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In view of the increasing popularity of the application of proper orthogonal
decomposition (POD) methods in engineering "elds and the loose description of
connections among the POD methods, the purpose of this paper is to give a summary of the
POD methods and to show the connections among these methods. Firstly, the derivation
and the performance of the three POD methods: Karhunen}Loève decomposition (KLD),
principal component analysis (PCA), and singular value decomposition (SVD) are
summarized, then the equivalence problem is discussed via a theoretical comparison among
the three methods. The equivalence of the matrices for processing, the objective functions,
the optimal basis vectors, the mean-square errors, and the asymptotic connections of the
three methods are demonstrated and proved when the methods are used to handle the POD
of discrete random vectors.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The proper orthogonal decomposition (POD) is a powerful and elegant method for data
analysis aimed at obtaining low-dimensional approximate descriptions of a
high-dimensional process. The POD provides a basis for the modal decomposition of an
ensemble of functions, such as data obtained in the course of experiments or numerical
simulations. Its properties suggest that it is the preferred basis to use in various applications.
The basis functions it yields are commonly called empirical eigenfunctions, empirical basis
functions, empirical orthogonal functions, proper orthogonal modes, or basis vectors. The
most striking feature of the POD is its optimality: it provides the most e$cient way of
capturing the dominant components of an in"nite-dimensional process with only a "nite
number of &&modes'', and often surprisingly few &&modes'' [1, 2]. In general, there are two
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di!erent interpretations for the POD. The "rst interpretation regards the POD as the
Karhunen}Loève decomposition (KLD) and the second one considers that the POD
consists of three methods: the KLD, the principal component analysis (PCA), and the
singular value decomposition (SVD) [1}7]. The "rst interpretation appears in many
engineering literatures related to the POD. Because of the close connections and the
equivalence of the three methods, the authors prefer the second interpretation for the POD,
that is, the POD includes the KLD, PCA and SVD.

In recent years, there have been many reported applications of the POD methods in
engineering "elds. The POD has been used in various disciplines including random
variables, image processing, signal analysis, data compression, process identi"cation and
control in chemical engineering, oceanography, etc. [2]. In the bulk of these applications,
the POD is used to analyze experimental data with the objective of extracting dominant
features. The POD has been used to obtain approximate, low-dimensional descriptions of
turbulent #uid #ows [2], structural vibrations and chaotic dynamical systems [3}15], and
more recently, microelectromechanical systems (MEMS) [16}18]. With the widespread
applications of the POD methods, it is found that the loose description of the connection of
the POD methods may confuse the researchers. Therefore, it is necessary to give a better
picture of the PODmethods. In view of this consideration, a summary of the equivalence of
the three POD methods is made and some mathematical derivations involving them are
performed in this paper.

2. THE THREE POD METHODS: PCA, KLD AND SVD

The PODwas developed by several people. Lumley [19] traced the idea of the POD back
to independent investigations by Kosambi (1943), Loève (1945), Karhunen (1946),
Pougachev (1953) and Obukhov (1954). From the viewpoint of physical applications, only
the discrete version of the POD is investigated in this paper. The three PODmethods: PCA,
KLD and SVD are discussed and the equivalence among them is proved and summarized in
this section.

The main idea of the POD is to "nd a set of ordered orthonormal basis vectors in
a subspace (without loss of generality, denoting the subspace as R� ) where a random vector
takes its values, such that the samples in the sample space can be expressed optimally using
the selected "rst l basis vectors. The mean square error can be used as a measure for the
optimal problem, i.e.,

E ��x!x (l)���)E��x!xL (l)���, (1)

where x (l) is the approximate expression of a random vector x using the "rst l basis vectors
of the undetermined set of orthonormal basis vectors, and xL (l) is the approximate
expression of x using arbitrary l basis vectors in R�.

The problem can be stated as follows.
Assume that x3R� is a random vector and ��

�
��
���

is a set of arbitrary orthonormal basis
vectors: then x can be expressed as

x"
�
�
���

y
�
�
�
"�y, (2)

where

y
�
"��

�
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y"(y
�
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�
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The objective of the POD is to "nd a set of basis vectors that satis"es the following extreme
value problem:

min
(�

�� (l)"E��x!x (l)���

s.t. ��
�
�

�
"�

��
i, j"1,2,2,m, (3)

where x (l)"� �
���
y
�
�

�
(l)m). In order to obtain the same form of expressions for the

mean-square errors by using the three di!erent POD methods, the centralization on the
processing data is assumed, i.e., the expectation of the random vector x is zero.

The three POD methods are introduced in the following three sections respectively.

2.1. THE PRINCIPAL COMPONENT ANALYSIS (PCA)

The PCA is a statistical technique and the idea behind the PCA is quite old. The earliest
descriptions of the technique were given by Pearson (1901) and Hotelling (1933) [20]. The
purpose of the PCA is to identify the dependence structure behind a multivariate stochastic
observation in order to obtain a compact description of it. The PCA can be seen
equivalently as either a variance maximization technique or a least-mean-squares
technique.

