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Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for
the attenuation of torsional vibrations in rotating and reciprocating machines. They consist
of masses that are constrained to move along speci"c paths relative to the rotational axis of
the machine. Previous analytical studies have considered the performance of single absorber
systems with general paths and of multi-absorber systems with a speci"c path type. In this
paper, we investigate the performance and dynamic stability of systems comprised of
multiple, identical centrifugal pendulum vibration absorbers riding on quite general paths.
The study is carried out by considering a scaling of the system parameters, based on
physically realistic ranges of dimensionless parameters, which permits application of the
method of averaging. It is found that the performance of these systems is limited by two
distinct types of instabilities. In one type, the system of absorbers lose their synchronous
character, while in the other a classical non-linear jump a!ects all absorbers identically,
leading to highly undesirable system behavior. These results are used to evaluate two
common types of absorber paths, namely circles and cycloids, including intentional
mistuning of the absorber frequencies. The results are used to make some recommendations
about the selection of paths to achieve design goals in terms of absorber performance and
operating range. The analytical predictions are con"rmed by numerical simulations.

2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Rotating machines are often subjected to #uctuating torsional loads that can cause noise
and vibration di$culties, for example, gear rattle and fatigue failure. Many methods are
used to reduce torsional vibrations, including the addition of #ywheels [1] and tuned
vibration dampers [2}4]. These methods, however, have some shortcomings. Flywheels
increase the system inertia, which reduces system responsiveness, while torsional dampers
dissipate energy and work at only a single frequency (or a small set of resonant frequencies).
Another e!ective method for reducing torsional vibrations is the use of centrifugal
pendulum vibration absorbers (CPVAs). These are masses mounted on the rotor in such
a manner that they are free to move relative to it along prescribed paths, and whose motions
are used to counteract the applied #uctuating torque, thereby reducing torsional vibration
of the rotor. Figure 1 shows a schematic view of an arrangement of CPVAs. The path along
which each absorber mass moves is designed to achieve the desired goal.

CPVAs were used in IC engines as early as 1929 [5]. They have been e!ectively employed
to reduce torsional vibrations in light aircraft engines [3], helicopter rotors [6], and
automotive racing engines [7]. Until around 1980 all CPVA designs employed simple
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.



Figure 1. Schematic view of CPVAs mounted on a rotor.
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circular paths for the absorbers. These circular paths work "ne at small amplitudes, but the
non-linear, amplitude-dependent frequency of these simple pendulums limit their
e!ectiveness, and must be accounted for by intentionally mistuning the linearized frequency
of the absorber. More recently, other paths that o!er improved performance at large
amplitudes have been introduced. Cycloidal path absorbers are used in helicopter rotors
[6], and epicycloidal path absorbers were proposed for use in automotive engines [8}10].
This epicycloidal path is very special, since it is the path that maintains a constant frequency
for the absorber over all amplitudes, thereby keeping the absorbers as linear as possible
over a large operating range [8]. This path separates two basic types of paths that are
considered in the present study. Paths such as circles exhibit softening non-linear behavior,
that is, their frequency of oscillation decreases as the amplitude increases, which leads to
many shortcomings in absorber performance. Paths such as cycloids exhibit hardening
non-linear behavior in which the frequency of oscillation increases as the amplitude
increases and avoid many of the di$culties encountered with circular paths.

Lee and Shaw [11] investigated the performance of a single-mass CPVA for the case of
perfectly tuned absorber paths with general non-linear form. They con"rmed the
shortcomings of circular paths and demonstrated the improvements o!ered by cycloidal
and epicycloidal paths. Shaw et al. [12] extended these results to include mistuning of the
absorber frequency relative to the applied torque, in addition to a general non-linear nature
of the path. They con"rmed that overtuning the circular path absorbers signi"cantly
improved their operating range, but at the expense of performance. Chao et al. [13]
investigated the stability of the unison motion for multiple CPVAs riding on perfectly tuned
epicycloidal paths.

This paper considers systems of multiple, identical CPVAs riding on mistuned paths with
general non-linear form. This includes as special cases those of practical interest, namely,
mistuned circular paths, and tuned cycloidal paths. The main objectives of this study are to:

� investigate the stability of the desired unison response in which all absorbers move in
a synchronous manner.

� investigate the e!ects of path parameters, namely mistuning and non-linearity, on the
performance of the CPVA system.

� provide some guidelines for use by designers for choosing a path to meet certain goals.
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The paper is organized as follows. We begin with a formulation of the equations of motion
and a scaling of the system parameters and variables that brings out the features of interest.
The resulting equations are studied via the application of averaging, which o!ers good
approximations for the steady state response of the absorbers and the rotor, including
stability information. The averaged equations are used to determine speci"c response
features of interest, from which some general observations are made. Simulation results are
presented for some case studies, and the paper is closed with a summary and some
conclusions.

2. MATHEMATICAL FORMULATION

2.1. EQUATIONS OF MOTION

We consider a system of N CPVAs mounted on a rotor of inertia J, as shown in Figure 1.
The equations of motion for the ith absorber and the rotor, respectively, are given by [10]
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where terms are de"ned as follows. The ith absorber, which has a mass of m
�
, is riding on

a path speci"ed by the function R
�
(S

�
). R

�
denotes the distance from a point on the ith

absorber path to the center of the rotor, and S
�
is an arc length variable along that path,

which is used as the generalized co-ordinate for the ith absorber mass. R
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is the value of R
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(0). � represents the angular orientation of the rotor.
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rotor respectively. ¹
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and ¹(�) are the mean and #uctuating components of the applied
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Equation (1) is the force balance on the ith absorber, and it is important to note that each
absorber is indirectly coupled to all the other absorbers through the dynamics of the rotor.
Equation (2) represents the torque balance on the rotor, which is a!ected by each absorber
through inertial and damping terms. The general goal of a CPVA system is to "nd a path
such that the resulting dynamics have the absorbers moving in such a manner that they
provide a torque on the rotor that cancels, or partially cancels, the #uctuating component of
the applied torque.

