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A high-precision thick plate element proposed by the last author of this paper has been
applied to free vibration analysis of plates to study its performance. The element has
a triangular shape and it has three nodes at its corners, three mid-side nodes on each side
and four nodes within the element. The transverse displacement and rotations of the normal
have been taken as independent field variables and they have been approximated with
polynomials of different orders. This has not only helped to include the effect of shear
deformation but also made the element free from locking in shear. Initially, the number of
degrees of freedom of the element is 35, which is reduced to 30 by eliminating the degrees of
freedom of the internal nodes. This has been done through static condensation. To facilitate
the condensation process, efficient mass lumping schemes have been recommended to form
the mass matrix having zero mass for the internal nodes. Recommendation has also been
made for the inclusion of mass for rotary inertia in a lumped mass matrix. Numerical
examples of plates having different shapes and boundary conditions have been solved by this
element. Examples of plates having internal cutout and concentrated mass have also been
studied. The results obtained in all the cases have been compared with the published results
to show the accuracy and range of applicability of the present element.

© 2002 Elsiver Science Ltd. All rights reserved.

1. INTRODUCTION

The finite element method [1] is regarded as the most accurate and versatile analysis tool
specifically in structural analysis problems. The plate bending is one of the first problems
where finite element was applied in the early 1960s. The initial attempts were made with thin
plates based on Kirchhoff’s hypothesis where a number of difficulties were encountered.
These are mostly concerned with the satisfaction of normal slope continuity along the
element edges. Subsequently, the method has been applied to thick plates based on
Reissner-Mindlin’s hypothesis where the above-mentioned continuity problem has been
avoided by considering the transverse displacement (w) and rotations of normal (0, and 0,)
as independent displacement components. Amongst the thick plate elements developed so
far, the most prominent elements are the isoparametric elements, which became very
popular. Although these elements are quite elegant but they involve certain problems such
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as shear locking, stress extrapolation, spurious modes and something else. Keeping these
aspects in view, some research workers have tried to develop elements, which will be free
from the above problems. The necessity has been geared up further with the wide use of
fibre-reinforced laminated composites where the effect of shear deformation is more
important. As an outcome of these facts, a number of thick plate elements have been
proposed by different investigators such as Petrolito [2], Yuan and Miller [3], Sengupta
[4], Batoz and Katili [5], Zhongnian [6] and a few others. In this group, the element,
proposed by the last author of this paper [4], is quite powerful, which has been applied to
free vibration analysis of plates with necessary additions and modifications in this paper. It
is a high-precision element and it has the advantage that plates of any shapes can be
modelled by this element, as it has a triangular geometry.

In this element, a fourth order complete polynomial has been used to express w while
both 0, and 0, have been expressed with complete cubic polynomials. Thus the
interpolation function of w is one order higher than those of 0, and 0,, which has helped to
make this element free from shear locking and other relevant problems. The 35 constants of
these three approximating polynomials have been expressed in terms of 35 nodal
displacements of the element as shown in Figure 1. Thus the stiffness matrix of an element
will have an order of 35, which has been reduced to 30 by eliminating the degrees of freedom
of the internal node through static condensation. To perform the condensation, the mass of
an element is lumped at its external nodes. The distribution of mass at the different nodes is
made in proportion to the quantities obtained at the corresponding diagonals of the
consistent mass matrix. The concept is somewhat similar to that of Hinton et al. [7]. In one
of the mass lumping schemes, the contribution of rotary inertia has also been taken into
account.

The formulation presented by Sengupta [4] has been followed with some modifications.
Sengupta [4] has presented the stiffness matrix explicitly, which is quite elegant in its use
but it cannot be used in a slightly different problem such as composite plate, tapered plates
or something else. To eliminate these limitations, the integration of the stiffness matrix has
been carried out numerically following Gauss quadrature technique. Moreover, the trouble
taken by Sengupta [4] to express the 35 constants of the approximating polynomials in
terms of 35 nodal unknowns has been avoided through a matrix inversion, which is quite
easy to execute in a computer.

The element has been applied to free vibration analysis of plates having different
boundary conditions, shapes and thickness ratios. It has also been tested with plates with
internal opening and concentrated mass. The natural frequencies obtained in the present

Figure 1. A typical element with all the nodes: @, w; A, 0,, 0,; O, w, 0, 0,.
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analysis have been compared with those available in literature. The comparison shows the
potentiality of the element in such a wide range of problems.

2. FORMULATION

The formulation is based on Reissner—Mindlin’s plate theory, which ensures the
incorporation of shear deformation. The scope of the work has been kept limited within
linear analysis where the material of the plate has been assumed to be homogeneous and
isotropic. The middle plane of the plate has been taken as the reference plane.

The formulation has been made in area co-ordinate system. In this system, the
co-ordinate at any point p within a triangle (Figure 2) is expressed by L;, L, and L3, which
may be defined as

Li = AI/A (l = 19 2) 3)1

where 4 is the area of the triangle (4, + 4, + A43).
The relationship between area co-ordinates and rectangular co-ordinates is as follows:

x = Lyxy + Lyx; + Laxs, y=~Liyi + Ly, + L3ys, (1)
where
L; = (a; + b;x + ¢;y)/24 i=1,273),
a; = X;yi — Xiyj bi=y;—y and ¢; =x; — x;.