The central idea of the PCA is to reduce the dimensionality of a data set which consists of
a large number of interrelated variables, while retaining as much as possible the variation
present in the data set. This is achieved by transforming the original variables to a new set of
variables, the principal components, which are uncorrelated and are ordered so that the "rst
few retain most of the variation present in all of the original variables.

There exist di!erent versions on the description of the PCA [20}22]. In order to enable
the style of the performance of the three POD approaches to be consistent, the method of
realizing the POD based on the PCA is given as follows.

Suppose that x3R� is a random vector, and y
�
,y

�
,2,y

�
3R are the 1st, 2nd,2,mth

principal components respectively. In terms of the requirement of the PCA, let the "rst
principal component y

�
be a linear combination of each element of the original random

vector, i.e.,

y
�
"

�
�
���

�
��
x
�
"��

�
x, (4)

where �
�
"(�

��
, �

��
,2,�

��
)� is a constant vector. The variance of y

�
is

s�
��

"< (y
�
)"E�(y

�
!E�y

�
�)��"E�(��

�
x!E���

�
x�) (��

�
x!E ���

�
x�)��

"��
�
E�(x!E�x�) (x!E �x�)���

�
. (5)

Let

�
�

"E �(x!E �x�) (x!E�x�)��, (6)

where �
�
is the m�m covariance matrix corresponding to the random vector x and E�x� is

the expectation of x. From the knowledge of linear algebra, �
�
3R��� is a semi-de"nite

matrix [23]. Let ��
�
"�

�
/��

�
� , i.e., ���

�
��
�
"1. Thus s�

��
"��

�
�����

�
�
�
��
�
. It is apparent that

the maximum of s�
��

will not be achieved for a "nite �
�
, so a normalization constraint must
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be imposed. The most convenient constraint is ��
�
�
�
"1. The problem of "nding the "rst

principal component is transformed to a conditional extreme value problem:

max
�
�

s�y
�
"��

�
�

�
�
�

s.t. ��
�
�
�
"1

(7)

Introducing the Lagrangian multiplier �
�
gives

¸ (�
�
, �

�
)"��

�
�

�
�
�
#�

�
(1!��

�
�
�
).

Di!erentiating with respect to �
�
yields

�¸ (�
�
, �

�
)

��
�

"2(�
�
!�

�
I ) �

�
.

Letting the right-hand side of the above equation be zero, we have

�
�
�
�
"�

�
�
�
. (8)

It can be seen that the solutions �
�
and �

�
of the extreme value problem are the eigenvalue

and the corresponding eigenvector of the covariance matrix �
�
, respectively. Note that

s�
��

"��
�
�

�
�
�
"�

�
, so �

�
must be as large as possible. Thus �

�
must be selected as the

maximum eigenvalue of �
�
.

Now let us "nd the second principal component. Let

y
�
"

�
�
���

�
��
x
�
"��

�
x , (9)

where �
�
"(�

��
,�

��
,2,�

��
)�. The variance of y

�
is

s�
��

"< (y
�
)"E�(y

�
!E�y

�
�)��

"E�(��
�
x!E���

�
x�)(��

�
x!E���

�
x�)��

"��
�
E �(x!E�x�) (x!E�x�)���

�
. (10)

To "nd the �
�
which enables the maximum s�

��
to be attained, a normalization constraint

��
�
�
�
"1 is necessary. The second principal component y

�
must be uncorrelated with the

"rst principal component y
�
, thus

0"cov (y
�
, y

�
)"E �(��

�
x!E ���

�
x�) (��

�
x!E ���

�
x�)��"��

�
�

�
�
�
. (11)

Using equation (11) and the symmetry of �
�
, we have ��

�
�
�
�
�
"0. Note that �

�
is an

eigenvector of �
�
, thus �

�
��
�
�
�
"0.

If �
�
"0, because �

�
*�

�
*2*�

�
*0, then �

�
"�

�
"2"�

�
"0, i.e., all the

eigenvalues are the same. Note that �
�
is a real symmetry matrix, therefore, there exists an

orthogonal matrix P3R��� [23], such that

P��
�
P"�
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�"0

���
. (12)
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Premultiplying equation (12) by P and postmultiplying the result by P� give

�
�
"0

���
. (13)

Thus,

cov (x
�
,x

�
)"0 (i, j"1, 2,2,m), (14)

especially,

cov (x
�
, x

�
)"< (x

�
)"E�(x

�
!E�x

�
�)��"0. (15)

It means that the value of each random variable x
�
(i"1, 2,2,m) is centralized at its

expectation, so it can be considered as a constant but not a random variable. The values of
x
�
(i"1, 2,2 ,m) can be replaced completely by their expectations.
If �

�
'0, then ��

�
�
�
"0 must hold, i.e., �

�
is orthogonal to �

�
. Thus, the problem of

"nding the second component can be transformed into the following extreme value
problem:

max
�
�

s�y
�
"��

�
�

�
�
�

s.t. ��
�
�
�
"1,

��
�
�
�
"0.

(16)

To solve the conditional extreme value problem, the Lagrangian multipliers �
�
and u are

introduced and the Lagrangian function is written as

¸ (�
�
,�

�
, u)"��

�
�

�
�
�
#�

�
(1!��

�
�
�
)#u��

�
�
�
.