These equations of motion represent an autonomous dynamical system, because the
varying component of the applied torque, ¹(�), is expressed as a function of the rotor angle
�. For purposes of subsequent analysis, it is convenient to choose the rotor angle as the
independent variable, replacing time [8]. To this end, and to non-dimensionalize



794 A. S. ALSUWAIYAN AND S. W. SHAW
the problem, we "rst de"ne a new variable v as the ratio of the rotor angular velocity to the
average rotor angular velocity �, i.e.,

v,�Q /� . (4)

This dynamic variable will be used to represent rotor speed. It and the S
�
's will be the

generalized co-ordinates for the system, and these will be functions of �. Using the chain
rule, one can obtain the following relationships between derivatives with respect to time and
derivatives with respect to �:
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After equations (1, 2) are non-dimensionalized, and the independent variable is changed
from t to �, the equations of motion become
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Note that the system is now non-autonomous, but its degree has been reduced, since only
"rst derivatives in v appear. Assuming that all the absorbers have the same mass, and all
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paths have the same value of R
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The #uctuating torque generally contains several harmonics. In most situations, only one
or two harmonics have signi"cant amplitude, and therefore we approximate the #uctuating
torque by its dominant harmonic, taken to be of order n, as follows: �(�)"�� sin(n�). For
example, in four-stroke internal combustion engines, n is equal to half the number of
cylinders.

2.2. GENERAL PATH REPRESENTATION

In the present study, a two-parameter family of paths is considered. The designer can
select these two parameters in order to achieve certain goals in terms of absorber
performance. As described by Denman [8], it is convenient to represent the path for the ith
absorber by the local radius of curvature at any point on the path, given by
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Here �
��

is the path's radius of curvature at the vertex, which dictates the small amplitude
nature of the path. The parameter � dictates the large amplitude character of the path, and
typically takes on values from zero to one.

The order of the path nJ
�
is given by the square root of the ratio of the distance from the

rotor center to the center of the path vertex circle and the path vertex radius of curvature
[8], that is,
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This "xes the small amplitude (linearized) natural frequency of the ith absorber, when the
rotor spins at a constant rate �, to be nJ

�
�. This frequency is used for tuning the absorber at

small amplitudes. It is a central feature of these absorbers that this frequency is proportional
to the mean rotation rate, �, since this allows the absorber to remain tuned to a given order
at all rotation speeds of the machine. Based on purely linear considerations, the order of the
path for a CPVA should be tuned to the frequency of the disturbance torque, that is,
nJ
�
"n. In the linear, undamped case this makes the absorber perfectly e!ective, since the

rotor vibrations are completely eliminated. However, the non-linear e!ects that arise from
the frequency}amplitude dependence of the absorber can be handled by incorporating
a small level of intentional linear mistuning on the path, a technique implemented in
practice [14].

The value of � dictates the nature of the amplitude-dependent frequency of the absorber
when it oscillates freely along its path. Some special cases of interest are: �"0 describes

a circular path, �"�
�
"�nJ �

�
/(nJ �

�
#1) describes an epicycloidal path with its base circle of
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radius (R
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) centered at the rotor center (this is the tautochronic path of order nJ
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and �"1 describes a cycloidal path.
In the equations of motion an expression for x
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Here the function x
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) can be thought of as a type of potential function, where the

quadratic term dictates the linear system behavior (frequency) and the quartic term
determines the non-linear behavior (the frequency}amplitude dependence). It is clear from
this that softening paths (such as the circle, �"0) correspond to positive values of 	

�
, while

hardening paths (such as the cycloid, �"1) correspond to negative values of 	
�
. And 	

�
"0

represents the tautochronic epicycloidal path, which is neither softening nor hardening.
Note that the expanded forms of x

�
and g

�
are used in the analysis, but their full forms are

used in the numerical simulations.

2.3. SCALING

Since the ratio of the total absorbers' inertia, I
�
, to the rotor inertia, J, is small, we de"ne

a small parameter 
 as


�"b
�
.

The parameter 
 forms the basis used for the scaling. The value of p, and other similar
scaling powers, will be determined later, and are selected such that the non-linear analysis
captures the desired information. Note that in the unperturbed case, 
"0, the rotor
dynamically de-couples from the absorbers, since the absorbers have zero inertia.

To account for the mistuning between the absorber and the applied torque, the path
order is expressed by

nJ
�
"n (1#
��

�
), (12)

where �
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represents a measure of the mistuning of the ith absorber path and q is to be

determined. Such mistuning is essential for the satisfactory performance of circular path
absorbers [14].

The preferred absorber con"guration has small damping, since it remains tuned relative
to the disturbance at all rotational speeds. In addition, the #uctuating torque amplitude is
small compared to the kinetic energy of the rotor, rendering the non-dimensional torque
amplitude small. Therefore, the parameters �
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where the powers l and r are to be determined. In addition, the amplitude of the absorber
oscillations are assumed to scale with the #uctuating torque level in some manner, and so
we take
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where 
 is to be determined.
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We now turn to the matter of balancing the desired terms in the equations of motion so
that the applied torque, the damping, and the non-linearities come into play in the same
order. We begin with a couple of preliminary expansions.