The parameters i, j and k follow cyclic order of 1, 2 and 3. Using the above quantities, the
area of the triangle may be defined as

A= (a1 +a, + 03)/2.

Figure 1 shows a typical element, which has a total number of nodes equal to 16. The
locations of nodes 3, 7 and 11 are the centres of the corresponding sides while the other

p (L,L,, Ly)

Figure 2. Area co-ordinate of a point within a triangle.
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mid-side nodes (2, 4, 6, 8 10 and 12) are located at a distance of one-third of the
corresponding sides. The co-ordinates of the internal nodes 13, 14, 15 and 16 are (1/2, 1/4,
1/4), (1/4, 1/2, 1/4), (1/4, 1/4, 1/2) and (1/3, 1/3, 1/3) respectively. The degrees of freedom
taken at all the external nodes (1-12) except 3, 7 and 11 are w, 0, and 0, while it is only w at
nodes 3, 7, 11, 13, 14 and 15. For the centroidal node i.e., 16, it is 0, and 0,.

The transverse displacement (w) and rotations of normal (0, and 0,) have been taken as
the independent field variables, which are approximated as

w=[0,1{r}, 0.=[Q]{n} and 0,=[0Qs]{/}, (2a—c)
where
[0,1=1[L}{ L% LY LiL, L3L, L3Ly L3L, L3L, LiLy LiL3 L3L3} L3L?
LiL,Ly L,L3Ly L,L,L%],
[Qo]=[Li L3 L3 LiL, L3L, L3Lsy L3L, L3L, LiL; L\L,Ls],
) =0v1 72 73 74 Vs Ve V7 Vs Yo V1o Vi1 V12 V13 V14 7151,

{uy =11 1o 13 pa ps fe f7 s Ho fio]"
{;\.} - [;Ll }VZ ;us ;L4 A‘S )"6 17 }\/8 19 ;LlojT.

The above equations (2a—c) have been appropriately substituted at the different nodes,
which gives the relationship between the unknown constants of equations (2a-c) and the
nodal degrees of freedom as

{X} =[Al{a}, ©)
where
o} =01 0" 41717,
(X}T=1[wy Op 0,y wy O 0,5 wy wy O,y 0,0 ws 0.5 0,5 we 0.6 0,6 Wy wg O.g 05
Wy Oy Oy0 Wio Ox10 Oy1o0 Wit Wiz Ox12 Oy12 Wiz wig Wis Oi16 0y16]

and the matrix [A] contains the co-ordinates of the different nodes.
As 0, and 0, have been taken as the independent field variables and they are not the
derivatives of w, the effect of shear deformation can be easily incorporated as

dy 0, — 0w/0x
{ = , (4)
o, 0, — ow/0y
where ¢, and ¢, are the average shear strain over the entire plate thickness and 0, and 0, are

the total rotations of the normal.
The generalized stress—strain relationship of the plate may be expressed as

{o} = [D]{e}, )
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where the stress resultant vector {g} is

{J} = [Mx My Mxy Qx Qy] (6)
The generalized strain vector {¢} in terms of displacement field is

— 00, /0x
— 00,/dy
{e} ={ —00,/dy — 00, /0x (7)
ow/0x — 0,
ow/oy — 0,

and the rigidity matrix [D] is

Dy Dy O 0
Dy, Dy, O 0
[D]=| 0 0 Dy; O
0 0 Dy O

0 0 0 Dss|

o o O

)

For isotropic material, the different quantities of the rigidity matrix (8) are
Dy, = Dy, = Eh*/12(1 —v?), D{, =D, =vD{;, D33 =(1 —v)D{{/2
and D4y = Dss = Ehk/2(1 + v),
where k is the shear correction factor, which has been taken as 5/6 in all the cases.

Now, the field variables as defined in equation (2) may be substituted in the generalized
strain vector {¢} as expressed in equation (7), which leads to

{e} = [CH{a}, ©)
where matrix [ C] contains L; as appeared in equation (2) and their derivatives with respect
to x and y.

The derivative with respect to, say x of any quantity, say f(L;) in the matrix [ C] has been
carried out as follows:

Of (Ly)/ox = {0f (L;) /0Ly } {OLy /0x} + {0f (L;) /0L }{0L,/0x} + {0f (L;)/0L3} {0L3/0x},

where JL;/0x can be evaluated with the help of equation (1).
Combining equations (3) and (9), the generalized strain vector {¢} may be expressed as

{e} = [B1{X}, (10)

where

[B]=[CI[4]™".
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Once the matrices [B] and [D] are obtained, the element stiffness matrix [K,] can be
derived with the help of Virtual work technique and it may be expressed as

[K.] = f [B]'[D[B]dxdy. (1)

In a similar manner, the consistent mass matrix of an element can be derived and it may be
expressed with the help of equations (2a-3) as

2

h
[M.] = ph(L (A1 [0, 1[0 T[A]" " dxdy +EL (A1 [0:17[0:1[4]" " dxdy

2

+EJ [A]T[Qs]T[Qs][A]ldxdy>, (12)
A

where
[0:1=1[[0.] [N,] [N,1] ([N,]is a null matrix of order 1 x 10),
[0,]1=1[[N:]1 [Qoe] [N211 ([N;]1is a null matrix of order 1 x 15),

[Qs] = [[Nl] [N2] [Qo]]-

The first term of the mass matrix (12) is associated with transverse movement of mass, which
is usually found to contribute the major inertia while the last two terms are associated with
rotary inertia and their contribution becomes significant only in a plate having higher
thickness ratio.