Di!erentiation with respect to �
�
gives

�
��

�

¸ (�
�
, �

�
, u )"2(�

�
!�

�
I )�

�
#u�

�
.

Let the right-side of the above equation be zero, i.e.,

2(�
�
!�

�
I )�

�
#u�

�
"0. (17)

Multiplying the two sides of equation (17) by ��
�
gives

2��
�
(�

�
!�

�
I)�

�
#u"0,

i.e.,

2��
�
�

�
�
�
#u"0.

Because of the symmetry of �
�
and the fact that �

�
is an eigenvector of �

�
, we have

2�
�
��
�
�
�
#u"0,

thus u"0. From equation (17) it follows that

�
�
�
�
"�

�
�
�
. (18)
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Once again, �
�
is an eigenvector of �

�
. Owing to the same reason that s�

��
"��

�
�
�
�
�
"�

�
, in

order to reach the maximum variation of y
�
, we can only take �

�
to be the eigenvector

corresponding to the second eigenvalue of �
�
. Then the variance of y

�
is the second

eigenvalue of �
�
.

The remaining principal components can be found in a similar manner. In general, the ith
principal component of x is y

�
"��

�
x and s�

��
"< (y

�
)"�

�
, where �

�
is the ith largest

eigenvalue of �
�
, and �

�
is the corresponding eigenvector. As stated above, it can be shown

that for the third, the fourth, 2 , and the lth principal components, the vectors of
coe$cients �

�
,�

�
,2,�

�
are the eigenvectors of �

�
corresponding to �

�
,�

�
,2,�

�
, the third,

the fourth, 2, and the lth largest eigenvalues respectively.
To sum up, the objective function for "nding the optimal basis vectors in the PCA is

equivalent to

max
��

�
�
���

s�
��
"

�
�
���

��
�
�

�
�
�

s.t. ��
�
�
�
"�

��
.

(19)

Then when the "rst l principal components are used to approximate the original random
vector, the mean-square error is

�� (l )"E��x!x (l )���"E���
�
�

�����

y
�
�
� ��

�

�"

�
�

�����

E �y�
�
�, (20)

where x"��
���
y
�
�
�
, x (l )"� �

���
y
�
�
�
. Note thatE�y

�
�"E���

�
x�"��

�
E�x�"0, therefore,

E�y�
�
�"E�(y

�
!E�y

�
�)��"s�

��
. (21)

Then the mean-square error is

�� (l )"
�
�

�����

s�
��
"

�
�

�����

�
�
. (22)

In fact, the original random variables can be expressed exactly by all principal components.
Suppose that all of the principal components y

�
(i"1, 2,2,m) are found, i.e., we have

y
�
"��

�
x (i"1, 2,2,m). (23)

Premultiplying equation (23) on the two sides by �
�
gives y

�
�
�
"�

�
��
�
x (i"1, 2,2,m).

Summation of the equation on the two sides from 1 to m yields

�
�
�
���

�
�
��
� �x"

�
�
���

y
�
�
�
,

where �
�
��
�
is an m�m matrix. Denoting that

B�		"�
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(k"1, 2,2,m)

the element of B�		 is b�		
��
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�	

�
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b
��
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�
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it follows that b
��
"��

	��
�
�	

�
�	

"�
��
, thus

x"
�
�
���

y
�
�
�
, (24)

where �
�
(i"1, 2,2,m) are the eigenvectors of �

�
corresponding to the eigenvalues of �

�
in

descending order.
Now, the proper orthogonal decomposition of the sampled vector is completed using the

PCA. The orthonormal basis vectors are found and the mean-square error of the
approximate expression for the original random data is given.

2.2. THE KARHUNEN}LOEE VE DECOMPOSITION (KLD)

During the 1940s, Karhunen and Loève independently developed a theory regarding
optimal series expansions of continuous-time stochastic processes [22, 24]. Their results
extend the PCA to the case of in"nite-dimensional spaces, such as the space of
continuous-time functions. The KLD analysis uses single-parameter functions instead of
vectors, two-parameter functions for representing autocorrelation instead of matrices. The
KLD can be easily extended for discrete-time processes. In terms of optimality, the partial
KLD has the same optimal properties of least-squares reconstruction and variance
maximization as the PCA.

The discrete KLD is stated as follows [24]. Let x3R� be a random vector, and ��
�
��
���

be
a set of orthonormal basis vectors in R�, then there exist y

�
"��

�
xsuch that

x"
�
�
���

y
�
�
�
"�y. (25)

Let

x (l)"
�
�
���

y
�
�
�
#

�
�

�����

b
�
�
�
(l)m), (26)

where b
�
(i"l#1,2,m) are constants. It can be easily veri"ed that b

�
"0 (i"l#1,2,m)

after the centralization to the samples, i.e., after the processing on the random vector x such
that E�x�"0. Let �x (l)"x!x (l)"��

�����
(y

�
!b

�
)�

�
, where x and x (l) are random

vectors, thus �x (l ) is also a random vector. In order to examine the quality of the expression
of x we choose the mean square error as a measure, i.e.,

�� (l)"E���x (l )���"E���
�
�

�����

(y
�
!b

�
)�

� ��
�

�"E�
�
�

�����

(y
�
!b

�
)�� . (27)

To enable �� (l) to be the minimum, the derivative of �� (l) with respect to
b
�
(i"l#1, l#2,2,m) is calculated, which yields

�
�b

�

�� (l )"!2E�y
�
!b

�
�.