Note that when 
"0, i.e., b
�
"0, �

�
"0, �

�
"0, �

�
"0, and ��"0, equation (9) yields

vv�"0, which implies that the rotor spins at a constant angular speed. This speed has been
denoted as �, so that the corresponding non-dimensional rotor speed is given by v"1. For
0(
;1, the rotor will have small #uctuations about this constant angular speed, and it is
convenient to expand the rotor speed as
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The path functions can be expanded in terms of 
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(�), the absorber non-linearity is hardening, that is, its frequency increases as
a function of amplitude. The case 	
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The "nal preliminary step is to note that in order for the constant torque terms to

balance, �
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the net constant applied torque (including any constant load) is resisted by the average
bearing resistance to set the mean rotation rate.
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Here the leading term is that predicted by the linear theory, and is composed of the reaction
to the applied torque and the restoring forces from the absorbers. The second term is the
"rst non-linear correction, which arises from Coriolis e!ects of the absorbers' motions.

Using this result in equation (6), and expanding using all the information developed to
this point, a suitable choice of the scaling orders is found to be

q"1, v"�
�
, l"1, r"�

�
, p"1, w"�

�
.

This leads to the desired form of the absorber equations, in which the e!ects of the applied
torques, damping, and non-linearity are captured in the "rst non-linear correction.
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2.4. THE AVERAGED EQUATIONS

With the above scaling results, the rotor dynamics can be eliminated to leading order
from the absorber dynamics. This is done by substituting the expansions from equations
(11), (15), and (17) into equation (6), and expanding using the scaling assumptions and
conditions outlined above. This results in the following equations that describe the
dynamics of the absorbers:
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These equations contain the e!ects of the rotor dynamics on the absorbers to the order
retained. They are expressed in terms of the applied torque and the torques from all
absorbers acting on the rotor, which are contained in the summation term.

It should be noted here that at the order considered, the only non-linear e!ect that
appears is the one due to the path, i.e., 	

�
z�
�
. Missing at this order are all of the non-linear

terms that arise from the kinematic coupling of the rotation and the absorber motion. The
non-linear path term is zero for epicycloidal paths because 	

�
"0 (cf. equation (16)). In this

case, the model reduces to the linearized one, with which it is impossible to capture any
non-linear e!ects. Therefore, in order to analyze the case of epicycloidal paths, one has to
employ a scaling wherein non-linearities other than the path non-linearity are retained.
Chao et al. [13] have done this and analyzed the case of perfectly tuned epicycloidal paths
in some detail. In the present study, epicycloidal paths are not considered.

Equation (18) is weakly non-linear, due to the amplitude scaling, and weakly coupled, due
to the small inertia of the absorbers relative to the rotor. It shows that the system of
absorbers has some very special dynamical features, including the facts that each absorber
has an identical unperturbed natural frequency, and each absorber is resonantly excited by
the #uctuating applied torque. Furthermore, the absorbers are all coupled to one another in
exactly the same manner. When they are identical in mass, path, and damping, the system
possesses a special symmetry that can be used to exploit the analysis of the system dynamics
(see references [13, 15]).

The averaging method will be used to determine approximate steady state solutions of
these equations. To obtain the standard periodic form, the usual transformation to polar
(amplitude and phase) co-ordinates is used,
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The standard period form for the equations is found to be
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The functions f
�
are periodic in the independent variable �, with period (2�/n). Averaging

these equations over one period, one reaches the following averaged equations:
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where an overbar indicates the averaged value of the corresponding variable. These
equations are the basis of the analysis of the system dynamics.

2.5. EXISTENCE AND STABILITY OF UNISON RESPONSE

In this section, we consider the case in which all absorbers are identical and move in
a perfectly unison (synchronous) manner. This is the desired response of the absorbers, so its
existence and stability are of interest.

One objective of this study is to determine the e!ects of intentional linear mistuning, and
so we "x an identical level of mistuning for all absorber paths, as follows:
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These are nothing more than the averaged equations for the case of a single absorber
whose mass is m
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"Nm. The steady state conditions for this unison motion are given by
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Eliminating the phase in the standard manner, and solving for the torque amplitude in
terms of the absorber amplitude (for ease of plotting), one obtains
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These results relate in a simple manner the absorber response, in terms of amplitude and
phase, to the system path parameters, the damping level, and the #uctuating torque
amplitude.

In order to analyze the stability of this unison response, the Jacobian of the system
equations (22) must be evaluated at the steady state conditions. This yields a circulant
matrix of the form
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��
"

n

2Nr



, A2
��

"0.

The block structure of this matrix is not surprising if one considers that the (i, j) 2�2
block represents the e!ect that perturbations in the steady state motion of absorber i has on
absorber j when the entire system is in a synchronous motion.

If all the eigenvalues of the Jacobian matrix have negative real parts, the unison response
is asymptotically stable. For a Jacobian of this form it can be shown that each eigenvalue of
the 2�2 matrix [A1!A2] is an eigenvalue of the Jacobian matrix A repeated (N!1)
times, and the remaining two eigenvalues are the eigenvalues of the 2�2 matrix
[A1#(N!1)A2] [16]. For the stability evaluation we will use the fact that both
eigenvalues of a 2�2 matrix have negative real parts if and only if its determinant is positive
and its trace is negative.

