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1. INTRODUCTION

The "eld of axially translating materials consists of high-speed magnetic and paper tapes,
thread lines, strings, power transmission chains and belts, band-saws, "bers, beams, aerial
cable tramways and pipes conveying #uid and other similar systems. Ulsoy et al. [1] and
Wickert and Mote [2] reviewed the literature on axially moving materials. Miranker [3]
studied a model for the transverse vibrations of a tape moving between a pair of pulleys
using a variational procedure and derived the equations of motion for time-dependent axial
velocity. Mote [4] considered the problem of an axially accelerating string with harmonic
excitation at one end and made a stability analysis. Wickert [5] analyzed free non-linear
vibrations of a moving beam over the sub- and super-harmonic transport speed ranges.
Pakdemirli and Batan [6] considered a constant acceleration}deceleration-type motion.
Zhang and Zu [7] performed modal analysis of linear prototypical serpentine belt derive
system. Pakdemirli and Ulsoy [8] studied principal parametric resonances and
combination resonances for an axially accelerating string. Stylianou and Tabarrok [9, 10]
used "nite element formulation to show the accuracy of variable-domain beam element,
considered translational and rotary inertia e!ects of the tip mass and made a stability
analysis. Pakdemirli et al. [11] derived the equations of motion for an axially accelerating
string using Hamilton's principle and numerically investigated the stability. OG z et al. [12]
investigated the transition from string to beam for an axially moving material. Approximate
analytical expressions for the non-linear natural frequencies were given for the problem. For
variable velocity pro"les, stability borders were determined analytically. Euler}Bernoulli
beams having di!erent #exural sti!ness values and moving with harmonically varying
velocities for di!erent end conditions are studied [13}15]. Principal parametric resonances,
sum and di!erence type combination resonances were investigated. As a special case, the
vibrations of a tensioned pipe conveying #uid with variable velocity is investigated.
Arti"cial neural networks (ANN) are networks of simple processing elements called

neurons operating on their local data and communicating with other elements. The design
of ANNs was motivated by the structure of a real brain, but the processing elements and the
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architectures used in ANN have gone far from their biological inspiration. Each neuron is
connected at least with one neuron, and each connection is evaluated by a real number,
called the weight coe$cient, that re#ects the degree of importance of the given connection in
the neural network. Knowledge is stored in the form of a collection of connection strengths.
ANNs are capable of self-organization and knowledge acquisition (learning). This
capability allows automatic determination from the connection strengths from data
containing the knowledge to be expected. Back-propagation is a time-consuming
algorithm. The processing units are arranged in layers. Each ANN has an input layer, an
output layer and a number of hidden layers. Propagation takes place in a feed-forward
manner, from input layer to the output layers. The pattern of connectivity and the number
of processing units in each layer may vary with some constraints. No communication is
permitted between the processing units within a layer, but the processing units in each layer
may send their output to the processing units in the higher layer [16}22]. For some other
examples of ANN applications to structural mechanics, the reader is referred to references
[22}31].
In this study, the transverse vibration of a Euler}Bernoulli-type axially moving beam is

investigated. The beam is simply supported at both ends. Axial velocity is assumed as
a harmonic function about a constant mean value. The frequency values and stability
borders obtained in a previous study are trained using ANN. For new value of #exural
sti!ness and mean velocities, frequencies and stability borders are determined using ANN.

2. EQUATION OF MOTION AND APPROXIMATE SOLUTION

The linear dimensionless equations of motion for the travelling beam shown in Figure 1 is
[5, 13]

(wK #2wR �v#w�vR )#v�
�
w��#(v\ �!1)w��"0 (1)

and simple}simple boundary conditions are

w (0, t)"w (1, t)"0, w�� (0, t)"w��(1, t)"0. (2)

In equation (1), w is the transverse displacement, v is the axial velocity, wK is the local
acceleration, 2wR �v is the Coriolis acceleration, v�w�� is the centripetal acceleration, and
v�
�
denotes #exural sti!ness. The variable velocity is assumed as a harmonically varying

function about the constant mean value

v"v
�
#�v

�
sin�t, (3)

where � is a small parameter and �v
�
represents the amplitude of #uctuations. � is the

velocity #uctuation frequency. The solution has been given in reference [13] by applying the
method of multiple scales (a perturbation technique). The dispersion relation and support
Figure 1. Schematics of an axially moving beam on simple supports.
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condition obtained from the boundary conditions are [13]
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These equations were solved for v
�
"0)1, 0)2, 0)4, 0)6, 0)8, 1)0 in reference [13] and these

values will be used in the training phase of ANN in the next section. The stability borders
for principal parametric resonance case (for the velocity #uctuation frequency close to two
times of any natural frequency) were given in reference [13] as
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where>
�
(x) is a spatial function; >M

�
(x) is the complex conjugate. The stability borders were

found and drawn for v
�
"0)1, 0)2, 0)4, 0)6, 0)8, 1)0 in reference [13]. These values will be

used in the training phase of the ANN method to obtain the stability borders for the new
#exural sti!ness value.