Letting the right-hand side of the above equation be zero, we have

b
�
"E�y

�
� (i"l#1, l#2,2 ,m). (28)
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It can be seen that b
�
"0 after the centralization to the samples, then x(l )"� �

���
y
�
�
�

(l)m) is the required form of the POD. To keep the generalization for the derivation,
substituting equation (28) into equation (27) gives

�� (l )"
�
�

�����

E�y
�
!E�y

�
���"

�
�

�����

��
�
E�(x!E�x�) (x!E�x�)���

�

"

�
�

�����

��
�
�

�
�
�
"tr (��

�
�
�

�
�

�
�
) , (29)

where �
�
"E�(x!E�x�) (x!E�x�)�� is the covariance matrix of x and

�
�
�

"[�
���

,�
���

,2 ,�
�
]3R���
�	 .

Then the KLD problem is transformed as a conditional extreme value problem:

min
(�

�� (l )"
�
�

�����

��
�
�

�
�

�

s.t. ��
�
�
�
"�

��

(30)

where i, j"l#1, l#2,2,m. Introducing Lagrangian multipliers u
��

(i, j"l#1,
l#2,2,m) gives

¸"

�
�

�����

��
�
�

�
�
�
!

�
�

�����

�
�

�����

u
��
(��

�
�
�
!�

��
) .

Di!erentiation with respect to �
�
on the two sides of the above equation yields

�¸

��
�

"2 (�
�
�
�
!�

�
�
u
�
),

where u
�
"(u

����
, u

����
,2,u

��
)� (i"l#1, l#2,2,m). Writing the above equation in

a matrix form gives

�¸

��
�
�

"2 (�
�
�

�
�
!�

�
�
;

�
�
),

where ;
�
�

"(u
���

, u
���

,2 , u
�
). Letting the right-hand side of the above equation be

zero gives

�
�
�

�
�
"�

�
�
;

�
�
. (31)

It can be seen that all the orthonormal basis vectors satisfying equation (30) must satisfy
equation (31), where there are no special constraints to �

�
�
and ;

�
�
. Next, let us prove

that all �
�
�

satisfying equation (31) can be formed by the eigenvectors of �
�
, and ;

�
�
is

the diagonal matrix that consists of the corresponding eigenvalues of �
�
.

The above conclusion is proved as follows.
Multiplying equation (31) by ��

�
�
yields

;
�
�

"��
�
�

�
�
�

�
�
. (32)
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Note that y
�
"��

�
x, so ;

�
�
in equation (32) is the covariance matrix of the vector formed

by the last m!l elements of the random vector y after the transformation y"��x. Thus
;

�
�
is a semi-de"nite matrix with dimensions of (m!l)�(m!l). Let the diagonal matrix

formed by the eigenvalues of ;
�
�

be �
�
�

, and the square matrix formed by the
corresponding eigenvectors �

�
�
. Performing the transformation z"��

�
�
y gives

�
�
�

"��
�
�
;

�
�
�

�
�
. (33)

Substituting equation (32) into equation (33) yields

�
�
�

"(�
�
�

�
�
�

)��
�
(�

�
�
�

�
�
). (34)

It can be seen that the diagonal elements of �
�
�

are the m!l eigenvalues of �
�
, and the

eigenvectors corresponding to the eigenvalues form (�
�
�

�
�
�

)
����
�	

. Denote the
eigenvector matrix by �H

�
�
, thus

�
�
�

"(�*
�
�

��
�
�

)
����
� 	

.

Then the mean-square error is

�� (l)"tr (��
�
�

�
�
�

�
�
)"tr (�

�
�
�*�

�
�
�

�
�*

�
�
��

�
�
)

"tr (�*�
�
�

�
�
�*

�
�
��

�
�
�

�
�
)"tr (�*�

�
�
�

�
�*

�
�
)

"

�
�
�

��

�
	

, (35)

where �
	

(s"1, 2,2 ,m!l ) are the eigenvalues corresponding to the columns of �*

�
�
.

Once x is mapped onto the (m!l)-dimensional subspace spanned by m!l eigenvectors of
�

�
, further application of an orthonormal transformation would not change the

mean-square error. Therefore, �
�
�

and ;
�
�

in equation (31) can be chosen simply as the
matrices formed by the eigenvectors and eigenvalues of �

�
respectively. Let the descending

order of the eigenvalues of �
�
be �

�
, �

�
,2,�

�
, and the corresponding eigenvectors be

�
�
,�

�
,2,�

�
. It can be seen that in order to enable the minimum value problem to hold,

the othonormal basis vectors can be selected as the eigenvectors of �
�
, and the mean-square

error to approximate x by using the "rst l basis vectors is �� (l )"��
�����

�
�
.