The consistent mass matrix presented above cannot be used in the present analysis, as it
contributes sufficient amount of mass at the degrees of freedom of the internal nodes, which
are to be eliminated through static condensation. Moreover, it is a populated matrix having
off-diagonal terms, which connect the degrees of freedom of internal and external nodes.
The above problem has been avoided by using a lumped mass matrix where the mass of an
element has been distributed at its external nodes only. In this context three different mass
lumping schemes have been recommended, which are as follows.

In the first lumping scheme, the mass has been taken at the degrees of freedom w of all the
external nodes (see Figure 1). Thus the mass matrix contains 12 non-zero elements at 12
diagonals and their summation is equal to the mass of the element. The distribution of mass
of an element at these 12 degrees of freedom has been made in proportion to the quantities
obtained at the corresponding diagonal elements of the consistent mass matrix (12). The
idea is similar to that of Hinton et al. [ 7] except that the mass at some of the nodes has not
been taken in the present case. This mass lumping scheme has been defined as LS12. In the
second lumping scheme, the mass of an element has been distributed at its nine external
nodes having w, 0, and 0, as the degrees of freedom on the basis followed in LS12 (see
Figure 1). Thus the central mid-side nodes, i.e., 3, 7 and 11 have not been considered in this
case. This lumping scheme has been defined as LS9. The third lumping scheme is identical
to LS9 with some addition to include the contribution of rotary inertia, which has not been
taken in LS12 and LS9. The additional mass for the rotary inertia has been taken at the
degrees of freedom 0, and 0, of those nine nodes. At any node, the mass taken at 0, is
identical to that at 0, and it is equal to the mass at w multiplied by h?/12. This quantity of
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Frequency parameters /. = wa?® \/(ph/D) of a simply supported square plate

TaBLE 1

335

Mode numbers

h/a  References 1 2 3 4 5 6
001 LS127 (4 x 4)* 19-735 49-326 49-351 79-168 98-669 98:682
LS12 (5x5) 19-734 49-314 49-314 78937 98-579 98-580
LS12 (6 x 6) 19-734 49-313 49-313 78-884 98:556 98:556
LS12 (8 x 8) 19-734 49-312 49-312 78:867 98-552 98-552
LS12 (10 x 10) 19-734 49-312 49-312 78-866 98-552 98:552
% Error® 00-010 00-182 00-182 00-030 00-035 00-036
LS9T (4 x 4) 19-735 49-332 49-352 79:172 98-787 98-787
LS9 (5x5) 19-734 49-315 49-321 78-986 98-654 98-654
LS9 (6 x 6) 19-734 49-314 49-314 78-887 98-569 98-569
LS9 (8 x 8) 19-734 49-313 49-313 78-869 98-556 98-556
LS9 (10 x 10) 19-734 49-313 49-313 78-867 98-555 98:555
% Error 00-010 00-182 00-182 00-030 00-036 00-036
LS9RI' (4 x 4) 19-733 49-332 49-342 79-146 98:746 98-746
LS9RI (5 x 5) 19-732 49-307 49-311 78914 98-570 98-571
LSORI (6 x 6) 19-732 49-304 49-304 78:861 98-529 98:529
LSORI (8 x 8) 19732 49-303 49-303 78-832 98-516 98:516
LSORI (10 x 10) 19-732 49-303 49-303 78:821 98-515 98-515
% Error 00-000 00-000 00-000 00-026 00-002 00-002
Mindlin’s solution [9]  19-732 49-303 49-303 78-842 98-517 98-517
LS12 (5% 5) 19-195 46-065 46-065 70-837 86-268 86-268
0-1 LS12(6x6) 19-198 46-106 46-106 70-883 86-545 86546
LS12 (8 x 8) 19-201 46-146 46-146 71-129 86-818 86-819
LS12 (10 x 10) 19-202 46-161 46161 71216 86-983 86984
% Error 00-718 1-493 1-493 2-037 2-287 2-287
LS9 (5x5) 19-198 46-107 46-107 70-994 86-564 86564
LS9 (6 x 6) 19-200 46-134 46-134 71-089 86-742 86-742
LS9 (8 x 8) 19-202 46-162 46-162 71-188 86-925 86:925
LS9 (10 x 10) 19-203 46175 46-175 71213 87-143 87-143
% Error 00-718 1-527 1-527 2-037 2-475 2:475
LSO9RI (5 x 5) 19-058 45-398 45-398 69-502 84-506 84-506
LSORI (6 x 6) 19-060 45-423 45-423 69-585 84-659 84-659
LSORI (8 x 8) 19-062 45-449 45-449 69-674 84-821 84-821
LS9RI (10 x 10) 19-062 45-462 45-462 69-734 84-985 84-985
% Error 00-015 00-044 00-044 00-086 00-062 00-062
Mindlin’s solution [9]  19-065 45-482 45-482 69:794 85-038 85038
02 LS12(5x5) 17-799 39130 39:130 56-252 66-019 66-019
LS12 (6 x 6) 17-809 39230 39230 56:551 66-514 66-514
LS12 (8 x 8) 17-818 39330 39330 56-852 67-010 67-010
LS12 (10 x 10) 17-830 39376 39376 57-008 67-241 67-241
% Error 2:189 3-208 3-208 3-369 3217 3217
LS9 (5% 5) 17-809 39230 39231 56558 66-521 66-521
LS9 (6 x 6) 17-815 39299 39-299 56762 66-860 66-860
LS9 (8 x8) 17-822 39369 39-369 56971 67-206 67-206
LS9 (10 x 10) 17-833 39378 39378 57092 67-287 67-287
% Error 2-189 3-208 3-208 3-521 3-288 3-288
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TABLE 1

