
Journal of Sound and Vibration (2002) 252(5), 935–944
doi:10.1006/jsvi.2001.4044 available online at http://www.idealibrary.com on
SOME REMARKS ON THE NUMERICAL TIME INTEGRATION OF
NON-LINEAR DYNAMICAL SYSTEMS

P. B. Bornemann, U. Galvanetto and M. A. Crisfield

Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BY,
England. E-mail: u.galvonetto@ic.ac.uk

(Received 9 July 2001, and in final form 2 October 2001)
1. INTRODUCTION

During the last two decades the study of small non-linear dynamical systems has known a
tremendous growth. The complexity and richness of their dynamics have captured the
attention of the researchers who are increasingly using numerical algorithms to explore
dynamics that can only be partially investigated with analytical tools. Some potential
pitfalls of the numerical integration have been highlighted in several papers, see for
example reference [1], but it is often believed that an accurate time integration scheme with
small time steps can deal with most non-linear dynamical systems. One of the most widely
used time integration algorithms is the family of the explicit Runge–Kutta schemes,
especially the fourth order members, see for example references [2–5] and a practically
infinite number of other papers. These methods are very general, easy to implement and
fourth order accurate. In discrete linear systems, where a finite number of natural
frequencies can be detected, it is sometimes assumed that a time step equal to a small
fraction of the smallest natural period is sufficient to guarantee the accuracy of the
integration, where small fraction means equal to 1/50-1/30 [6]. Moreover, very often only
the steady state behaviour is investigated and therefore the initial transient is disregarded,
but in this way one could lose some information interesting from a numerical point of
view, as explained later. In the case of conservative problems it is often believed that a
small time step is sufficient to prevent numerical instabilities, i.e., to maintain the total
energy of the system close to its exact value. In this paper, it is shown how a small error in
the total energy does not necessarily corresponds to a small error in the solution.

In structural engineering implicit time integration schemes are commonly used to
investigate the long-term dynamics of systems in which high frequencies are not present or
can be neglected. One of the most popular implicit schemes is Newmark’s method [7] that
is general and, for the parameter choice of the present work, unconditionally stable for
linear problems. However, this stability is not maintained for non-linear problems and
hence a range of energy–momentum conserving schemes have been proposed [8, 9] for
mechanical systems. Both, Newmark’s method and energy–momentum methods are at
most second order accurate. It will be shown how these lower order implicit time
integration methods achieve a better solution in a conservative mechanical problem, the
rigid circular pendulum, in particular if energy conservation is guaranteed. The main
drawback of the energy conserving methods is their lack of generality since different energy
conserving schemes have to be developed for different systems of differential equations.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The paper is organized as follows: section 2 presents the problem of a simple pendulum.
Two explicit fourth order Runge–Kutta schemes and three second order implicit schemes
are described in section 3. Finally, in section 4, the results of these numerical integrators of
section 3 to a long-time integration of the pendulum of section 2 are compared to the exact
solution given in the same section.

2. SIMPLE RIGID PENDULUM

Figure 1 shows the system under investigation: a 1-d.o.f. rigid pendulum. The angle, y,
between the pendulum and the vertical direction, is the only degree of freedom of the
system, while ‘ is the constant length and m indicates a point mass at the tip of the truss.
The gravity field is defined in the negative y direction by the constant acceleration g. No
additional external or damping forces are applied.

The motion of the pendulum is described by the non-linear second order differential
equation

m‘ €��þmg sin y ¼ 0; yðt0Þ ¼ y0; ’yyðt0Þ ¼ ’yy0 ð1Þ

with initial conditions y0 and ’yy0: The system is conservative therefore the total energy (or
Hamiltonian) H, sum of kinetic energy K and potential energy V are constant as shown by
the following equations:

H ¼ K þ V ¼ 1
2
m‘2 ’yy

2
�mg‘ cos y ¼ H0;

H0 ¼ 1
2
m‘2 ’yy

2

0 �mg‘ cos y0:
ð2Þ

An analytical solution of the motion is given in reference [10, Chapter 1].

yðtÞ ¼ 2 arcsin k � snðt
ffiffiffiffiffiffiffiffiffi
g=‘;

p
kÞ

� �
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ

H

mg‘

� �s
: ð3Þ

Equation (3) contains the Jacobian elliptic function sn and its modulus k.