2.3. THE SINGULAR-VALUE DECOMPOSITION (SVD)

Klema and Laub [25] indicated that the SVD was established for real-square matrices in
the 1870s by Beltrami and Jordan, for complex square matrices in 1902 by Autonne, and for
general rectangular matrices in 1939 by Eckart and Young. The SVD can be viewed as the
extension of the eigenvalue decomposition for the case of non-square matrices. As far as the
proper orthogonal decomposition is concerned, the SVD can also be seen as an extension
for non-symmetric matrices. Because the SVD is much more general than the eigenvalue
decomposition and intimately relates to the matrix rank and reduced-rank least-squares
approximation, it is a very important and fundamental working tool in many areas such as
matrix theory, linear systems, statistics, and signal analysis [25}29].

The third method to realize the POD is the SVD, which uses the singular-value
decomposition to "nd the basis vectors satisfying the POD requirement in the sample space.
The process for realizing the POD by using the SVD is stated as follows. The basic concept



536 Y. C. LIANG E¹ A¸.
is the same as that which appeared in most references, such as [25}29], but we try to use
statements which are easy to keep the description of the three POD methods consistent.

Suppose that n samples x
�
,x

�
,2,x

�
are given where x

�
3R� (i"1, 2,2n, n). Consider

the samples to be more than enough such that n'm. Let

X"(x
�
,x

�
,2 ,x

�
),

then X3R���, and XX�3R��� is an m�m semi-de"nite matrix. Let the eigenvalues of
XX� be arranged in decreasing order as

�
�
*�

�
*2*�

�
'�

���
"2"�

�
"0.

In the SVD of matrices, 	
�
"��

�
(i"1,2,2,m) are called the singular values ofX�. Let the

eigenvectors of XX� with eigenvalues �
�
,�

�
,2,�

�
be v

�
, v

�
,2,v

�
.

De"ne <"[<
�
, <

�
] where <

�
"(v

�
, v

�2,v
�
), <

�
"(v

���
, v

���2, v
�
) and the

subscript r is the index of the smallest positive eigenvalue of XX� . Then the matrix < is an
m�m orthonormal matrix and we have

XX�<"< �
�
�

�
�

�

�
�
�"<�

	�
�

	�
�

�

	�
�
� . (36)

Premultiplying equation (36) by <� gives

[<
�
, <

�
]�XX�[<

�
, <

�
]"�

��
�

0

0 0� , (37)

where

��
�
"diag (	�

�
, 	�

�
,2,	�

�
).

Let

;
�
"X�<

�
�
�

�
,

where

�
�
�

"diag (	
�
�

, 	
�
�

,2,	
�
�

) ,

we have

;�
�
;

�
"(X�<

�
�
�

�
)�X�<

�
�
�

�
"�
�

�
��

�
�
�

�
"I

�
. (38)

From equation (38) it can be seen that the columns of the matrix ;
�

are mutually
orthogonal. Denoting

;
�
"(u

�
, u

�
,2,u

�
),

according to the basis extension theorem in vector space, there exist n!r orthonormal
vectors in R� and they are orthogonal to the columns of ;

�
. Let the n!r orthonormal

vectors be u
���

,u
���

,2,u
�
. In the singular-value decomposition, u

�
,u

�
,2,u

�
and

v
�
,v

�
,2,v

�
are called left and right singular vectors of X� corresponding to eigenvalues
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�
,	

�
,2,	

�
respectively. Let ;"[;

�
,;

�
] where ;

�
"(u

���
, u

���
,2,u

�
), then ; is an

n�n orthonormal matrix. Thus

;�X�<"[;
�
,;

�
]�X�[<

�
,<

�
]"�

;�
�
X�<

�
;�

�
X�<

�
;�

�
X�<

�
;�

�
X�<

�
�, (39)

where

;�
�
X�<

�
"�
�

�
<�

�
XX�<

�
"�

�
,

;�
�
X�<

�
"�
�

�
<�

�
XX�<

�
"0,

;�
�
X�<

�
";�

�
(X�<

�
�
�

�
)�

�
";�

�
;

�
�

�
"0.

Note that

XX�<
�
"0.

Premultiplying the above equation by <�
�
gives

<�
�
XX�<

�
"(X�<

�
)�X�<

�
"0. (40)

From equation (40) it follows that

tr ((X�<
�
)� (X�<

�
))"0,

thus

X�<
�
"0.

From the above equation we have

;�
�
X�<

�
"0,

therefore equation (39) can be written as

;�X�<"[;
�
,;

�
]�X�[<

�
,<

�
]"�

;�
�
X�<

�
;�

�
X�<

�
;�

�
X�<

�
;�

�
X�<

�
�"�

�
�

0

0 0� . (41)

Premultiplying the above equation by ; and postmultiplying the result by < give

X�";�
�

�
0

0 0�<� . (42)

Transposing equation (42) yields

[x
�
,x

�
,2,x

�
]"<�

�
�

0

0 0�;� . (43)

Denote the columns of the matrix �
�

�
0

0 0�;� as d
�
, d

�
,2,d

�
. From equation (43) it

follows that

x
�
"<d

�
, (i"1, 2,2,n). (44)
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Now the proper orthogonal decomposition of the sampled vectors is completed. From
equations (43) and (44) it can be seen that the components d

�����
, d

�����
,2 ,d

�� �
of d

�
(i"1,2,2,n) are equal to zero when the singular values 	

���
,	

���
,2,	

�
ofX� equal zero.

