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The sound radiation characteristics of a railway wheel are investigated by using
boundary element calculations. The axisymmetry of the wheel allows an axi-harmonic
formulation to be used, in which the wheel is defined by a two-dimensional mesh of its
cross-section and the motion is decomposed into harmonics of different numbers of nodal
diameters. The radiation ratios of the wheel, vibrating in its various normal modes, are
calculated for a range of frequencies. The effects of variation in the wheel radius, web
thickness and tyre depth are also investigated. From these results, simple formulae are
proposed that allow the radiation ratios to be approximated closely. These are more
convenient than the boundary element calculations for calculating the rolling noise from a
wheel since they are a function of a few simple geometrical parameters. The directivity of
wheel radiation is also considered, with comparisons with measured data indicating that
simple monopole and dipole characteristics can be applied.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Wheel/rail rolling noise is usually the most important source of environmental noise from
railways at conventional speeds. It is radiated by vibrations of the wheels, rails and
sleepers excited by the roughness of the wheel and rail running surfaces [1]. Since the 1970s
theoretical models have been developed to predict the generation of rolling noise [2–6].
These models are composed of dynamic models for the wheel and the track, an interaction
model based on their frequency response functions and separate models for their noise
radiation. This paper focuses, for the particular case of a wheel, on the latter aspect: the
noise radiation due to a given vibration level and distribution.
In order to describe the acoustic radiation from a vibrating structure, two quantities

may be defined. The first quantity is the radiation ratio, or radiation efficiency. This is the
sound power produced by a vibrating structure, normalized by the sound power that
would be radiated by the same mean square spatially averaged velocity if the surface were
part of an infinite plane, all vibrating in phase. The radiation ratio of a vibrating structure
is generally small at low frequencies and tends to 1 at high frequencies. The transition
between these two regimes depends on the size of the structure and on the structural
wavelength, each seen in comparison with the acoustic wavelength.
The second quantity required to describe the acoustic radiation is the directivity. This is

a measure of the spatial distribution of the sound field, and allows the sound pressure at a
receiver point in the far field to be derived from the sound power.
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Cross-section of UIC 920mm freight wheel.
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Most railway wheels are axisymmetric. The cross-section of a standard UIC freight
wheel with a diameter of 0.92m is shown in Figure 1. The axle is not shown. The tyre
region, that runs on the rail, usually has an overall width of 135mm including the flange,
whereas the thinner web region, connecting the tyre to the hub, is more typically 20–25mm
wide at its narrowest point. Due to its light damping, the vibration of the wheel is
dominated by its normal modes. The axisymmetric geometry results in modes that can be
defined by the number of node lines running radially across the wheel (nodal diameters)
and the number of node lines that run circumferentially around the wheel (nodal circles)
[7]. Examples of modes with two nodal diameters are shown schematically in Figure 2.
These are a 0-nodal-circle axial mode in which the amplitude increases to a maximum at
the tread, a radial mode and a 1-nodal-circle mode where the web region moves out of
phase with the tread.
Previously, models of the sound radiation from railway wheels have made use of the

Rayleigh integral technique [8]. In this, a vibrating surface is visualized as part of an
infinite flat surface and the sound pressure at any location is found by integrating the
contribution from each part of the surface. Such a technique has been used successfully in
determining the radiation ratio of rectangular flat plates [9, 10]. It does not take into
account any interaction between the sound field generated by the front and rear of the
structure, nor the effect of complex geometrical shape. Nevertheless, it has also been used
to predict the sound radiated by a railway wheel [11, 12].
Fingberg [13] used the boundary element (BE) method to predict the sound radiation

from wheels. This is a numerical technique in which the vibrating surface is represented by
a mesh of elements and the sound field is calculated by solving the Helmholtz integral
equation in discrete form. Making use of the axisymmetry of the wheel, Fingberg
developed a model in which the wheel is represented only by its cross-section. He showed
that the radiation ratio can differ significantly at low frequencies from that predicted by



Figure 2. Idealization of wheel modes with 2 nodal diameters. (a) 0-nodal-circle axial mode, (b) radial mode,
(c) 1-nodal-circle axial mode. Thick solid lines indicate nodal diameters, thick chain line indicates nodal circle and
arrows indicate direction of motion at anti-nodes.
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the Rayleigh integral method, whereas at high frequencies variations of around 2 dB were
found. Experimental validation was performed on a model wheel to scale 1 : 5.
The boundary element method is computationally intensive and requires a considerable

amount of input data to define the wheel geometry and its vibration. For use in predicting
rolling noise, therefore, it is preferable to be able to use simpler models, the input
parameters for which should ideally be limited to features such as the wheel radius, width,
etc.
In this paper, boundary element predictions are presented of the radiation ratio of a

wheel vibrating in its various natural modes. By varying the wheel radius and web
geometry the dependence on various parameters is obtained. From this a series of simple
formulae are derived that can be implemented into a wheel/rail noise prediction model.
The directivity of wheel radiation is also considered, with comparisons given with
measured data.

