and
location of cracks on the natural frequencies and mode shapes of cracked beams are
signi"cant, and the proposed procedure is an exact and e$cient method. The comparison
between the results calculated by the present method and those obtained by Liang et al. [6]
is favorable, thus supporting the validity of the proposed method. There are other methods
such as "nite element method (FEM), which be can also used for vibration analysis of
a structure with an arbitrary number of cracks (e.g., reference [7]). However, FEM will also
lead to determinants with high order. It should be mentioned that the present analytical
method and solutions that can be easily implemented could provide adequate insight into
the physics of the problem. Meanwhile, the availability of the exact solutions will help in
examining the accuracy of the approximated or numerical solutions.

2. THEORY

A non-uniform beam with an arbitrary number of cracks is shown in Figure 1. It is
assumed that the number of cracks is n, and the n cracks are located at sections x1 , x2 , . . . ,
y
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Figure 1. A non-uniform beam with n cracks.



FREE VIBRATION ANALYSIS 511
x
�
such that 0(x

�
(x

�
(2(x

�
(¸. The beam is divided into n#1 segments by the

n cracks. A model of massless rotational spring [8] is adopted to describe the local #exibility
induced by cracks in the beam, as shown in Figure 1. As is well known, the di!erence
between a beam with a crack at the ith section and the corresponding beam without crack is
that the rotation at the ith section has a jump.

The governing di!erential equation of undamped free #exural vibration for an uncracked
beam with variable cross-section can be written as [9]

��

�x� �K(x)
��y(x, t)

�x� �#m� (x)
��y(x, t)

�t�
"0, (1)

in which K(x) is the #exural sti!ness, m� (x) is the mass per unit length and y(x, t) the
transverse displacement

Using the method of separation of variables, one obtains the di!erential equation of the
mode shape function of vibration as

d�

dx��K(x)
d�X(x)

dx� �!��m� (x)X(x)"0, (2)

where X(x) is the mode shape function of vibration. � is the circular natural frequency.
The general solution of equation (2) can be expressed in the form

X(x)"C
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S
�
(x)#C

�
S
�
(x)#C

�
S
�
(x)#C

�
S
�
(x) (3)

where S
�
(x) and C

�
(i " 1, 2, 3, 4) are the linearly independent special solutions and integral

constants of equation (2), respectively. Obviously, S
�
(x) (i " 1, 2, 3, 4) are dependent on the

expressions of K(x) and m� (x). The exact solutions for free vibration of a non-uniform beam
for "ve types of distributions which cover many structural members are given in
Appendix A.

In order to simplify the analysis for the title problem, based on the linearly independent
solutions S

�
(x) (i"1, 2, 3, 4) presented in Appendix A, the linearly independent fundamental

solutions denoted by S
�
(x) (i"1, 2, 3, 4), which satisfy the following normalization

condition at the origin of co-ordinate system
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can be easily constructed by
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The primes in equations (4) and (5) indicate di!erentiation with respect to the co-ordinate
variable x.
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Using the fundamental solutions, SM
�
(x), the mode shape function for the "rst interval

[0,x
�
) can be expressed as

X
�
(x)"X(0)SM

�
(x)#X�(0)SM

�
(x)!

M(0)

K(0)
SM
�
(x)!

1

K(0)
[Q(0)!�(0)M(0)]SM

�
(x), x3[0, x

�
) (6)

�(0)"
K�(0)

K(0)
(7)

where X(0), X�(0), M(0) and Q(0) are the displacement, slope, bending moment and shear
force of this beam at x"0 respectively. They are called the initial parameters in this paper,
only two of them are unknown for any kind of support con"guration at x"0. It is evident
that K�(0)"0 for a uniform beam.

The displacement, bending moment and shear force at all the boundaries of two
neighboring segments are required to be continuous:

X
���

(x
�
)"X

�
(x

�
),

M
���

(x
�
)"M

�
(x

�
),

Q
���

(x
�
)"Q

�
(x

�
).