Continued

Mode numbers

h/a  References 1 2 3 4 5 6
LSO9RI (5 x 5) 17-429 37-954 37-954 54-567 64-186 64-186
LS9RI (6 x 6) 17-435 38014 38014 54-846 64-646 64-646
LSORI (8 x 8) 17-442 38074 38074 54-966 64-841 64-841
LS9RI (10 x 10) 17-444 38:102 38:102 55-000 64-898 64-898
% Error 00-023 00-131 00-131 00-272 00-379 00-379
Mindlin’s solution [9]17-448 38:152 38:152 55-150 65-145 65145

25 LS12(5x5) 16-932 35-589 35-589 49-777 57-662 57-662
LS12 (6 x 6) 16-944 35:708 35-708 50-103 58179 58179
LS12 (8 x 8) 16:957 35-826 35-826 50430 58:699 58:699
LS12 (10 x 10) 16964 35996 35-996 50-612 59-102 59-102
% Error 2-768 3-839 3-839 3319 3228 3228
LS9 (5% 5) 16944 35707 35-708 50-105 57752 57752
LS9 (6 x 6) 16-953 35789 35-790 50-331 58293 58293
LS9 (8 x 8) 16962 35-872 35-872 50-561 58:789 58:789
LS9 (10 x 10) 16-971 36:025 36-025 50-693 59253 59263
% Error 2:811 3923 3923 3-484 3491 3496
LSO9RI (5 x 5) 16-481 34-434 34-434 48-347 55-537 55-537
LSORI (6 x 6) 16-489 34-504 34-504 48-537 56-027 56-027
LSORI (8 x 8) 16-497 34-574 34-574 48-730 56612 56:612
LSORI (10 x 10) 16-503 34-602 34-602 48-842 57-125 57-125
% Error 00-024 00-182 00-182 0-294 0-225 0-225

Mindlin’s solution [9]16-507 34-665 34665 48-986 57254 57254
Thin plate solution [10]  19-739 49-348 49-348 78:957 98:696 98:696

"Present analysis using mass lumping scheme LS12.

*Quantity with the parentheses indicates mesh size.

SPercentage error is calculated taking Mindlin’s solution [9] as the basis.
“Present analysis using mass lumping scheme LS9.

'Present analysis using mass lumping scheme LS9RI.

These are followed in other tables also.

mass taken at 0, and 0, for rotary inertia may be justified with the expression of consistent
mass matrix presented in equation (12). Although [Q,] is different from [Q,,] it will not
make a major difference since the consistent mass matrix is utilized to get the distribution
ratio of the mass without changing its total quantity.

Based on the above discussion, it is clear that the computation of the consistent mass
matrix (12) is necessary only for its first term. The integration associated with this and the
stiffness matrix (11) has been carried out numerically following Gauss quadrature
technique.

Following any one of the above lumping schemes, the mass matrix can be formed, which
will be a diagonal matrix having zero mass at the degrees of freedom of the internal nodes.
With such a mass matrix, it is easy to perform the condensation mentioned earlier.

The stiffness matrix and mass matrix having an order of 30 in their final form have been
evaluated for all the elements and they have been assembled together to form the overall
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TABLE 2

Frequency parameters A = waz\/ (ph/D) of a square plate having two opposite edges simply
supported and the other two edges free

Mode number

h/a  References 1 2 3 4 5 6
0-001 LSORI (4 x 4) 9:620 15998 35-875 38-832 46:313 69-403
LS9RI (5% 5) 9-623 16:047 36:176 38:872 46-457 69-845
LS9RI (6 x 6) 9:626 16:073 36-339 38-894 46-539 70-099
LS9RI (7 x 7) 9627 16083 36-440 38907 46:590 70-260
LS9RI (8 x 8) 9-628 16100 36-506 38916 46624 70-368
LS9RI (10 x 10) 9-629 16:112 36-584 38926 46664 70-497
Liew et al. [11] 9-640 16142 36729 38-947 46739 70-739
LS9RI (4 x 4) 9-429 15271 33-105 36-177 42:285 60-678
0-1  LS9RI (5x5) 9-433 15310 33-366 36-241 42-460 61-178
LS9RI (6 x 6) 9-435 15333 33-510 36-276 42:557 61-459
LS9RI (7 x 7) 9-436 15-347 33-599 36297 42-617 61-633
LS9RI (8 x 8) 9-437 15356 33:659 36-310 42656 61-748
LS9RI (10 x 10) 9-438 15367 33729 36-327 42704 61-888
Liew et al. [11] 9-440 15-389 33-859 36-357 42-792 62-149
LS9RI (4 x 4) 8967 13966 28-476 31-005 35-389 48-150
02 LS9RI (5x5) 8973 14010 28-708 31-100 35-589 48:636
LS9RI (6 x 6) 8976 14-035 28-836 31-152 35-700 48-909
LS9RI (7 x 7) 8978 14-050 28915 31-183 35768 49-078
LS9RI (8 x 8) 8979 14-060 28966 31-203 35-812 49-189
LS9RI (10 x 10) 8980 14073 29-027 31-227 35-865 49-:322
Liew et al. [11] 8983 14093 29-136 31-270 35960 49-561
Thin plate solution [10] 9-631 16:135 36726 38-945 46738 70-740

stiffness matrix [ K] and mass matrix [ M ], respectively. The storage of [ K] and [ M, ] has
been done in single array following skyline storage technique with proper care for the
different degrees of freedom at the different nodes. Once [ K] and [ M,] are obtained, the
equation of motion of the plate may be expressed as