When evaluated on the unison response the matrix [A1!A2] is given by

!

�
�
2

3	
�

4n
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n�
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�

4n
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. (27)

Its trace is equal to !�
�
and is always negative. Its determinant is given by

27	�
�

16n�
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�
�r�



#�n���#

�J �
�
4 � . (28)
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For the unison response the matrix [A1#(N!1)A2] is given by

!
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�

4n
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!n��#

1

2�r
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1
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�

4n
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. (29)

Its trace is equal to !�
�
and its determinant is given by

27	�
�

16n�
r�


!

3
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�
(1#2�)r�



#�n��#n���#

1

4
(n�#��

�
)�. (30)

Since the traces are both negative, no Hopf bifurcations involving complex eigenvalues are
possible. This implies that instabilities to quasi-periodic motions, which would represent
travelling waves in the absorber system, are not possible. The conditions at which stability
changes occur are captured by setting Det[A1!A2]"0 and Det[A1#(N!1)A2]"0,
in which case real eigenvalues pass through the origin in the complex plane. It is quite easy
to solve these conditions for the corresponding critical values of the absorber amplitude,
yielding values of r



at which bifurcations occur. The attendant critical torque levels can

then be found from equation (25).
It should be noted that solutions of equation (28) represent critical amplitudes at which

the unison motion becomes unstable, but continues to exist, resulting in the birth of some
type(s) of non-synchronous, steady state response(s). On the other hand, solutions of
equation (30) represent conditions at which the unison response is annihilated in
a saddle-node bifurcation, representing a sudden jump in the absorbers'motion to another
response branch, which may or may not be of unison type. It can be seen that
Det[A1#(N!1)A2]"0 corresponds to instabilities that preserve the unison nature of
the response by considering the stability of the equivalent single-absorber mass system
represented by equation (23), and noting that it gives the same instability condition. The
other type of instability arises purely from the fact that there are multiple absorbers.

When equations (28, 30) are set equal to zero and solved for r


, the following results are

obtained. For the bifurcation to a non-unison response, Det[A1!A2]"0:

r

���

"

4n

�6	
�
��!���!

3

4n� �n���#

�� �
�
4 ��

�	�

�
�	�

. (31)

For the jump condition, Det[A1#(N!1)A2]"0:

r

�

+

2n

3 �
(�#�

�
)

	
�

, (32)

where the approximation is noted because we have neglected the damping term in the
torque equation, since it is very small compared to other terms. These can be used in
equation (25) to determine the attendant critical torque levels.

The following general observations can be made by considering these two critical
conditions.
From the ,rst condition, the bifurcation to non-unison.

� For 	
�
'0 (softening non-linear paths, like circles), the bifurcation to non-unison exists

only when the level of mistuning is greater than some positive value set by the damping
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level and n. (In order to see this observation, the damping term was not neglected in this
equation, as was done in the second equation.)

� For 	
�
(0 (hardening non-linear paths, like cycloids), the bifurcation to non-unison

exists only when the level of mistuning is negative.

From the second condition, the jump bifurcation.

� For 	
�
'0 (softening paths), a jump exists only when �'!�

�
.

� For 	
�
(0 (hardening paths), a jump exists only when �(!�

�
.

It should be noted that in practice one typically overtunes circular path absorbers, that is,
�'0, so that the jump is avoided. However, this may promote bifurcations to non-unison,
a possibility considered below. Also, it is seen that hardening paths avoid both types of
bifurcations simply by taking �*0.

2.5.1. Results for two common absorber paths

2.5.1.1. Circular paths. For circular paths �"0 which, when used in equation (16), gives
the following expression for the non-linear path coe$cient:

	
�
" �

��
n�(1#n�)�. (33)

When this is substituted into equations (28, 30), the following equations are obtained for the
critical stability conditions:
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3

256
n� (1#n�)�r�



!�



n� (1#n�)�(1#2�)r�



#�

�
[n�(1#2�)�#�� �

�
]"0, (35)

corresponding to the bifurcation to non-unison and the jump conditions respectively.

2.5.1.2. Cycloidal paths. Here �"1 and 	
�

is given by

	
�
"!

1

12
(1#n�)�. (36)

When this is substituted into equations (28,30), the following equations are obtained for the
critical stability conditions:
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256n�
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4 �"0, (37)
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#�

�
[n�(1#2�)�#�� �

�
]"0, (38)

corresponding to the bifurcation to non-unison and the jump conditions respectively.
Since these equations are all quadratic in r�



, they can be solved to relate the critical

absorber amplitude to the tuning order, the mistuning, and the absorber damping level.
This can then be substituted into equation (25) to determine the corresponding critical
torque levels.



Figure 2. Analytical prediction of the e!ect of absorber path type and mistuning on bifurcation torque levels.
Solid lines are for the bifurcation to non-unison responses, and dashed lines are for the jump bifurcation. The three
pairs of lines, moving from lower to upper, are for mistuning levels of 0)5 (�"0)1), 2)5 (�"0)5), and 5)0% (�"1)0).
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3. NUMERICAL EXAMPLES AND DISCUSSION

The values of all parameters are "xed for these examples except the two path parameters
and the #uctuating torque level. This demonstrates how one would select the path
parameters that give e!ective operation for a given torque order over a range of torque
levels. CPVA systems with an inertia ratio of 
"1/20 are considered, and the order of the
applied #uctuating torque is taken to be n"2. The non-dimensional absorber damping
coe$cient is taken to be ��

�
/N"0)02, and the dimensionless rotor damping coe$cient is

taken to be �
�
"0)005.� For numerical simulations, the exact representations of the paths

were used, not the expansions in terms of 
 that were used in the analysis.