3. TIME INTEGRATION SCHEMES

Numerical time integration is performed for t04t4tN at discrete time steps tnþ1 ¼
tn þ Dtn; n ¼ 0; . . . ; N; with time step size Dtn > 0: The numerical approximations of angle
and angular velocity at tn are yn � yðtnÞ and ’yyn � ’yyðtnÞ:
Figure 1. 1-d.o.f. pendulum.
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3.1. RUNGE–KUTTA METHODS

The widely used fourth order accurate Runge–Kutta methods, Kutta4 and Fehl-berg4,
e.g., references [2, 11, 12], are used to integrate equation (1). Since these explicit schemes
are first order integrators, equation (1) has to be transformed into a system of two first
order ODEs, where pT ¼ ½p1 p2	 ¼ ½y ’yy	:

’ppðtÞ ¼
’pp1

’pp2

" #
¼

’yy
.yy

" #
¼

’yy

� g
‘ cos y

" #
¼

p2

� g
‘ cos p1

" #
¼ Fðt; pðtÞÞ: ð4Þ

The general definition of a Runge–Kutta scheme with s-stages is given by

ki ¼ Fðtn þ ciDtn; pn þ Dtn
Xs

j¼1

aijkjÞ; i ¼ 1; . . . ; s;

pnþ1 ¼ pn þ Dtn
Xs

j¼1
bjkj ; ð5Þ

where the constant parameters ci; aij and bj ði; j ¼ 1; . . . ; sÞ are different for each Runge–
Kutta scheme. Equation (6) displays these parameter for Kutta4 (s=4) in the convenient
Butcher scheme, where the column corresponds to ci and the row to bj. The main diagonal
and upper triangle of matrix aij are zero which is necessary for explicit schemes. Similarly,
Butcher’s scheme for five-stages Fehlberg4 is expressed in equation (7). Additionally, the
fifth order companion, Fehlberg5 (s=6), is introduced. This embedded scheme will be
later used for an adaptive time-stepping algorithm [11, 12].
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3.2. NEWMARK’S METHOD

Newmark’s method [7] is based on a linear interpolation of acceleration with two
control parameters 04g41 and 04b41

2
: In linear structural dynamics the choice g51

2
;b

51
4ðgþ

1
2Þ
2 [13] guarantees unconditional stability for any time step size Dtn > 0

(A-stability).
For the rigid pendulum, Newmark’s method is given as

ynþ1 � yn
Dtn

¼ ’yyn �
Dtn
2

ð1� 2bÞ
g

‘
sin yn þ 2b

g

‘
sin ynþ1

� �
; ð8Þ

’yynþ1 � ’yyn
Dtn

¼ �ð1� gÞ
g

‘
sin yn � g

g

‘
sin ynþ1: ð9Þ

In the remainder the parameters are fixed with g ¼ 1
2
; b ¼ 1

4
: This scheme is referred to as

average acceleration method or trapezoidal rule (TR) and is an implicit, second order
accurate Runge–Kutta method. Although it preserves the energy in linear Hamiltonian
mechanical systems, this property is not retained in conservative non-linear dynamical
systems.

3.3. ENERGY–MOMENTUM METHOD

Originally, Simo et al. [8] designed energy–momentum methods which take advantage of
the fact that certain properties, such as total energy, translational and angular momenta,
are conserved in some dynamical systems. Energy–momentum methods preserve these
properties independent of the time step size, see references [8, 9, 14].

The energy–momentum method (EMM) needs two different parts, angular velocity and
angular acceleration, to discretize the second order differential equation of pendulum (1).

ynþ1 � yn
Dtn

¼
’yynþ1 � ’yyn

2
; ð10Þ

’yynþ1 � ’yyn
Dtn

¼
1

m‘

VðynÞ � Vðynþ1Þ
‘ ynþ1 � ynð Þ

¼ �
g

‘

cos yn � cos ynþ1

ynþ1 � yn
: ð11Þ

The potential energy VðyÞ ¼ �mg‘ cos y; as in equation (2), is used to express equation
(11) which is an algorithmic version of equation (1) designed to conserve the total energy
(2). Obviously, this part differs for different mechanical systems. The presented formulae
(11) and (10), the latter basically the trapezoidal rule, are second order accurate.