[KJ{X,} = 0?[M,]{X,}. (13)

After incorporating the boundary conditions, the above equation has been solved by
simultaneous iterative technique [8] to get frequency w for the first few modes.

3. NUMERICAL EXAMPLES

In this section, numerical examples of plates have been solved by the high-precision
element and the results obtained have been compared with the published results in all the
cases. The examples cover a wide range of problems, which include different plate shapes,
boundary conditions, thickness ratios, cutouts and concentrated masses at the plate centre.
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TABLE 3

Frequency parameters ). = wbz\/(ph/D) of a clamped rectangular plate

Mode number

h/a b/a References 1 2 3 4 5 6
001 10 LS12(4x4) 36-025 73-558 73773 110145 136-304 136-352
LS12 (6 x 6) 35955 73-301 73326 108232 131-465 132-108
LS12 (8 x 8) 35-947 73262 73262 107976 131223 131-859
Leissa [10] 35992 73413  73-413  108-270 131-640 132:240
1'5 LS12 (6x4) 60-676 93-798 14872 149912 180-343 228-130
LS12 (9 x 6) 60-635 93-587 14822 149-165 178-838 225-837
LS12 (12 x8) 60-633 93-573 14819 149-116 178-738 225693
Leissa [10] 60-772 93-860 148-82 149-740 179-660 226920
25 LS12 (10x 4) 147-71 173-81 22161 292-463 386-089 394-701
LS12 (15 x 6) 147-67 173-66  221-18 291-444 383-992 393-709
LS12 (20 x 8) 147-66 173-65 221-15 291-379 383-849 393-645
Leissa [10] 147-80 173-85 221-54 291-890 384710 394-370
01 10 LSORI 4x4) 32-480 61692 61:705 86-107 100-785 101-693
LSORI (6 x 6) 32:503 61-887 61887 86544 101-751 102:705
LSORI (8 x 8) 32:512 61953 61953 86718 102-049 103-015
Liew et al. [11] 32:524 62-038 62:034 86:949 102-435 103-412
15 LSORI (6 x4) 56:018 84-177 12677 128-845 149-833 185257
LSORI (9 x 6) 56:043 84258 127-13 129-161 150-333 186-264
LSORI (12 x 8) 56:052 84288 12724 129-276 150516 186-616

Liew et al. [11] 56-065 84-329 127-39 129-429 150-758 187-079

25 LS9RI (10 x 4) 137206  160-05 20143 261046 336-483 337707
LS9RI (15 % 6) 137261  160-12  201-57 261-357 337-173 338:626
LSORI (20 x 8) 137278  160-16 201-63 261413 337-348 338-852

Liew et al. [11] 137:305  160-19  201-69 261-637 337793 339-286

3.1. RECTANGULAR PLATES

As a first case, a simply supported square plate has been analyzed with different mesh
divisions using the different mass lumping schemes mentioned earlier. The study has been
made for different values of thickness ratio (h/a) ranging from 0-01 to 0-25. The first six
frequencies obtained in all the cases have been presented in Table 1 with the analytical
solution of Mindlin [9] and Leissa [10], where the results of Leissa [10] are based on
classical plate theory. Taking Mindlin’s thick plate solution [9] as the exact one, the
% error has been calculated in all the cases and presented in Table 1. The table shows that
the % error is less than 0-4% for any thickness ratio when mass lumping scheme LS9RI is
used while it is more than 3% for higher thickness ratios when LS12 and LS9 are used. This
is due to the effect of rotary inertia (mentioned in the previous section), which became
significant in plates of higher thickness ratio, as expected. As the contribution of rotary
inertia is not significant in thin plates, the mass lumping schemes LS12 and LS9 have
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Figure 3. A skew plate having a mesh division of m x n.

TaBLE 4

Frequency parameters ). = waz\/(ph/D) of a skew plate

339

Mode number

glﬁgfé References 1 2 3 4 5 6

All edges simply supported

30° LS12 (6 x 6) 25-110 52:570 72:100 83720 12225 121903
LS12 (7x7) 25-065 52:584 72:023 83752 12241 122-427
LS12 (8 x 8) 25032 52:590 71-959 83761 12249 122-500
LS12 (10 x 10) 24-990 52:765 71-868 83-760 12256  122-540
Liew and Lam [12] 25069 52:901 72-344 84-780 130-25

45° LS12 (6 x 6) 35-850 66:168  100-30 109-19 13999 16713
LS12 (7x7) 35700 66:189  100-32 108-86 14024 16748
LS12 (8 x 8) 35:560 66:203 100-31 108-59 140-36  167-64
LS12 (10 x 10) 33:563 66209  100-28 108-21 14045  167-78
Liew and Lam [12] 34938 66422  100-87 107-78 17528