3.1. EFFECT OF PATH TYPE ON BIFURCATIONS

Using the above numerical values in equations (31, 32), along with equation (25), the
critical torque levels were obtained as functions of the path coe$cient (�) for various levels
of mistuning. The results are presented in Figure 2. It is worth mentioning here that the plot
shows only positively mistuned paths ranging from circular up to, but not including,
epicycloidal (0)�(�

�
). This is because, as seen in section 2.5, for paths with �'�

�
,

neither bifurcation to non-unison nor jumps are present for positive mistuning levels. Also,
as described below, negative mistuning levels are not of practical importance and should
always be avoided.
�As is typical in many vibration studies, these damping levels are the most elusive of the parameters involved in
this study, since they cannot be predicted from "rst principles.
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It is clear from the "gure that the dependence of the critical torque levels on the
non-linear path parameter is not very signi"cant until one begins to approach
the epicycloid. From the stability point of view, no bene"ts are gained by changing from the
easily manufactured circular paths to other paths with �(�

�
. However, the performance of

the absorbers must also be considered before drawing general conclusions.
The level of mistuning does have a signi"cant e!ect on the stability levels, but,

again, performance must be taken into account. Also, note that near the epicycloidal
path, that is, for �+�

�
"0)89 the critical torque levels for both bifurcations become

large. Here the results are not reliable because, as mentioned earlier, the theory
does not work for epicycloidal paths, due to the scaling employed. In both cases*increased
mistuning and �+�

�
*the response becomes more like that of a linear system,

and thus more stable. In the case of increased mistuning, this is due to the fact that
we are moving away from a resonance condition. For �+�

�
, the non-linear part of

the path is balanced exactly between softening and hardening; this is the tautochronic
condition [8].�

Our goal is to investigate the operating range of absorber systems, as they are limited by
the critical torque levels, and to evaluate the e!ectiveness of the absorbers by computing the
angular acceleration of the rotor, which is desired to be small. We focus on circular and
cycloidal absorber paths and distill some general conclusions regarding choices of path
parameters.

3.2. CIRCULAR PATHS

We begin by demonstrating the accuracy of the analytical results, and then turn to a more
systematic parameter investigation. Figure 3 depicts the unison absorber response versus
torque level, showing both theoretical results from equations (34, 35) and numerical
simulation results for N"4 absorbers with 0 and 4% mistuning levels. Note that as the
absorber amplitudes become larger, for example, on the upper response branches shown in
Figure 3, the analytical results become less accurate, due to the amplitude expansions
employed. Figure 4(a) shows the critical torque levels above which the unison motion
becomes unstable and Figure 4(b) shows the critical torque levels above which the jump
occurs, both for di!erent mistuning levels, again for N"4. These results demonstrate the
validity of the analytical approach employed.

It can be seen from equation (34) that one can extend the range of the stable unison
response by varying the number of absorbers, N. However, the dependence on this
parameter is very small. To see this, three di!erent mistuning levels of the paths in the
present numerical example are considered. They are 1 (�"0)2), 2 (�"0)4), and 4%
(�"0)8). With all other numerical values "xed, increasing the number of absorbers from
2 to 14 in each case increases the critical torque levels at which the bifurcation to
non-unison takes place by only 8, 2, and 0)4% respectively. The practical method for
extending the range of the stable unison response, as mentioned earlier and as seen from
Figure 4(a), is to increase the level of mistuning in the paths. In fact, this will signi"cantly
delay both of the bifurcation points.

The response curves for N"4, with di!erent mistuning levels is depicted in Figure 5.
This shows that the jump point shifts rightward as the level of mistuning is increased.
Figure 5 also shows that as the level of mistuning is increased, the absorbers' amplitudes on
the lower branch become smaller for a given torque level, which implies that the absorbers
� In previous work it has been shown that the perfectly tuned epicycloidal path exhibits a bifurcation to
non-unison, but not a jump [15].



Figure 3. Absorber response amplitude versus torque level for N"4 circular path absorbers with mistuning
levels of 0 (�"0) and 4% (�"0)80). Curves represent responses predicted by the analysis, with ** lines
corresponding to stable responses and } } } lines representing unstable responses. � � � circles indicate results
from numerical simulations.

Figure 4. Bifurcation torque levels versus mistuning for circular path CPVAs. � � � circles are the
theoretical predictions and &&*'' 's are results from numerical simulations. (a) Bifurcation to non-unison,
(b) Jump.
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Figure 5. Absorber amplitude versus torque level for several levels of mistuning for circular path CPVAs.
Moving from the top curve downward, the mistuning levels are: �"1)0, 0)5, 0, !0)25, !0)5. Stability is not
indicated here.
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are cancelling less of the applied torque. This indicates that there is a tradeo! between large
operating range and better absorber performance. It should also be noted that as the
mistuning level approaches !2)5% (�"!0)5), the torque level at which the jump occurs
approaches zero, indicating that the absorbers will jump no matter how small the applied
torque is. After the jump, as will be shown later, the absorbers'motions actually add to the
applied torque, thereby increasing vibration levels as compared to the rotor with the
absorbers locked. The stability of the various steady state curves in Figure 5 are nearly as
expected, with one exception. The lower branches are stable up to a torque level just prior to
the jump, where the bifurcation to non-unison occurs. The middle branch is, of course,
everywhere unstable, and the upper branch is everywhere stable.