The conservation of total energy can be demonstrated by computing the change of
energy between time tn and tnþ1: Equations (10, 11) are introduced in equation (2):

Hnþ1 �Hn

Dtn
¼

m‘2

2Dt
’yy
2

nþ1 � ’yy
2

n

� �
þ

mg‘

Dtn
ðcos yn � cos ynþ1Þ

¼ m‘2 �
g

‘

cos yn � cos ynþ1

ynþ1 � yn

� �
ynþ1 � yn

Dtn

� �
þmg‘

cos yn � cos ynþ1

Dtn
¼ 0:

ð12Þ

Similarly, preservation of angular momentum for g=0 can be shown. However, all
presented time integration schemes conserve angular momentum in this special case of the
1-d.o.f. pendulum without gravity (g=0), because the mechanical system is described in
equation (1) by the liner differential equation .yy ¼ 0 and the appropriate initial conditions.
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3.4. ‘‘SINE-BASED’’ MIDPOINT METHOD

As an alternative to the energy–momentum method of section 3.3, a ‘‘sine-based’’
midpoint method (SIM), which also conserves total energy is constructed. Again, discrete
versions for the angular velocity and for the angular acceleration form the time integration
rule as follows:

2 sinðDy=2Þ
Dtn

¼
’yynþ1 þ ’yyn

2
and Dy ¼ ynþ1 � yn; ð13Þ

’yynþ1 � ’yyn
Dtn

¼ �
g

‘
sin ynþ1=2 with ynþ1=2 ¼

ynþ1 þ yn
2

: ð14Þ

An examination of the local discretization error of equations (13) and (14) shows that
the ‘‘sine-based’’ midpoint method is second order accurate. The same idea as in equation
(12) can be applied to demonstrate the property of energy conservation for an arbitrarily
large time step size.

4. EXAMPLE

In the example problem Figure 2 with truss length ‘ ¼ 1 m and point mass m=1kg, the
initial position was chosen at y0 ¼ �p with a small angular velocity ’yy0 ¼ 10�3 s�1: The
pendulum rotates continuously anticlockwise due to the initial angular velocity under the
effect of gravity g ¼ 9�8 m=s2 with a constant total energy of H0 ¼ 1

2
m‘2 ’yy

2

0 �mg‘ cos y0 ¼
9�800 0005 Nm:

At first, the pendulum equation was integrated from t0 ¼ 0 s to tN ¼ 50 000 s with a
fixed time step size Dt ¼ 0�01 s: The period can be determined with T � 6�470 7897 s; so
the step size corresponds to roughly 650 steps per period. The results of the different time
integration schemes are shown in Figure 3. Although all implicit schemes, trapezoidal rule
(TR), energy–momentum method (EMM) and ‘‘sine-based’’ midpoint method (SIM) are
close to the analytical solution, both explicit schemes depart from the reference.

However, the course of total energy, as shown in Figure 4 in the form of relative
deviation D %HH ¼ ðHn �H0Þ=H0; exhibits smaller energy errors for the explicit schemes
compared to the trapezoidal rule. At the end of the integration Fehlberg4 deviates by
� 0�001%; Kutta4 by � �0�002%; whereas TR by � �0�03%:
Figure 2. Initial configuration of example.



Figure 3. Angle versus time, fixed time step size Dt ¼ 0 � 01 s : }}, (1): Reference; - - - - - -, (2): Kutta4;- - - - -,
(3): Fehlberg4; ........, (4): TR; - � - � - � - � , (5): EMM; - � - � - � - � , (6) SIM.

Figure 4. Total energy versus time, fixed time step size Dt ¼ 0 � 01 s : }}, (2): Kutta4; - - - -, (3): Fehlberg4;
- - - - -, (4): TR;......., (5): EMM; - � - � - � - � , (6) SIM.
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The energy-conserving schemes react as expected and no energy-fluctuations are
observable.

In Figures 5 and 6, the initial time histories of angle and total energy over a shorter time
are magnified. The solution of the Fehlberg4 algorithm rotates increasingly quickly as the
energy level rises, whereas the numerical energy consumption of the Kutta4 scheme leads
to a qualitative change of the result at t � 190 s: At this time, the total energy falls below
the critical energy level of H’yy¼0; T¼1 ¼ 9�8 Nm; which represents a state with no initial
velocity, see also reference [10]. The pendulum oscillates rather than rotating in the
following integration.