60° LS12 (6 x 6) 67309 10462 148-39 194-16 21410 24515
LS12 (7x7) 66:689 10470 14827 194-97 21323 24695
LS12 (8 x 8) 66208 10474 14825 195-31 212:51 24766
LS12 (10 x 10) 66:517 10477 148-15 195-57 211:65 24813
Barik [13] 66:345  104-64 147-84 194-14 213-:67 24578

All edges clamped

30° LS12 (6 x 6) 46-001 81313 104-69 11855 16330  163:63
LS12(7x7) 46-016 81:365 10478 11871 163-81 16415
LS12 (8 x 8) 46:020 81:389  104-82 11879 16404  164-38
LS12 (10 x 10) 46-022 81409  104-86 118-85 16422 16457
Durvasula [14] 46-140 81-691 105-51 119-52 165-80

45° LS12 (6 x 6) 65487 10598 147-19 156-23 19423 22610
LS12 (7x7) 65495  106:07 147-45 156-37 19503 22714
LS12 (8 x 8) 65500 106-12 147-57 156-46 19537 22761
LS12 (10 x 10) 65506 106-16 147-67 156:54 19564 22799
Durvasula [14] 65929 10659 149-03 158-90 199-37  231-94

60° LS12 (6 x 6) 121-06 176:19 22841 282-40 300-83  345-80
LS12(7x7) 121-10 176:34 22922 28655 301-18 34617
LS12 (8 x 8) 121-13 176-54 229-65 287-82 301-54 34859
LS12 (10 x 10) 12116 17670 230-03 28875 302-:00 35041
Mizusawa et al. [15] 120-90 177-75 23174 292-54 301-81 35758
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TABLE 5

Frequency parameters /. = wa’\/(ph/D) of a simply supported skew plate

Mode number

Skew
h/a angle  References 1 2 3 4 5 6
30° LSORI (6 x 6) 23-867 47-967 63406  72:549 99-792 99-822
LSO9RI (7 x 7) 23-866 48-056 63-596  72:858  100-652 100665
LSORI (8 x 8) 23-865 48-111 63711 73-:049 101181 101-185
LSORI (10 x 10) 23-865 48-174 63-839 73265 101777 101776
01 45° LSORI (6 x 6) 33-039 59-183 85006 90331 112:354  129-193
LSORI (7 x 7) 33-015 59-304 85359 90689  113-228  130-542
LS9RI (8 x 8) 32:994 59-379 85-578 90906 113769  131:378
LSORI (10 x 10) 32:962 59-466 85826 91-140 114384 132331
60° LS9RI (6 x 6) 57-759 88795 11821 14729 154969 175419
LS9RI (7 x 7) 57-679 89-059 11882 148:66 156:090 177-893
LSORI (8 x 8) 57-608 89224 11919 14948 156798  179-354
LS9RI (10 x 10) 57-495 89-411 11961 150-39 157-590  180-957
30° LSORI (6 x 6) 21-371 39-537 49-953 55810 71-942 71974
LS9RI (7 x 7) 21-392 39-712 50-308  56:316 73-104 73-118
LSO9RI (8 x 8) 21-404 39-825 50-535 56693 73-854 73-860
LSO9RI (10 x 10) 21-418 39:956 50799 57027 74734 74736
02 45° LS9RI (6 x 6) 28:595 47-381 63-833 66950 79-693 88812
LSORI (7% 7) 28:618 47-604 64-389  67-568 80-837 90-433
LSORI (8 x 8) 28-630 47-748 64-748 67967 81-577 91-486
LS9RI (10 x 10) 28-638 47915 65169 68429 82-449 92-731
60° LSORI (6 x 6) 46-328 66-647 83-851 99735 103-51 114-04
LSO9RI (7 x 7) 46-394 67-047 84-666 101-26 104-93 116-51
LS9RI (8 x 8) 46-427 67-304 85192 102-21 105-88 118-05

LSORI (10 x 10) 46-448 67-605 85-807 103-33 107-00 119-82

performed well for thickness ratio h/a = 0-01. Again LS12 has performed marginally better
than LS9 and it is due to a better distribution of mass in LS12 over LS9. Based on these
observations, LS9RI can be recommended for plates having any thickness while LS12 may
be recommended for thin plates only.

Now a square plate having two opposite edges simply supported and the other two
edges free has been studied taking h/a = 0-001, 0-1, and 0-2. Using LS9RI, the analysis
has been done with different mesh divisions and the first six frequencies obtained have been
presented with the thin plate solution of Leissa [10] and thick plate solution of Liew et al.
[11]in Table 2. The results show that the element performed well with LS9RI in the present
problem.

Finally, a rectangular plate having all the side clamped has been analyzed with different
mesh divisions. The study has been made for aspect ratio a/b = 1-0, 1-5 and 2-5 where h/a
has been taken as 0-01 and 0-1 in all the cases. The analysis has been performed with LS12
for h/a = 0-01 and LSIRI for h/a = 0-1. The results obtained in the present analysis have
been presented with those of Leissa [10] (h/a = 0-01) and Liew et al. [11] (h/a = 0-1) in
Table 3. The table shows that the present results agreed well with those of Leissa [10] and
Liew et al. [11].
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Figure 4. A triangular plate having a mesh division of m x m.