Figure 6 shows a plot of the amplitude of the non-dimensional rotor acceleration,
�vv��, versus the applied torque level. The previous comment about the tradeo!
between performance and range is clear from this "gure as well, since the performance
degrades as the range is increased. However, in all cases shown here (since the mistuning
levels are positive in these examples), the absorbers reduce the vibration levels when
compared to the system with the absorbers locked at their respective vertices (where they
play the role of a simple #ywheel).

It should be noted here that the jump leads to the existence of multiple unison stable
responses at a given torque level. In fact, the bifurcation to non-unison leads to an even
more complicated response diagram, with the possibility of several stable non-unison
response branches [17].

An interesting observation is the presence of a local maximum angular acceleration of the
rotor, which occurs on the lower branch of the analytical response curves. This exists just
before the jump point on the simulation curves, and it has been observed that these local
peak acceleration points represent the points where bifurcations to non-unison response



Figure 6. Amplitude of rotor acceleration versus torque level for N"4 circular path CPVAs. The straight } } }
line is a reference corresponding to the response with the absorbers locked at their vertices. ** lines represent
stable responses predicted by the analysis, and } ) } ) } lines represent unstable responses. � � � circles indicate
results from numerical simulations. Results are shown for three levels of mistuning: �"0 (smallest operating
range), �"0)4, and 1)0 (largest operating range).
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take place. This can be shown to be the case mathematically, as follows. From equation (17)
and the "rst of equation (19), we have

vv�(�)"
�[n�r


sin(n�#�



)#�I � sin(n�)]#O(

�
�).

Also, since ��
�
is small, it is seen from equation (23) that the phase �



is close to zero or �.

Before the jump, �


+� (as will be shown subsequently). The above equation thus

becomes

vv�(�)+
�[�I �!n�r


] sin(n�)

and the rotor acceleration amplitude is thus approximated by

�vv�(�)�+
�[�I �!n�r


].

Di!erentiating this result with respect to �I � , and making use of the second of equation (23)
with �



"� (since r



depends on �I � in a non-linear manner), the following expression is

obtained:

d �vv�(�)�
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��1!
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�
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Figure 7. Absorber amplitude versus torque level for N"4 cycloidal path CPVAs. ** lines are stable
responses predicted from the analysis, and � � � circles are results from numerical simulations. The curves are for
mistuning levels of: 0 (upper curve), 5 (middle curve), 10% (lower curve).
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Solving this for the r


value at which �vv�(�)� is a maximum, i.e., where this expression is zero,

one "nds

r


+

2n

3 �
�
	
�

,

which is exactly the same as the expression for r

���

given by equation (31), when the term
with the damping coe$cient ��

�
is ignored. This feature of the response is not well

understood, but it has been observed in preliminary experimental investigations [18].
The general response for circular paths is observed to be a unison response with a smooth

increase in absorber amplitude and angular acceleration, up to a point at which the
acceleration peaks and the system bifurcates to a non-unison motion. Typically, the
response beyond this torque level is captured by the undesirable upper branch of the unison
response. This is due to the bifurcation being sub-critical, or there being a very small basin
of attraction for the post-bifurcation response [17]. In the present case withN"4, the only
level of mistuning where it was possible to observe the non-unison response was at 0)5%.

3.3. CYCLOIDAL PATHS

The cycloidal path o!ers a slightly hardening non-linearity (	
�
(0, as given by equation (36)),

and this avoids many of the problems and shortcomings associated with circular paths. For
cycloidal absorber paths, neither the bifurcation to non-unison nor jumps are present when
�*0, as is clear from equations (37,38). Figure 7 shows theoretical and numerical
simulation results for N"4 absorbers with 0, 5, and 10% mistuning levels respectively.



Figure 8. Amplitude of rotor acceleration �vv�(�) � versus torque level for N"4 cycloidal path absorbers, for
three levels of mistuning. The } } } line is the reference with the absorbers locked. The** curves are analytical
predictions and the sets of symbols are simulation results. The lower curve and � � � circles are for mistuning
level 0%, the middle curve and stars are for 2)5% mistuning, and the upper curve and open boxes are for 5)0%
mistuning.
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Similar to circular paths, increasing the mistuning levels in cycloidal paths will decrease the
amplitude of the absorbers' motion for the same torque level. Figure 8 shows theoretical
and numerical simulation results for the amplitude of the non-dimensional rotor angular
acceleration versus torque level forN"4 absorbers with 0, 2)5, and 5% mistuned cycloidal
paths respectively. These results indicate that the mistuning should be kept as small as
possible in order for the absorbers to e!ectively cancel the #uctuating torque. In this case, in
contrast with circular paths, the range is not limited by a jump bifurcation.

Note that again the analytical results are quite good, but deteriorate as the absorbers'
amplitude increases. It should also be noted here that the general agreement between theory
and simulation is not as good as it was for circular paths. As mentioned earlier, for �(!�

�
,

the theory predicts jumps, but this could not be found in the numerical simulations. The
reason for this reduced accuracy is that cycloidal paths are much closer to epicycloidal
paths where, as mentioned above, non-linearities other than the path non-linearity are also
important. In any case, mistuning values of �(!�

�
are not of practical importance (as

described in the following section), and the theory works very well for practical levels of
mistuning.