(8)

As introduced above, a model of massless rotational spring is adopted in this paper to
describe the local #exibility induced by cracks in non-uniform beams. If a crack is located at
the section x"x

�
, the slope has a jump

X�
���

(x
�
)"X�

�
(x

�
)#C

�
X��

�
(x

�
), (9)

where C
�
is the #exibility of the rotational spring which is a function of the crack depth and

beam height. For one sided crack, C
�
can be expressed as [8]

C
�
"5)346 h

�
f (�

�
) (10a)

where h
�
is the height of the cross-section of the beam at x"x

�
,

�
�
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�
/h

�
(10b)

in which a
�
is the depth of the ith crack. f (�

�
) is called the #exibility function expressed as [8]
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 (10c)

The case for two-sided cracks can be considered similarly [5].
Considering the continuous conditions of displacement, bending moment and shear force

as well as the jump of slope at the boundary of the ith segment and the (i#1)th segment, we
have

X
���

(x)"X
�
(x)#C

�
X ��

�
(x

�
)SM

�
(x!x

�
)H(x!x

�
) (11)

where X
�
(x) is the mode shape function of the ith segment (Figure 1), x3[x

���
, x

�
). The

second term represents the jump of the slope at the boundary of the two neighboring
segments.

Equation (11) is a recurrence formula of mode shape functions. Using X
�
(x), the mode

shape function of the "rst segment which is given in equation (6), and equation (11) for i"2,
3, . . . , n, leads to
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The frequency equation can be easily established by using equations (6), (12) and the
boundary conditions. The frequency equations for seven types of boundary conditions are
derived and given in Appendix B.

3. NUMERICAL EXAMPLE

Example 1. A uniform beam with cracks.
In order to illustrate the application of the proposed method, this numerical example will

show how to determine the natural frequencies of a simply supported steel beam with
uniform cross-section and with cracks, which was considered in reference [6], as shown in
Figure 2.

(1) Determination of structural parameters: The structural parameters of the beam, which
were found from reference [6], are: length ¸"800mm, width"10mm, height"60mm,
Young's modulus E"2)0�10�� Pa, mass per unit volume �"7)8�10�kg/m�.

(2) Determination of the fundamental solutions: The exact solutions, S
�
(x), for this example

are given in equation (A2) listed in Appendix A. Using S
�
(x) and equation (5) one obtains the

fundamental solutions as follows:
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1

2k�
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(x)"

1

2k�
(sinh(kx)!sin(kx)). � (13)

(3) Determination of the mode shape functions: The mode shape function for the "rst
interval [0,x

�
) is given in equation (A29), i.e.,

X
�
(x)"X�(0)SM

�
(x)!

Q(0)

K
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�
(x), [0,x

�
), (14)

where x
�
denotes the crack location.

The mode shape function of the second segment can be determined from equation (11) as
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  L
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Figure 2. A simply supported beam with a crack.
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or
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(x)"X�(0)SM

��
(x)!

Q(0)

K
SM
��
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,¸), (16)

where
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(17)

in which C
�
can be determined from equation (10).

(4) Determination of the frequency equation: Using equation (16) and the following
boundary condition of the beam at x"¸, X

�
(¸)"X ��

�
(¸)"0, leads to

X�(0)SM
��
(¸)!

Q(0)
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SM
��
(¸)"0
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K
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Because X �(0)O0, Q(0)O0, the frequency equation is

�
SM
��
(¸) !SM
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SM ��
��
(¸) !SM ��
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(¸)�"0 (19)

i.e.,

SM
��
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Solving equation (20) a set of �
��

can be obtained, which are expressed as

�
��

"	
�
�

�
,

where �
��

and �
�
are the jth natural frequency of the cracked and uncracked beams,

respectively, 	
�
is the reduced coe$cient of the jth natural frequency. 	