The application of the adaptive time integration scheme Fehlberg4 (5) [12] improves the
result, see Figure 7. However, with an absolute tolerance limit of tol ¼ 10�10 the number
of integration steps was almost doubled N ¼ 9 402 523 leading to an average step size of
Dtaverage � 5�317� 10�3 s: The step size minimum was Dtmin � 2�221� 10�3 s and the



Figure 5. Angle versus time, fixed time step size Dt ¼ 0 � 01 s : }}, (1): Reference; - - - - - -, (2): Kutta4;- - - - -,
(3): Fehlberg4; ........, (4): TR; - � - � - � - � , (5): EMM; - � - � - � - � , (6) SIM.

Figure 6. Total energy versus time, fixed time step size Dt ¼ 0 � 01 s : }}, (2): Kutta4; - - - - - -, (3): Fehlberg4;
- - - - -, (5): EMM; ......., (6) SIM.

Figure 7. Adaptive algorithm Fehlberg4 (5): Angle versus time}}, (1): Reference; - - - - - -, (7): Fehlberg4 (5).
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maximum Dtmax � 5�524� 10�3 s: In Figure 8, the deviation of total energy is compared
to the numerical divergence for the energy-conserving methods.

Finally, the problem under investigation was solved with a larger time step, Dt ¼ 0�15 s
corresponding to 43 points per period. For the chosen integration interval 0 s4t450 00
0 sN ¼ 333 333 steps are used. Figures 9 and 10 show how Kutta 4 switches again to a
low-energy level oscillation, Fehlberg4 finds a fast spinning solution at a high-energy level,
TR does not diverge but finds a solution with no physical meaning, whereas EMM and
SIM still find reasonable solutions. The results obtained by the trapezoidal rule seems to
contradict its property of A-stability, but the concept of A-stability only holds for the
integration of linear differential equations. Figure 11 shows the total energy computed by
the three implicit integration methods: with the larger time step, the energy computed by
TR can be affected by an error larger than 7%.
Figure 8. Relative deviation from total energy ðHðtÞ �H0Þ=H0 versus time }}, (5):EMM Dt ¼ 0�01 s ;
- - - - - -, (6): SIM Dt ¼ 0�01 s; - - - - - -, (7): Fehlberg4(5).

Figure 9. Angle versus time, fixed time step size Dt ¼ 0�15 s : }}, (1): Reference; - - - -, (2): Kutta4;- - - - - -,
(3): Fehlberg4; . . .. . ., (4): TR;- � - � - � , (5): EMM; - � - � - � - � , (6) SIM.



Figure 10. Relative deviation from total energy ðHðtÞ �H0Þ=H0 versus time, fixed time step size Dt ¼ 0�15 s :
}} (2): Kutta4;- - - - -, (3): Fehlberg4; - - - - -, (4): TR; ........., (5): EMM; - � - � - � - � , (6) SIM.

Figure 11. Implicit schemes: relative deviation from total energy ðHðtÞ �H0Þ=H0 versus time, fixed time step
size Dt ¼ 0�15 s : }},(4): TR; - - - - - -, (5): EMM;- - - - - -, (6) SIM.
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5. CONCLUSIONS

A conservative, non-linear dynamic problem has been numerically integrated with
different algorithms and the relevant solutions have been compared to the exact reference
solution. Initially, a small time step has been chosen (650 time steps per period). The
higher order schemes, Kutta4 and Fehlberg4, provide the worst solution. On the contrary,
all the implicit methods, that are only second order accurate, calculate a much more
accurate solution. Surprisingly, the energy computed by Kutta4 and Fehlberg4 is
practically constant during the integration whereas the energy computed by TR is affected
by a greater error; therefore, monitoring the total energy of the system during the
numerical integration would not necessarily provide a reliable check on the accuracy of the
solution. For a larger time step, the conserving schemes still provide a reasonable answer
whereas TR converges to a meaningless solution. Hence, it seems that the property of
energy conservation has a considerable influence on the quality of the solution for this
conservative mechanical problem. Indeed, for more complex problems for which the
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potential includes the strain energy, it has been found that both energy and momentum
conservation can be important [8, 9, 14]. For a hypothetical dissipative system the results
might be different. Nonetheless, even for dissipative systems it would seem sensible to
introduce algorithms that retain the conservation properties in the limit as the dissipation
tends to zero.

The main conclusion of the present work is that caution must be used when integrating
even simple non-linear systems with popular fourth order Runge–Kutta explicit
algorithms. Numerical solutions so obtained should always be compared with other
solutions obtained with other algorithms, possibly derived from energy–momentum
conserving schemes.
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