An interesting range of mistuning that deserves further mention is !�
�
(�(0. For

mistuning levels in this range, the theory predicts an amplitude range where the unison
response is unstable. This range can be found using equation (37). For cycloids, it was
possible to numerically "nd some stable steady state non-unison responses in these ranges.
Table 1 shows the theoretical ranges of absorber amplitudes and torque levels at which the
unison response is unstable for a system with N"4 absorbers, for di!erent mistuning
levels. The two absorber amplitudes and torque levels correspond to the lower and upper
bounds of this unstable region. Figure 9 shows the numerically simulated steady state
absorber responses for �"!0)2 for a set of torque levels that run through the unstable



TABLE 1

¹heoretical ranges of absorber amplitudes and torque levels at which non-unison motions exist
for N"4 absorbers with cycloidal paths

Mistuning (�) r

�

r

�

��� ���

!0)10 0)30 0)50 0)012 0)022
!0)20 0)42 0)71 0)014 0)032
!0)30 0)51 0)88 0)014 0)039
!0)40 0)58 1)01 0)012 0)045

Figure 9. Numerical simulations of cycloidal path absorbers' responses for �"!0)2, N"4 and four di!erent
levels of torque: (a) ��"0)0125, (b) 0)014, (c) 0)032 and (d) 0)0335.
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range. There are evidently a number of bifurcations in this range, leading to a variety of
possible responses. For this reason, and other reasons to be outlined below, negative
mistuning should be avoided for any path type.

3.4. COMMENTS ON THE ABSORBER SYSTEM PERFORMANCE

In order to determine how the performance of the absorbers is a!ected by the level of
mistuning, one can consider equation (23), along with the fact that the absorber damping ��

�
is small. It can be seen that the absorbers' steady state phase angle �



is close to either 0 or �.

For paths with 	
�
'0, for example circular paths, if �'!�

�
and the absorbers' amplitude

of vibration is small enough, which is the case here, then �


is close to �. Then, from



Figure 10. Numerical simulation of the steady state rotor angular acceleration, vv�(�), versus � for ��"0)02 for
N"4 mistuned circular path absorbers. The } } } line is for the absorbers locked, the }} line with ) ) ) is for !5)0%
mistuning, the** line with * * * is for 5)0% mistuning on the upper branch of the response curve, and the**
line with � � � circles is for 5)0% mistuning on the lower branch of the response curve.

CENTRIFUGAL PENDULUM ABSORBERS 811
equation (17), along with equation (19), one concludes that the absorbers are producing
a torque which is opposite in phase to the applied torque. If the absorbers' amplitude of
vibration is increased, say, by increasing the applied torque level, then it will reach a value
where cos(�



) will jump from near (!1) to near (#1). This corresponds to the jump beyond

which the system operates on the upper part of the response curve. Here the motions of the
absorbers are in phase with the applied torque, thereby increasing torsional vibration levels.
An example of this is seen in Figure 6, wherein the upper stable branch of the acceleration
response curves are above the reference line. For �)!�

�
, cos(�



) is always near (#1) and

the absorbers always add to the applied torque. These facts are demonstrated by the
simulation results for N"4 absorbers, as shown in Figure 10. This "gure shows the
non-dimensional rotor angular acceleration, vv�(�), versus rotor angle for steady state
responses on the lower and the upper portions of the response curve for #5% mistuning
levels and a torque amplitude of 0)02. It also shows vv�(�) for the same torque level but with
a mistuning level of !5%, and for the absorbers locked at their vertices. Note that the
absorbers actually increase the vibration level when on the upper branch of the response
curve and for the negative mistuning level.

For paths with 	
�
(0, for example cycloidal paths, when �)!�

�
, equation (23) indicates

that �


is near 0. This implies that the absorbers are always adding torsional vibrations to

the rotor. For �'!�
�
, then �



is close to � and the absorbers are reducing the rotor

torsional vibrations, as long as they move in unison. However, for !�
�
(�(0 there are

ranges of applied torques where non-unison motions exist, and one cannot conclude that
the absorbers are working properly in (or near) these torque ranges. For �*0, the
absorbers reduce torsional vibrations at all torque levels. This is because, for �*0, neither
bifurcations to non-unison nor jumps are present. Figure 11 shows numerical simulation
results for the non-dimensional rotor angular acceleration of N"4 cycloidal path



Figure 11. Numerical simulation of the steady state rotor angular acceleration, vv�(�), versus � for ��"0)02 for
N"4 mistuned cycloidal path absorbers. The } } } line is for the absorbers locked, the ** line with ) ) ) is for
!5)0% mistuning, the** line with ### is for 5)0% mistuning, and the** line with � � � circles is for 0%
mistuning.
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absorbers with 0, 5, and !5% mistuning levels, subjected to a torque of amplitude 0)02.
These e!ects are clearly demonstrated here.

4. SUMMARY AND CONCLUSIONS

The following points summarize the "ndings of this study:

For paths ranging from circular up to, but not including, epicycloidal paths, that is, for
0)�(�

�
.

� There are positive mistuning levels below which no bifurcations to non-unison are
present. These levels are usually very small and are parameter dependent.

� Jumps are always present for paths with mistunings �'!�
�
.

� Paths other than circular ones do not have signi"cant bene"ts over the easily
manufactured circular path.

� For paths with �'!�
�
, the absorbers reduce torsional vibrations for absorber responses

that are on the lower portions of the response curves, but they increase torsional vibration
for responses on the upper portions of the response curves.

For paths ranging from, but not including, epicycloidal paths up to cycloidal paths, that is,
for �

�
(�)1.