�
and 	

�
are shown in

Figure 3. The results obtained by Liang et al. [6] are also presented in Figure 3. The
comparison between the results calculated by the present method and those obtained by
Liang et al. [6] is favorable, thus supporting the validity of the proposed method.

Example 2. A non-uniform beam with cracks is shown in Figure 4. The sectional width of
the beam is a constant, only the height of section varies along the length of the beam. The
procedure for determining the natural frequencies and mode shapes of this cracked beam is
as follows.
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Figure 4. A hinged}hinged non-uniform beam with three cracks.
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(1) Distributions of -exural sti+ness and mass intensity. The distributions of #exural
sti!ness and mass of the beam are continuous, which can be expressed as

m� (x)"a(1#
x),

K(x)"�(1#
x)�,
(21)

where a and � are the mass intensity and #exural sti!ness at x"0, respectively, 
 is
dependent on the variation of mass intensity.

These parameters are found as

a"m� (0)"60 kg/m, m� (¸)"52)7 kg/m, ¸"4.5m,

�"K(0)"4)635�10� N/m�,


"�
m� (¸)

m� (0)
!1��¸"!0)05.

The heights of section are found as 0)2831, 0)2663 and 0)2494m at x"0)25L, 0)5L and 0)75L,
respectively.

(2) Determination of the fundamental solutions: The distributions of #exural sti!ness and mass
intensity of this beam belong to Case 2 discussed in Appendix A. For this example, we have

S
�
(x)"(1#
x)����J

�
[�(1#
x)���]

S
�
(x)"(1#
x)����>

�
[�(1#
x)���]

S
�
(x)"(1#
x)����I

�
[�(1#
x)���]

S
�
(x)"(1#
x)����K

�
[�(1#
x)���]�. (22)

The fundamental solutions SM
�
(x) (i"1, 2, 3, 4) can be determined from equations (22)

and (5).
(3) Evaluation of natural frequencies and mode shapes: The mode shape of the "rst

segment, x3[0, x
�
), is given in equation (A29). The frequency equation can be established

by use of equation (A30), in which C
�
can be determined from equation (10).

If only one crack occurs at x " 0)25L, 0)5L, respectively, the depth of the crack is 0)2 h,
then the "rst and second circular natural frequencies are found for the two cases,
respectively, as

�
�
"13)0132, 12)6509 rad/s; �

�
"52)0561, 50)6132 rad/s.



TABLE 1

¹he ,rst and second mode shapes

x/¸ 0 0)1 0)2 0)25 0)3 0)4 0)5 0)6 0)7 0)75 0)8 0)9 1)0

X
�
(x)

X
�
(x)

0
0

0)3164
0)5806

0)6086
0)9527

0)7608
1)1089

0)8109
0)9536

0)9567
0)5209

1)1008
!0)1420

0)9579
!0)5879

0)8286
!0)9574

0)7711
!1)1198

0)6069
!0)9620

0)3180
!0)5897

0
0

X
��
(x)

X
��
(x)

0
0

0)3085
0)5879

0)5874
0)9503

0)7069
0)9946

0)8088
0)9509

0)9509
0)5193

0)9991
!0)0140

0)9512
!0)5881

0)8091
!0)9519

0)7098
!0)9956

0)5886
!0)9603

0)3091
!0)5884

0
0

Note: X
�
(x)*cracked beam, X

��
(x)*uncracked beam, i"1, 2.
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If the crack occurs at 0)5L and its depth is 0)3 h, then

�
�
"11)1449 rad/s, �

�
"44)5789 rad/s.

If the beam has three cracks at x " 0)25L, 0)5L and 0)75L, and the depth of the three cracks
is 0)3 h, then the "rst and second circular natural frequencies are found, respectively, as

�
�
"10)5927 rad/s, �

�
"43)3711 rad/s.

The "rst and second circular natural frequencies of the corresponding uncracked beam are
found, respectively, as

�
�
"13)4793 rad/s, �

�
"53)9177 rad/s.