Then it needs only r right singular vectors as basis to represent the samples x
�
(i"1,2,2,n)

in space R�.
Next, let us discuss the optimality of the set of proper orthogonal basis vectors.
Suppose that a set of orthonormal basis vectors �

�
,�

�
,2 ,�

�
is chosen arbitrarily in R�

to represent n samples, then

x
�
"c

��
�
�
#c

��
�
�
#2#c

��
�
�
, (45)

where c
��
"��

�
x
�
. When the "rst l basis vectors are selected to approximate the samples, we

have
x
�
(l)"c

��
�
�
#c

��
�
�
#2#c

��
�
�
. (46)

What we are concerned about is the error of all the samples but not the error of an
individual sample. Therefore, the following error function is considered:

�� (l )"
�
�
���

�x
�
!x

�
(l )��"

�
�
���
��

�
�

�����

c
��
�

� ��
�
"

�
�
���

�
�

�����

c�
��

"

�
�
���

�
�

�����

��
�
x
�
x�
�
�
�
"

�
�

�����

��
�
XX��

�
"�X��

�
�
��


, (47)

where �
�
�

"(�
���

,�
���

,2,�
�
). Then the problem of "nding the optimal basis vectors is

transformed to the following extreme value problem:

min
�
�

�� (l)"
�
�

�����

��
�
XX��

�

s.t. ��
�
�

�
"�

��
.

(48)

In order to solve the extreme value problem we introduce a Lagrangian multiplier u
��
and

write the Lagrangian function

¸"

�
�

�����

��
�
XX��

�
!

�
�

�����

�
�

�����

u
��
(��

�
�
�
!�

��
).

Di!erentiation with respect to �
�
on the two sides of the above equation yields

�¸

��
�

"2�XX��
�
!u

��

�
�

�����

�
��"2XX��

�
!2�

�
�
u
�

( j"l#1, l#2,2,m)

where u
�
"(ul#1

�
, ul#2

�
,2, u

��
)�. The above equation can be written in a matrix form as

�¸

��
�
�

"2XX��
�
�

!2�
�
�
;

�
�
,

where ;
�
�

"(u
���

,u
���

,2,u
�
).

Equating �¸/��
�
�

to zero gives

XX��
�
�

"�
�
�
;

�
�
. (49)
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Premultiplying the two sides of equation (49) by ��
�
�

yields

;
�
�

"��
�
�
XX��

�
�
. (50)

Note that;
�
�

is a semi-de"nite matrix. Then there exists an orthogonal matrixP such that

�"P�;
�
�
P"P���

�
�
XX��

�
�
P, (51)

where � is a diagonal matrix. Postmultiplying the two sides of equation (49) by P gives

XX��
�
�
P"�

�
�
PP�;

�
�
P,

i.e.,

XX��
�
�
P"�

�
�
P�. (52)

From the above equation it can be seen that the diagonal elements of the matrix � are
some eigenvalues �

�
of the matrixXX�, and the matrix �

�
�
P consists of theX eigenvectors

corresponding to �
�
. That is, the diagonal elements of the matrix � are the squares of some

singular values 	
�

of the matrix X�, and �
�
�
P consists of the right singular vectors

corresponding to 	
�
.

For the next use we state the following theorem without proof [30].

Theorem. ¸et A3Rn�m, Q3Rm�m be an orthogonal matrix, and � '�


be the Frobenius norm,

then �A�


"�AQ�



.

From equation (47) and the above theorem, it follows that

�� (l)"�X��
�
�

��


"�X��

�
�
P��



"tr ((X��

�
�
P )�X��

�
�
P )"tr (�). (53)

Note that � is a diagonal matrix and its diagonal elements are the squares of the singular
values 	

�
of the matrixX, so in order to attain the minimum error, the diagonal elements of

� can only be the last m!l singular values of the matrix X�. Thus,

�� (l)"tr ((X��
�
�
P ))�X��y

�
�
P )"tr (�)"

�
�

�����

	�
�
. (54)

From this it is proved not only that the optimality is attained when the right singular
vectors of X� are taken as basis vectors but also that the minimum error is simply the
square summation of the last m!l singular values of the matrix X� .

3. THE EQUIVALENCE OF THE THREE METHODS

From the above discussion it can be seen that there exist close connections among the
three POD methods: PCA, KLD, and SVD, although their derivations are di!erent. The
existing equivalence connections among them are understood by researchers. Some of the
equivalence relationships between the three methods are summarized as follows:

(1) Mees et al. [31] pointed out that the connection between the KLD and the PCA was
"rst noticed by Watanabe in 1965. Diamantaras and Kung [22], and also Ravindra
[4] indicated that the di!erence between the KLD and PCA was that KLD typically
referred to stochastic processes, whereas the PCA referred to random vectors. If the
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time parameter t is a discrete variable and one has a "nite collection of random
variables, then the KLD reduces to the PCA.

(2) Chatterjee [1] pointed out the correspondence with the expression of the SVD and
that of a "nite sum of the KLD.

(3) Kunisch and Volkwein [32] described the connection between the KLD and SVD
within the context of its relevance to the application to optimal control problems.