3.2. SKEW PLATES

A skew plate as shown in Figure 3 has been studied for different skew angles («) taking all
the sides simply supported in one case while it is clamped in another case. As the sides BC
and AD (Figure 3) are inclined to global axis system (x-y), necessary transformation has
been made to express the degrees of freedom of the nodes on these two sides along x'-)’
(Figure 3). The transformation has been done in element level. The thickness ratio of the
plate is taken as 0-01. Using LS12, the plate has been analyzed with four different mesh
divisions (Figure 3) in all the cases and the first six frequencies obtained have been
compared with those of Liew and Lam [12], Barik [13], Durvasula [14] and Mizusawa
et al. [15] in Table 4. In this group the finite element solution is due to Barik [13] who had
to take a mesh division of 24 x 24 for skew angles of 30° and 45° while it is 36 x 36 for 60°
skew angle. The present analysis has been done with a highest mesh division of 10 x 10,
which give sufficiently good results compared to those of others [12-15].

Again the simply supported plate has been analysed for i/a = 0-1 and 0-2 using LS9RI
and the first six frequencies obtained have been presented in Table 5. The results are
presented for the same skew angle and mesh divisions used in the previous case.

3.3. TRIANGULAR PLATES

A triangular plate as shown in Figure 4 simply supported at the three sides has been
studied for different aspect ratios (b/a). Similar to the earlier case, necessary transformation
has been made for the degrees of freedom of the nodes along the side BC (Figure 4). The
plate has been analyzed with different mesh divisions (Figure 4) in all the cases and the first
six frequencies obtained have been presented in Table 6. Taking thickness ratio of the plate
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TABLE 6

Frequency parameters . = wa*\/(ph/D) of a triangular plate

Mode number

b/a References 1 2 3 4 5 6
1-0 LS12 (5x5) 49-31 98-58 128-26 167-30 19793 242-53
LS12 6 x 6) 49-31 98-56 12811 167-34 197-17 246-57
LS12 (7x7) 49-31 98-55 128-07 167-35 19695 246-88
LS12 (8 x 8) 49-31 98-55 128-06 167-35 196-85 249-92
Kim and Dickinson [16] 49-35 99-76 128-40 169-10 200-30 249-80
Geannakakes [17] 49-34 98-69 128-30 167-80 197-46 246-86
1-5 LS12 (5x5) 3427 65-55 9178 107-88 138-61 157-62
LS12 (6 x 6) 3426 65-53 9175 107-26 138-41 156-51
LS12 (7x7) 3426 65-53 9175 107-22 13895 158-86
LS12 (8 x 8) 34-26 6553 91-74 107-22 13898 158-80
Kim and Dickinson [16] 34-28 65-69 91-99 108-00 140-90 140-90
Geannakakes [17] 34-28 65-59 91-86 107-48 139-39 162-42
2:0 LS12 (5x5) 27-76 49-80 73-41 80-62 108-70 120-23
LS12 (6 x 6) 27-76 49-87 74-46 81-27 103-78 118-54
LS12 (7x7) 2775 49-86 74-62 8127 105-68 119-76
LS12 (8 x 8) 2775 49-86 7462 8125 106:10 119-72
Kim and Dickinson [16] 2776 4991 74-85 81-84 107-40 122-20
Geannakakes [17] 2776 49-88 74-88 81-51 108-43 121-65
25 LS12 (5x5) 2416 40-88 59-58 71-50 8737 102-77
LS12 (6 x 6) 24-14 41-10 5993 71-85 82:62 101-19
LS12 (7x7) 24-14 41-11 60-49 71-82 8216 102-35
LS12 (8 x 8) 24-14 41-11 60-51 71-81 83-28 102-14
Kim and Dickinson [16] 24-15 41-15 60-65 7228 8492 104-20
Geannakakes [17] 2415 41-14 61-14 71-99 86-49 103-66
30 LS12 (5x5) 21-83 3535 5021 64-99 66-54 93-22
LS12 (6 x 6) 21-85 3557 5032 6546 67-87 88:62
LS12 (7x7) 21-85 3561 5096 66-05 6821 87-88
LS12 (8 x 8) 21-85 3561 51-07 66:10 69-02 86-27
Kim and Dickinson [16] 21.85 3563 51-27 6673 71-03 92-84
Geannakakes [17] 21-84 3565 5215 6667 7397 94-15

as 0-01, the analysis has been done using LS12. The same problem has been studied by Kim
and Dickinson [16] using the Rayleigh-Ritz method and also by Geannakakes [17] using
the Rayleigh-Ritz method with normalized characteristic orthogonal polynomials. The
results obtained by Kim and Dickinson [16] and Geannakakes [17] have also been
presented in Table 6 for necessary comparison, which indicates the efficacy and accuracy of
the present element.