3. ARTIFICIAL NEURAL NETWORK APPROACH (ANN)

Arti"cial neural network (ANN) algorithm is applied in this section as an alternative to
the conventional numerical methods. ANN systems are physical cellular systems that can
acquire, store and utilize experimental knowledge. The distinguished characteristics of
neural networks have played an important role in a wide variety of applications. Powerful
learning algorithms self-adapt as per the requirements in a continually changing
environment (adaptability property). The ability to perform tasks involving non-linear
relationships and noise immunity make ANN a good candidate for classi"cation and
prediction (non-linear processing property). Finally, architectures with a large number of
processing units enhanced by extensive interconnectivity provide for concurrent processing
as well as parallel distributed information storage (parallel processing property). The
multi-layer perceptron (MLP) has an input layer, hidden layers and an output layer. The
input vector representing the pattern to be recognized is incident on the input layer and is
distributed to subsequent hidden layers, and "nally to the output layer via weighted
connections. Each neuron in the network operates by taking the sum of its weighed inputs
and passing the result through a non-linear activation function (transfer function).
Generally, the sigmoid function is chosen as the non-linear activation function.
In this study a multi-layer perceptron, feed-forward and back-propagation algorithm

ANN is used by supervised training. Details of the algorithm can be found in reference [29].
The ANN method is applied for two di!erent solutions. First, the natural frequencies are
calculated. Two variables for input and one variable for output values were considered in



Figure 2. ANN used in determining the velocity-dependent natural frequencies.

Figure 3. ANN used in determining the stability borders.
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the "rst application. The inputs are the #exural sti!ness value (v\
�
) and the mean value of

axial velocity (v
�
), and the output value is the natural frequency (�

�
). The training is

performed separately for every natural frequency. The ANN architecture used in calculating
the natural frequencies part is a 2:5:5:1 multi-layer architecture (Figure 2). The calculation
of natural frequencies from the dispersion equation (4) and support condition (5) is a time
consuming job. The analytically calculated values are used in ANN; then, the new
frequency values for any #exural sti!ness value and mean velocities can be easily obtained.
In the second part, the stability borders for principal parametric resonance obtained in
reference [13] using equations (6) and (7) is trained in ANN. The inputs are #exural sti!ness
value (v

�
), mean velocity (v

�
) and velocity #uctuation amplitude (�v

�
) and the output is the

two values of velocity #uctuation frequencies (�
�
, �

�
) giving stability borders. The ANN

architecture used in this part is a 3:7:7:2 multi-layer architecture as shown in Figure 3. The
momentum and learning rate values are taken as 0)9 and 0)7 respectively. These values are
found to be optimum values by trial and error. The non-linear activation function is chosen
as the sigmoid function. For both parts 100 000 iterations are performed in training the
algorithm. The ANN is tested after the learning phase. The ANN used to determine the
natural frequencies is tested for v

�
"0)3. In Figures 4 and 5, mean axial velocity-dependent

natural frequencies for v
�
"0)3, calculated by analytical approach and determined using

ANN are plotted for the "rst two modes respectively. The results are close to each other
throughout the velocities except for very small values. The error in determining the



Figure 4. A comparison of analytical and ANN results for natural frequency versus mean axial velocity (**,
analytical; - - - - - , ANN) in the "rst mode.

Figure 5. A comparison of analytical and ANN results for natural frequency versus mean axial velocity (**,
analytical; - - - - - , ANN) in the second mode.
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frequencies for small velocities arises from the normalization. That is why the minimum
value for the mean velocity is chosen as 0)1. Also, sharp natural frequency changes near
a critical velocity value cause error in ANN.
The ANN used to determine the stability borders is tested for v

�
"0)3 for the

fundamental frequency. Figures 6 and 7 show the stability borders calculated analytically
and using ANN, respectively, for mean velocity and natural frequency variation for the "rst
mode. The "gures are similar to each other except again for small mean velocities and small
velocity #uctuation amplitudes.
Using ANN, one can eliminate excessive analytical and numerical calculations for

natural frequencies and stability borders for every #exural sti!ness value. Otherwise for



Figure 6. The borders separating the stable and unstable regions calculated by the analytical approach.

Figure 7. The borders separating the stable and unstable regions determined using ANN.
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every new parameter, new frequency values and stability borders have to be calculated
again. This can be a way of shortening the computing e!orts.

4. CONCLUDING REMARKS

The transverse vibrations of an axially accelerating Euler}Bernoulli beam on simple
supports are investigated. The beam travels with a sinusoidal function about a constant
mean value. The application of arti"cial neural networks (ANN) in calculating natural
frequencies and stability borders has been presented. The pre-calculated natural frequency
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values and stability borders using the method of multiple scales for di!erent #exural
sti!ness coe$cients are used in ANN training. The velocity-dependent natural frequencies
and the stability borders are drawn using ANN. The comparison of the analytical solutions
and ANN show that the ANN approach is satisfactory. With su$cient training, the ANN
results will give unknown values approximately. Time consumption and expensive
computer operations can be reduced with this method.
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