(4) Diamantaras and Kung [22] pointed out that there was an asymptotic connection
between the PCA and SVD.

It is very useful for researchers to understand the equivalence connections among the
three methods so as to study and apply the POD methods extensively. However, to the best
of the authors' knowledge, so far there exists neither complete demonstration nor
systematic and theoretical proof on the equivalence of the three methods. In this section, the
equivalence of the three methods is discussed from a di!erent point of view, and some proofs
on the equivalence of the three methods are presented. The aim of the present work is to
demonstrate the close connections among the three methods. It should be pointed out that
in practice, the applications of the three methods may not always be the same. If the
methods are actually applied in the same way they may lead to exactly the same basis
functions. If the methods are applied slightly di!erently, yet in equivalent ways, then the
equivalence is more hidden [33].

The main results on the equivalence of the three methods obtained through the above
comparison are summarized as follows:

1. ¹he equivalence of the PCA and K¸D
(1) The same matrices for processing. Both the PCA and KLD handle problems from

random vectors. For a random vector x with dimension m, the matrices used for "nding
basis vectors derived from the two methods are the same. The matrix for processing is the
m�m covariance matrix corresponding to the random vector, i.e.,

�
�
"E�(x!E�x�) (x!E�x�)��. (55)

(2) The same objective functions for "nding the optimal basis vectors. In the PCA the
objective function for "nding the optimal basis vectors is that the variance summation of the
"rst l (l)l(m) principal components is maximal, i.e.,

max
��

�
�
���

s�y
�
"

�
�
���

��
�
�

�
�
�
. (56)

Obviously, equation (56) is equivalent to the fact that the variance summation of the last
m!l principal components is minimal, i.e.,

min
��

�
�

�����

s�
��
"

�
�

�����

��
�
�

�
�
�
. (57)

In the KLD the objective function for "nding the optimal basis vectors is that the error is
minimal after removing the last m!l basis vectors, i.e.,

min
(�

�� (l)"
�
�

�����

��
�
�

�
�

�
. (58)
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Making a comparison between equations (57) and (58) it can be seen that the objective
functions for "nding the optimal basis vectors by using the twomethods possess the same form.

(3) The same or equivalent optimal basis vectors. The basis vectors found using the two
methods are the eigenvectors of a covariance matrix corresponding to the same random
vector. In fact, the covariance matrix �

�
here is an m�m linear transformation in a real

"eld. Let the linear transformation be 	. Because 	 is semi-de"nite, it has m non-negative
real eigenvalues. Let the eigenvalues be �

�
, �

�
,2,�

�
, and let them be arranged in

decreasing order.
If all �

�
(i"1, 2,2,m) are distinct, then each eigen-subspace of 	: 	 (�

�
),	(�

�
),2, 	 (�

�
)

has only one basis vector respectively. Let them be v
�
, v

�
,2,v

�
. The di!erence among the

elements in each subspace 	 (�
�
),	(�

�
),2	 (�

�
) is only a constant factor, i.e., if v��	

�
and

v��	
�

are the elements of the eigen-subspace 	 (�
�
) of 	, then there exist a real number � such

that v��	
�

"�v��	
�

. Because the basis vectors are required to be normal, the basis vectors
belonging to the �

�
obtained by using the PCA and KLD must be completely the same.

If some eigenvalues are multiple, without loss of generality, we let �
�
have multiplicity n

�
.

Then in the eigen-subspace 	 (�
�
) there exist n

�
orthonormal vectors that can be selected as

basis vectors. The basis vector �
�
belonging to the �

�
selected by using the PCA may not be

the same as the basis vector �
�
belonging to the �

�
selected by using the KLD. But both of

them are basis vectors of the eigen-subspace 	 (�
�
) of 	. If we select n

�
optimal basis vectors

by using PCA and KLD, respectively, to approximate the original random vector x, they
may be two di!erent basis vectors of the eigen-subspace 	 (�

�
). However, they are equivalent

obviously. In fact, they can be expressed mutually, i.e., there exist constants 

��
such that

�
�
"� n

�

���


��
�
�
(i"1, 2,2,n

�
). Because the n

�
basis vectors selected, respectively, satisfy the

orthonormal condition, we need only to make an orthogonal transformation to enable the
orthonormal basis vectors selected by using the PCA and KLD to be completely the same.

(4) The same approximate matrices processed in practical calculation. Because variables
such as the probability and the expectation associated with the covariance matrix are not
known a priori, the estimate of the covariance matrix is needed in order to obtain the
approximate covariance matrix. In the PCA and KLD, the expression
(1/n) (X!XM ) (X!XM )� is used as the approximation of �

�
. In general, the data are

centralized before the proper orthogonal decomposition is performed, i.e.,XM "0. Therefore
in the two methods the approximate matrix processed in practical calculation is (1/n)XX�,
where X is a matrix whose columns are formed by the given samples.