It can be seen from the above results that the e!ects of the number, depth and location of
cracks on the natural frequencies of a cracked beam are signi"cant.

After �
�
and �

�
are determined, using equations (A29), (A30) and (12) one obtains the

"rst and second mode shapes for the case of three cracks located at x"0)25L, 0)5L and
0)75L, and the depth of the cracks is 0)3 h,

In order to compare the "rst and second mode shapes of the cracked beam with those of
the uncracked beam, both are presented in Table 1 and Figure 5.

Because the slope of the section where a crack occurs has a jump, the e!ect of the cracks
on the mode shapes is obvious. Based on the aforementioned procedure, the higher natural
frequencies and mode shapes can also be determined.

4. CONCLUSIONS

An exact approach for determining the natural frequencies and mode shapes of
a non-uniform beam with an arbitrary number of cracks and concentrated masses is
presented in this paper. Exact solutions for free vibration of a non-uniform beam are
derived for "ve di!erent distributions of #exural sti!ness and mass. A model of massless
rotational spring is adopted to describe the local #exibility induced by cracks. The
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procedure for determining the fundamental solutions with a unit matrix property is
presented. Using the fundamental solutions and recurrence formulas developed in this
paper, the mode shape functions of vibration of a non-uniform beam with an arbitrary
number of cracks and concentrated masses can be easily determined. The main advantage
of the proposed method is that the eigenvalue equation of a non-uniform beam with any
kind of two end supports, any "nite number of cracks and concentrated masses can be
conveniently determined from a second order determinant. As a consequence, due to the
decrease in the determinant order as compared with previously developed procedures
(e.g., references [4, 5]), the computational time required by the present method for solving
the title problem can be reduced signi"cantly. Because the slope of cracked section has
a jump when the #exural deformation of the cracked beam occurs, any crack located at any
section of the beam will decrease the value of natural frequency and change the shapes of
vibration modes. The numerical examples demonstrate that the results determined by the
proposed method are in good agreement with those obtained by Liang et al. [6], thus
supporting the validity of the proposed method. It is also shown through the numerical
examples that the e!ects of number, depth and location of cracks on natural frequencies and
mode shapes of a non-uniform beam are signi"cant and the proposed procedure is an exact
and e$cient method.
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APPENDIX A: EXACT SOLUTIONS FOR FIVE TYPES OF DISTRIBUTIONS

Case 1.

K(x)"K, m� (x)"m� , (A1)

where K and m� are constants. This case corresponds to a uniform beam. The solutions,
S
�
(x), for this case are given by

S
�
(x)"e��, S

�
(x)"e���,

S
�
(x)"sin kx, S

�
(x)"cos kx

k�"
m� ��

K
.

(A2)

Case 2.

K(x)"�(1#
x)���, m� (x)"a(1#
x)�, (A3)

where �, 
, 
, a are constants which can be determined from the distributions of K(x) and
m� (x) [10}14].

The solutions, S
�
(x), for Case 2 are as follows:

S
�
(x)"�

�
��

��
J� (�), S

�
(x)"�

�
��

��
>�(�),

S
�
(x)"�

�
��

��
I�(�), S

�
(x)"�

�
��

��
K�(�),

�"�(1#
x)���, �"

2

�
��
a��

� �
���

, (A4)

where �
� represents the absolute value of 
, J�(�), >� (�), I�(�) andK� (�) are Bessel functions
of the "rst, second, third and fourth kinds, of order 
 respectively.
Case 3.

K(x)"�(1#
x)���, m� (x)"a(1#
x)�. (A5)

The solutions, S
�
(x), for this case are as follows:

S
�
(x)"e���

�, i"1, 2, 3, 4,

�"ln(1#
x),

�
�������

"!�
�
(
#1$�
�!3$4k�),

k�"�

#2

2 �
�
#

a��

�
. (A6)
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Case 4.