� Neither bifurcations to non-unison nor jumps are present for perfectly tuned and
positively mistuned paths, that is, for �*0.

� For negatively mistuned paths, �(0, there are torque ranges where non-unison motions
exist.
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� The analysis presented predicts jumps for paths with �(!�
�
, but these are not found in

the numerical simulations.A

For all paths considered.

� As the mistuning levels are positive and increased, the bifurcation to non-unison and the
jump points, if they exist, are pushed out to higher torque levels, and they approach each
other, thus resulting in increased torque operating ranges.

� When the operating ranges are increased by increasing the mistuning levels, the
e!ectiveness of the absorber system, in terms of reducing rotor torsional vibrations, is
reduced.

� With �)!�
�
, the absorbers actually increase, rather than reduce, the levels of torsional

vibration.

In light of these observations, one can conclude that for any type of absorber path, when
the absorber amplitudes are kept very small it is best not to have any mistuning, i.e.,
perfectly tuned paths are the best choice. However, if one wants to increase the operating
range, positive mistuning levels should be selected, keeping in mind that the absorbers'
performance will be reduced. Negative mistuning levels should always be avoided.

When the performance of absorber systems with circular and cycloidal paths are
compared, it is concluded that absorbers with cycloidal paths are preferred because they do
not undergo jump bifurcations nor bifurcations to non-unison steady state responses,
thereby resulting in much larger working ranges. The lack of instability of the unison
response implies that only one steady state response exists at each torque level, and this
response is equivalent to that predicted by using a model with a single absorber mass, thus
making design analysis much easier.

In addition, as will be described in a forthcoming paper, one should always use a small
amount of positive mistuning for any absorber path, in order to avoid vibration localization
that can arise from slight di!erences among the absorbers [17].
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APPENDIX A: NOMENCLATURE

a
�

amplitude of the ith absorber response
aN
�

averaged version of a
�

A Jacobian for averaged version of unison response
A1 2�2 block component of A
A1

��
elements of A1

A2 2�2 block component of A
A2

��
elements of A2

b
�
"I

�
/J inertia ratio for the ith absorber

b
�
"I

�
/J inertia ratio when the absorbers are identical

c
��

equivalent viscous damping constant for the ith absorber
c
�

equivalent viscous damping constant for the rotor
f
�

function de"ned during averaging
gJ
�
(s
�
) non-dimensional version of GI

�
(S

�
)

GI
�
(S

�
) path function for ith absorber

i index for absorber identi"cation
I
�
"m

�
R�

��
moment of inertia of the ith absorber at its vertex

I
�
"mR�

�
I
�
's when the absorbers are identical

J moment of inertia of the rotor
l scaling order parameter
m

�
mass of ith absorber

m mass of each absorber when they are identical
m

�
"Nm total mass of all absorbers when they are identical

n order of the applied torque
nJ
�

tuning order for the ith absorber
N number of absorbers
p scaling order parameter
q scaling order parameter
r scaling order parameter
r



averaged amplitude of absorbers' responses when moving in unison
r�



rate of averaged, unison amplitude change with respect to �
r

���

value of r


when bifurcation to non-unison occurs

r

�

value of r


when jump bifurcation occurs
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r
�
(s
�
) non-dimensional version of R

�
(S

�
)

R
�
(S

�
) distance from center of rotation to m

�
at S

�
R

��
"R

�
(0) distance from center of rotation to m

�
at S

�
"0

R
�
"R(0) R

��
when the absorbers are identical

s
�

non-dimensional position of ith absorber along its path
s�
�

non-dimensional path speed of ith absorber with respect to �
s�
�

non-dimensional path acceleration of ith absorber with respect to �
S
�

position of ith absorber along its path
SQ
�

path speed of ith absorber
SG
�

path acceleration of ith absorber
¹
�

constant component of the torque acting on the rotor
¹(�) #uctuating component of the torque acting on the rotor
v"�Q /� non-dimensional rotor speed
v�"dv/d� non-dimensional rotor acceleration as measured by the rotor angle
w scaling order parameter
X

�
(S

�
)"R�

�
(S

�
) square of the distance from center of rotation to m

�
at S

�
x
�
(s
�
) non-dimensional version of X

�
(S

�
)

z
�

scaled version of s
�

z�
�

scaled version of s�
�

z�
�

scaled version of s�
�
 scaling parameter

�
�

phase of ith absorber response
�M
�

averaged version of �
�

�



averaged phase of absorbers' response when moving in unison
��



rate of averaged, unison phase change with respect to �
	
�

non-linear parameter for the expanded form the ith path
	
�

	
�
for perfectly tuned, identical paths

�
�

non-dimensional constant torque
��
�

scaled version of �
�

�(�) non-dimensional #uctuating torque
�� (�) scaled version of �(�)
� non-linear path parameter
�
�
"�nJ �/(nJ �#1) non-linear path parameter for the tautochronic epicycloidal path

�
��

non-dimensional damping coe$cient for the ith absorber
�
�

non-dimensional damping coe$cient for the rotor
��
�

scaled version of �
�
for identical absorbers

��
�

scaled version of �
�
 scaling order parameter

� mean rotor speed
� rotor angle
�Q rotor angular speed
�G rotor angular acceleration
�
�

the local radius of curvature of the ith path
�
��

the local radius of curvature of the ith path at S
�
"0

�
�

mistuning parameter for the ith absorber
� mistuning parameter when absorbers are identical
( )� di!erentiation with respect to �
( �) di!erentiation with respect to time
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