2. ¹he equivalence of the PCA (K¸D) and S<D
(1) The equivalence of the eigenvalue problems of the PCA (KLD) and SVD. From the

above discussion it can be seen that the SVD is to perform the singular value decomposition
to the transposed matrix X� of the matrix X. The singular values obtained are the
arithmetic square roots of the eigenvalues of the matrixXX� and the right singular vectors
selected as the basis vectors are the eigenvectors of the XX�. Thus if we make the
transformation XI "(1/�n)X, performing the singular-value decomposition to the matrix
XI � is equivalent to searching the eigenvalues and eigenvectors of the matrix (1/n)XX�. Note
that both the matrices XX� and (1/n)XX� possess the same eigenvectors. Therefore, the
basis vectors obtained using the SVD to the X� are the same as those obtained using the
PCA (KLD) to the (1/n)XX�.

(2) The asymptotic connection between the PCA (KLD) and SVD. The asymptotic
connection between the PCA (KLD) and SVD can be obtained directly by using the
eigenvalue problems of the SVD and PCA (KLD) and the asymptotic connection between
the matrices (1/n)XX� and �

�
. Now let us prove the asymptotic connection between the

matrices (1/n)XX� and �
�
.
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Denote the elements of the covariance matrix �
�
as 	

��
. From equation (55), the de"nition

of the covariance matrix, it follows that

	
��
"cov (x

�
, x

�
)"E �(x

�
!E�x

�
�) (x

�
!E�x

�
�)�. (59)

Let the values of the ith component x
�
of the random vector x be x�

�
,x�

�
,2 (i"1,2,2,m),

which represent some events of the component x
�
. Let the expectation of the x

�
be E�x

�
�"u

�
(i"1,2,2,m) and the probability of the event (x�

�
!u

�
) (x�

�
!u

�
) be P��

��
, then

	
��
"�

���

(x�
�
!u

�
) (x�

�
!u

�
)P��

��
. (60)

Because in most cases the value, expectation u
�
and probability P��

��
of a random variable

are not known a priori, we can only obtain their approximate values using a large number of
samples.

Assume that n samples of a random vector x are selected, which are x��	,x��	,2,x��	3R�

(n'm). Let

X"(x��	,x��	,2,x��	)3R���.

Firstly, let us count the number of events of x
�
, i.e., the number of times that di!erent

values of the ith components of all n samples appear. Let the number be n
�
(i"1, 2,2,m)

and the expectation of x
�
be

u
�
"

1

n

�
�
���

x ��	
�

(i"1, 2,2,m). (61)

Then let us count the number of events of (x�
�
!u

�
) (x�

�
!u

�
) (i, j"1, 2,2,m,

p"1, 2,2,n
�
, q"1, 2,2, n

�
) where x�

�
and x�

�
represent the p and q kinds of values for the

ith and jth components of the random vector x respectively. Let the number of appearances
of (x�

�
!u

�
) (x�

�
!u

�
) in the n samples be n��

��
. De"ne the probability

PI ��
��

"n��
��
/n, (62)

where �
���
n��
��

"n because both x�
�
and x�

�
are in the same sample merely appear in the ith

and jth places respectively.
The larger the number n of the samples is, the closer the probability PI ��

��
de"ned by

equation (62) will tend to the true probabilityP��
��

of the random event (x�
�
!u

�
) (x�

�
!u

�
), i.e.,

lim
���

PI ��
��

"P��
��
. (63)

Let

��
�
"

1

n
(X!XM ) (X!XM )�"

1

n

�
�
���

(x��	!u) (x��	!u)�, (64)

where u"(u
�
,u

�
,2,u

�
)�"(1/n)� �

���
x��	and XM "(u, u,2,u)

�����
�

. Let the element of ��
�
be

	J
��
, then

	J
��
"

1

n

�
�
���

(x��	
�

!u
�
) (x��	

�
!u

�
)"�

�� �

n��
��
n

(x�
�
!u

�
) (x�

�
!u

�
). (65)
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From equation (59), the de"nition of 	
��
, and equation (65) it follows that lim

���
	J
��
"	

��
.

Then the limitation lim
���

��
�
"�

�
holds. In general, the centralization for the samples is

performed after the n samples are selected, i.e., the expectation (1/n)� �
���
x��	 is subtracted

from each sample. Thus ��
�
"(1/n)XX� and we have

�
�
" lim

���

��
�
" lim

���

1

n
XX� . (66)

Equation (66) shows the asymptotic connection between the covariance (because of the
centralization, the covariance is now the correlation) matrix �

�
in the PCA (KLD) and its

approximate matrix (1/n)XX�. The asymptotic connection of the PCA (KLD) and the SVD
can be obtained theoretically from the combination of equation (66) with the equivalence of
the eigenvalue problems of the SVD and the PCA (KLD) mentioned above.

We have completed the demonstration on the equivalence connections of the three POD
methods. The above discussion is performed for the discrete cases. It should be noted that
the KLD can also be employed to handle the POD of continuous random variables,
whereas the PCA and SVD can only be used to deal with discrete random variables.

4. CONCLUSION

In this paper, we summarized the derivation and the performance of the three POD
methods: PCA, KLD and SVD, then discussed the equivalence problem via the theoretical
comparison among the three methods and presented some proofs on their equivalence of
them. We demonstrated and proved the equivalence of the matrices for processing, the
objective functions, the optimal basis vectors and the mean square errors of the di!erent
POD methods, and the asymptotic connections among the three methods when they are
used to handle the POD of discrete random vectors.
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