K(x)"�(1#
x)���, m� (x)"a(1#
x)�. (A7)

The solutions, S
�
(x), for Case 4 are as

S
�
(x)"(1#
x)��e��, S

�
(x)"(1#
x)��e���

S
�
(x)"(1#
x)��sin cx, S

�
(x)"(1#
x)��cos cx

c�"
a��

�
.

(A8)

Case 5.

K(x)"�e���, m� (x)"ae���. (A9)

The solutions, S
�
(x), are:

S
�
(x)"e���

�, i"1, 2, 3, 4,

�"ln x,

�
�������

"�
�
(
$�
�$4d�),

d�"

a��

�
. (A10)

APPENDIX B: FREQUENCY EQUATIONS FOR SEVEN
TYPES OF BOUNDARY CONDITIONS

B.1. FIXED-FREE BEAM WITH n CRACKS (Figure 1)

If a #exural beam with n cracks is "xed at the left end, x"0, and the right is free, then the
boundary condition can be written as

X
�
(0)"X�

�
(0)"0, (B1)

M(¸)"0, i.e., X��
���

(¸)"0, (B2)

Q(¸)"0, i.e., X���
���

(¸)#�(¸)X��
���

(¸)"0 or X���
���

(¸)"0, (B3)

where

�
	
"K�(¸)/K(¸). (B4)

Because the amplitude of a mode shape is indeterminate, X
�
(x) can also be written as

X
�
(x)"M(0)SM

�
(x)#[Q(0)!�(0)M(0)]SM

�
(x). (B5)

Using equations (12), (B2) and (B3) leads to

[SM ��
�
(¸)!�(0)SM ��

�
(¸)]M(0)#SM ��

�
(¸)Q(0)#

�
�
���

C
�
X ��

�
(x

�
)SM ��

�
(¸!x

�
)"0,

[SM ���
�
(¸)!�(0)SM ���

�
(¸)]M(0)#SM ���

�
(¸)Q(0)#

�
�
���

C
�
X ��

�
(x

�
)SM ���

�
(¸!x

�
)"0.

(B6)
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Because all X
�
(x) (i"1, 2, . . . , n) have the same two initial parameters, as X

�
(x) has, i.e.,

equation (B6) has only two unknown parameters, M(0) and Q(0), the frequency equation is
obtained by setting the second order determinant consisting of the coe$cients of M(0) and
Q(0) in equation (B6) equal to zero.

B.2. FIXED}FIXED BEAM WITH n CRACKS AT INTERMEDIATE POINTS

The mode shape function of the "rst segment has the same form as that of equation (B5).
Using equations (B1) and (B5) and the following boundary conditions

X(¸)"X�(¸)"0 (B7)

one obtains

[SM
�
(¸)!�(0)SM

�
(¸)]M(0)#SM

�
(¸)Q(0)#

�
�
���

C
�
X ��

�
(x

�
)SM

�
(¸!x

�
)"0,

[SM �
�
(¸)!�(0)SM �

�
(¸)]M(0)#SM �

�
(¸)Q(0)#

�
�
���

C
�
X ��

�
(x

�
)SM �

�
(¸!x

�
)"0.

(B8)

The frequency equation is obtained by setting the determinant consisting of the coe$cients
of M(0) and Q(0) in equation (B8) equal to zero.

B.3. FREE-FREE BEAM WITH n CRACKS AT INTERMEDIATE POINTS

The boundary conditions for this case can be written as

M(0)"0, i.e., X��
�
(0)"0, Q(0)"0, i.e., X ���

�
(0)"0, (B9, B10)

M(¸)"0, i.e., X ��
���

(¸)"0, Q(¸)"0, i.e., X���
���

(¸)"0. (B11, B12)

Using equations (6), (B9) and (B10) yields

X
�
(x)"X(0)SM

�
(x)#X �(0)SM

�
(x). (B13)

Using equations (12), (B11) and (B12) leads to

SM ��
�
(¸)X(0)#SM ��

�
(¸)X�(0)#

�
�
���

C
�
X��

�
(x

�
)SM ��

�
(¸!x

�
)"0,

SM ���
�
(¸)X(0)#SM ���

�
(¸)X�(0)#

�
�
���

C
�
X��

�
(x

�
)SM ���

�
(¸!x

�
)"0.