3.4. A RECTANGULAR PLATE WITH A LUMPED MASS AT THE PLATE CENTRE

The vibration of a rectangular plate 0-71 m long, 0-42m wide and 2-0 mm thick having
a concentrated mass at the plate centre has been studied. The mass of the plate has also been
considered in the analysis. The plate is simply supported at the two opposite sides having
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TaABLE 7

Fundamental frequencies (A = w/2n) of a rectangular plate having a concentrated mass at the
plate centre

Present analysis mesh divisions

Concentrated Boay
mass (kg) [18] 6x4 8x6 10x6
0-24 4875 48-70 48:65 48-64
0-50 38-83 3878 3873 3872
0-74 3348 3343 3335 3333
1-00 29-54 29-52 29-49 29-48
124 2695 2693 26-90 26-88
1-48 24-96 2492 24-89 24-87
1-76 23-09 2305 2298 22-96
1-98 21-88 21-84 21-80 21-79
2:22 20-76 20:72 20-68 2067
248 19-72 19-69 19-65 19-64
275 1879 1875 18:69 18:67
3-00 1803 1799 1794 1793
325 17-36 17-32 17-29 17-27
3-50 16-76 16-73 16-68 16-:66
375 1622 16:19 16:15 16:13
4-00 1573 1570 15-67 15-65
4-25 15-28 1525 1519 1517
4-50 14-86 14-83 14-80 1479
475 14-48 14-45 14-40 14-38
5-00 14-12 14-10 14-05 1404

a length of 0-42 m while the other two sides are clamped. For a wide range of values of the
concentrated mass, the plate has been analyzed with three different mesh divisions and the
fundamental frequencies obtained have been presented with the Ritz solution of Boay [18§]
in Table 7. The results agreed well. The mass matrix used is in accordance with LS12. The
material properties of the plate are: E = 70-0GPa, v = 0-3 and p = 2770kg/m>.

3.5. A SQUARE PLATE WITH A CUTOUT AT THE PLATE CENTRE

A simply supported square plate having a rectangular cutout at the plate centre has been
studied for different size and aspect ratio of the cutout taking h/a = 0-01, 0-1 and 0-2. The edges
of the cutout are free and they are parallel to the edges of the plate. The plate has been analyzed
with a mesh size of 10 x 10 using LS12 for h/a = 0-01 and LS9RI for h/a = 0-1 and 0-2. The
first four frequencies obtained in the present analysis have been presented in
Table 8 with the Rayleigh quotient and finite element solution of Lee et al. [19] (h/a = 00-1) for
necessary comparison. The table shows that the present results are in better agreement with the
finite element results of Lee et al. [19] compared to their analytical solution in general.

4. CONCLUSION

A high-precision shear deformable triangular element developed by one of the authors of
this paper has been applied to free vibration analysis of plates with little additions and
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TABLE 8

Frequency parameters J.= wa®\/(ph/D) of a simply supported square plate having
a rectangular cutout at the plate centre

Cutout size

Mode (02a)x (04a)x (0-6a)x (08a)x (0-4a)x (0-8a)x (0-6a)x

h/a References number (02a) (04a) (0:6a) (0-8a) (0-2a) (04a) (0-2q)
0-01 Present 1 19-13 2072 2823 5614 1906 2349 18-88
analysis 2 47-67  41:00 4239 6807 4131 28-:09 3243

(LS12) 3 4767  41-:00 4239 6807 4674 5533 4767

4 7634 7131 7536 1210 73-84 6475 6817

Present 1 1912 2069 2813 5535 1904 2344 1896

analysis 2 4768 4097 4221 6708 4130 2804  32:37

(LS9RI) 3 47-68 4097 4221 6709 4671 5515 4782

4 7632 7127 7513 1194 73-83 6463 6861

Lee et al. 1 1912 2073 2824 5745 19-01 23-58 1898

[19] 2 4777  41-10  42:57 6982 4143 2826 3253

(FEM) 3 4777  41-10 4257 6982 4658 5564 4781

4 76:80  71-55 7499 1242 7410 6518  69-17

Lee et al. 1 1890 2055 2849 5884 1898 2380 1911

[19] 2 49-65 4392 4512 7783 4408 2643 3253

(Analytical) 3 49-65 4392 4512 7783 4691 5583 4781

4 7172 7069 7555 12499 7228 6948 7684

01 Present 1 1865 2013 2707 5027 1850 2228 18-33
analysis 2 4436 3647 3775 5679 3579 2486 2775

(LS12) 3 4542 3653 3780 5685 4291 5125 4461

4 69-88 6460 5552 6515 6633 5691 60-46

Present 1 1844 1981 26117 4477 1829 2183 18-10

analysis 2 42:77 3584 3647 5057 3539 2441 2744

(LS9RI) 3 4283 3592 3654 5064 4224 4945 4369

4 67-52 6395 5359 5803 6503 5548 5935

02 Present 1 17-42 19-03 2533 4293 1742 2047 1719
analysis 2 3705 3089 3246 4505 2939 2160 2309

(LS12) 3 3843 3094 3250 4511 3652 4412 3863

4 56:07  51-119 4329 4751 5339 4663 4853

Present 1 1698 18-11 22:86  31-04 16:82 19-26 16:53

analysis 2 3517 2948 2935 3247 2853 2042  22-33

(LS9RI) 3 3522 2955 2940 3252 3519 4036 3676

4 5350 4903 3916 3410 5153 4399 4676

modifications in the element formulation. Some mass lumping schemes have been proposed,
which may be considered as one of the most significant contributions of this paper. The
concept regarding incorporation of mass for rotary inertia is really elegant, which may be
used in other elements. The element has been tested with a wide variety of benchmark
problems where it has been found that the performance of the element is excellent in most of
the cases. Any problem such as shear locking or spurious mode has not been encountered
even in the analysis of the plate having a thickness ratio (h/a) of 0-001. The potential of the
element is clearly reflected by the order of accuracy in the present analysis and the variety of
problems considered.
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