(B14)

The frequency equation can be obtained by setting the determinant consisting of the
coe$cients of X(0) and X�(0) in Equation (B14) equal to zero.

B.4. FIXED}HINGED BEAM WITH n CRACKS AT THE INTERMEDIATE POINTS

If the left end, x"0, is "xed, then the mode shape function of the "rst segment has the
same form as that of equation (B5).
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Using equations (12) and (B5) and the following boundary conditions:

X
���

(¸)"X��
���

(¸)"0 (B15)

one obtains

[SM
�
(¸)!�(0)SM

�
(¸)]M(0)#SM

�
(¸)Q(0)#

�
�
���

C
�
X ��

�
(x

�
)SM

�
(¸!x

�
)"0,

[SM ��
�
(¸)!�(0)SM ��

�
(¸)]M(0)#SM ��

�
(¸)Q(0)#

�
�
���

C
�
X ��

�
(x

�
)SM ��

�
(¸!x

�
)"0.

(B16)

Setting the determinant consisting of the coe$cients of M(0) and Q(0) in equation (B16)
equal to zero one obtains the frequency equation.

B.5. HINGED-HINGED BEAM WITH n CRACKS AT INTERMEDIATE POINTS

The boundary conditions for this case can be written as

X(0)"M(0)"0, X
���

(¸)"X��
���

(¸)"0. (B17, B18)

Using equation (6) and equation (B17) obtains

X
�
(x)"X �(0)SM

�
(x)!

Q(0)

K(0)
SM
�
(x). (B19)

Using equation (12), (B18) and (B19) leads to

SM
�
(¸)X �(0)!

1

K(0)
SM
�
(¸)Q(0)#

�
�
���

C
�
X��

�
(x

�
)SM

�
(¸!x

�
)"0,

SM ��
�
(¸)X�(0)!

1

K(0)
SM ��
�
(¸)Q(0)#

�
�
���

C
�
X��

�
(x

�
)SM ��

�
(¸!x

�
)"0.

(B20)

The frequency equation can be obtained by setting the determinant consisting of the
coe$cients of X�(0) and Q(0) in equation (B20) equal to zero.

B.6. FIXED-SPRING BEAM WITH n CRACKS AT INTERMEDIATE POINTS AND WITH

A CONCENTRATED MASS AT THE SPRING END (Figure A1)

The boundary conditions for this case are

x"0, X(0)"X�(0)"0,

x"¸, X��
���

(¸)"!

K�	X�
���

(¸)

K(¸)
,

X���
���

(¸)"!

1

K(¸)
[(m

	
��!K

	
)X

���
(¸)!�(¸)K�	X�

���
(¸)], (B21)

whereK�	 andK
	
are the rotational spring and translational spring constants at the right

end of the beam respectively.
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Figure A1. A "xed-spring beam with n cracks and a concentrated mass at the spring end.
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The mode shape function of the "rst segment is given in equation (B5). Using the
boundary conditions at x"L leads to

[SM ��
�
(¸)!�(0)SM ��

�
(¸)#��	SM �� (¸)!��	�(0)SM �

�
(¸)]M(0)#[SM ��

�
(¸)#��	SM ��(¸)]Q(0)

#

�
�
���

C
�
X ��

�
(x

�
)[SM ��

�
(¸!x

�
)#��	SM �� (¸!x

�
)]"0,

(B22a)

[SM ���
�
(¸)!�(0)SM ���

�
(¸)#K


	
SM
�
(¸)!�(0)SM

�
(¸)!�(¸)��	SM ��(¸)!�(0)�(¸)��	SM �� (¸)]M(0)

#[SM ���
�
(¸)#K


	
SM
�
(¸)!�(¸)��	SM ��(¸)]Q(0)

#

�
�
���

C
�
X ��

�
(x

�
)[SM ���

�
(¸!x

�
)#K


	
SM
�
(¸!x

�
)!�(¸)��	SM �(¸!x

�
)]"0, (B22b)

in which

��	"

K�	
K(¸)

, K

	

"

m
	
��!K

	
K(¸)

. (B23)

The frequency equation can be obtained by setting the determinant consisting of the
coe$cients of M(0) and Q(0) in equations (B22a) and (B22b) equal to zero.

B.7. SPRING-SPRING BEAM WITH n CRACKS AND (n#2) CONCENTRATED MASSES

(Figure A2)

It is assumed that (n#2) concentrated masses are attached to a spring-spring beam
shown in Figure A2. We assume that cracks occur at the sections where the concentrated
masses are attached. The boundary conditions for this case are

x"0, X��
�
(0)"���X�

�
(0),

X���
�
(0)"K


�
X

�
(0)!���K��X�

�
(0),

(B24)
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Figure A2. A spring-spring beam with n cracks and (n#2) concentrated masses.
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x"¸, X��
���

(¸)"!��	X�
���

(¸),

X���
���

(¸)"K

	
X

���
(¸)!��	K�	X�

���
(¸)

(B25)

where

K

�

"

m
�
��!K

�
K(0)

, ���"

K��
K(0)

. (B26)

K

	

and ��	 are de"ned in equation (B23). K�� and K
�

are the rotational spring and
translational spring constants attached to the left end of the beam, respectively, and K(0) is
the #exural sti!ness at the left end of the beam. Using equation (B24) leads to

X
�
(x)"X(0)SM

��
(x)#X�(0)SM

��
(x) (B27)

where

SM
��

(x)"SM
�
(x)#K


�
SM
�
(x),

SM
��

(x)"SM
�
(x)#���SM �(x)!����

�
SM
�
(x).

(B28)

The mode shape function can be written as

X
���

(x)"X
�
(x)#

�
�
���

C
�
X��

�
(x

�
)SM

�
(x!x

�
)H(x!x

�
)#

�
�
���

K

�
X

�
(x

�
)SM

�
(x!x

�
)H(x!x

�
)

(B29)

where

K

�

"

m
�
��

K(x
�
)

i"1, 2, . . . , n. (B30)

It is evident that there are only two unknown parameters,X(0) andX�(0), in the expressions
of X

�
(x), X

�
(x) and X

���
(x). Using equation (B25) leads to

[SM ��
��

(¸)!��	SM ��� (¸)]X(0)#[SM ��
��

(¸)!��	SM ��� (¸)]X �(0)

#

�
�
���

C
�
X ��

�
(x

�
)[SM ��

�
(¸!x

�
)#��	SM ��(¸!x

�
)]



FREE VIBRATION ANALYSIS 525
#

�
�
���

K

�
X

�
(x

�
)[SM ��

�
(¸!x

�
)#��	SM ��(¸!x

�
)]"0,

[SM ���
��

(¸)!K

	
SM ���
��

(¸)#��	K�	SM ��� (¸)]X(0)

#[SM ���
��

(¸)!K

	
SM
��

(¸)#��	K�	SM ���(¸)]X �(0)

#

�
�
���

C
�
X ��

�
(x

�
)[SM ���

�
(¸!x

�
)!K


	
SM
�
(¸!x

�
)#��	K�	SM �� (¸!x

�
)]

#

�
�
���

K

�
X

�
(x

�
)[SM ���

�
(¸!x

�
)!K


	
SM
�
(¸!x

�
)#��	K�	SM ��(¸!x

�
)]"0. (B31)

The frequency equation can be obtained by setting the determinant consisting of the
coe$cients of X(0) and X�(0) in equation (B31) equal to zero.
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