2. PREDICTIONS OF THE RADIATION RATIO OF A WHEEL

2.1. METHOD

Boundary element predictions have been made using an ‘‘axi-harmonic’’ option within a
standard software package. This allows an axisymmetric structure to be modelled with
non-axisymmetric boundary conditions, using a Fourier series expansion [14]. Since the
vibration of a wheel is dominated by its modes, the sound radiation has been calculated for
each individual wheel mode in the range of interest. These mode shapes have a dependence
on the circumferential angle � of cos ny or sin ny; where n is the number of nodal diameters
in the mode shape. Thus they correspond to a single Fourier component in the axi-
harmonic decomposition of the boundary conditions.
The modes of vibration of a wheel were calculated first by using a finite element

package. In this model the wheel is represented by its cross-section and modes with each
circumferential order, n, are calculated. The wheel vibration has been calculated without
the axle present, but instead a rigid constraint was applied at the inner edge of the hub.
This gives a very good approximation to the modes of a wheel with n52, which are the
most important modes for rolling noise generation [7]. In practice, the modes with n=0
are coupled to extension of the axle and those with n=1 are coupled to flexure of the axle
[7] but this is not considered here.
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Although a mode of the wheel occurs at a single frequency, the radiated sound power
Wrad due to this mode shape has been calculated for a range of frequencies for each mode.
This can then be used to derive the radiation ratio s for this mode shape by using the
definition

s ¼ Wrad=r0c0Shv2i; ð1Þ

where r0 is the density of air, c0 is the speed of sound in air, S is the surface area of the
structure and v2 is the squared normal velocity of the surface, which is both temporally
(} ) and spatially (h i) averaged.
The hole left in the hub in the finite element mesh had to be closed by using additional

boundary elements with zero vibration amplitude (see Figure 1). By this means, acoustic
leakage through this hole, which would not be present in reality due to the presence of the
axle, was prevented.
The formulation used in the boundary element analyses is based upon the indirect

boundary element method [15]. Rather than use the sound pressures and velocities
calculated at the wheel surface, it was found that results for the radiated sound power
could be calculated more stably by integration of the mean square pressure amplitude over
a spherical field point mesh G situated in the far field

Wrad ¼
Z
G

p2

r0c0
dG: ð2Þ

Predictions were carried out for 100 logarithmically spaced frequency steps between 50
and 6000Hz. The well-known problem in the boundary element method whereby
frequencies exist at which the solution is ‘‘non-unique’’ [15] was encountered at only one
or two frequencies for each wheel. It was found that a satisfactory approach to dealing
with this was to identify these frequencies and to omit the results affected.

2.2. RESULTS FOR VARIOUS MODE TYPES

The modes of vibration of a wheel have been described in detail in references [1, 7]. The
main modes are axial (out of plane), although radial (in plane) motion is also important.
Each mode type occurs with n=0, 1, 2, 3, . . . nodal diameters. The 920mm diameter wheel
shown in Figure 1 has been taken as a reference wheel. The deformation of the cross-
section of this wheel is presented in Figure 3 for various modes with n=2. The simplest
wheel modes to visualize are the axial modes with no nodal circle (Figure 3(a)). In this case
the amplitude on an anti-nodal plane increases from the hub to its maximum at the
perimeter. The predominantly radial modes (Figure 3(b)), and the 1-nodal-circle axial
modes (Figure 3(c)), both contain coupled axial and radial motion due to the asymmetric
wheel web [7]. These various mode shapes are used as velocity boundary conditions in the
boundary element calculation.
The radiation ratio obtained for the 0-nodal-circle axial mode shapes is shown in

Figure 4(a). In each case, the radiation ratio rises sharply at low frequency, reaching a
value of 1 between about 250 and 1250Hz, and then oscillating slightly around the value
of 1. The frequency at which s becomes equal to 1 increases as n is increased. Moreover,
the slope of the low-frequency part of the curve increases with increasing n. It is found to
correspond to a dependence on frequency, f, of f 4 for n=0, f 6 for n=1, f 8 for n=2, etc.
The mode with n=0 in this case corresponds to an axial oscillation of the whole tyre in
phase, and can thus be represented by a dipole at low frequencies, where the dimensions of
the wheel are small compared to the acoustic wavelength. The mode with n=1 has areas
on opposite sides of the wheel face that are oscillating out of phase. This may therefore be



Figure 3. Modes of UIC 920mm freight wheel with n=2. (a) 0-nodal-circle axial mode at 351Hz,
(b) predominantly radial mode at 1670Hz, (c) 1-nodal-circle axial mode at 2280Hz, (d) 2-nodal-circle axial
mode at 3850Hz.Undeformed shape shown dotted.

Figure 4. Radiation ratio of various axial modes of 920mm freight wheel with various numbers of nodal
diameters, n. (a) 0-nodal-circle axial modes, (b) 1-nodal-circle axial modes.
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seen to approximate to two dipoles out of phase, i.e., a quadrupole source, at low
frequencies. The frequency dependence of the radiation ratio for these modes is therefore
explained in terms of the characteristic frequency dependence of simple sources. Modes
with higher values of n correspond to higher order multipoles.
Figure 4(b) shows equivalent results for 1-nodal-circle axial modes. In these mode

shapes, the tyre region rotates, while the maximum axial motion is in the web region. The
results are very similar to those for the 0-nodal-circle axial modes, indicating that the
number of nodal diameters, n, is more important than the deformed shape of the cross-
section.
The predominantly radial modes of this wheel are found to contain considerable axial

motion, similar in form to the 1-nodal-circle modes; see Figure 3. Their radiation ratios are
therefore rather complex, and it is more instructive to consider the radiation ratio of a
purely radial motion of the tyre. The web is assumed not to vibrate. The result is shown in
Figure 5. Here the radiation ratio does not reach 1 until close to 1 kHz. At very low
frequencies the slope of the curves is less than those in Figure 4. It is found to correspond
to f 2 for n=0, f 4 for n=1, f 6 for n=2, etc. The mode with n=0 corresponds to a radial
pulsation of the whole tyre in phase, and can thus be represented by a monopole at low



Figure 5. Radiation ratio of radial motion of the tyre of 920mm freight wheel with various numbers of nodal
diameters, n.
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frequencies. In the mode with n=1, the tyre oscillates and thus corresponds to a dipole at
low frequencies. For each value of n, the order of the multipole approximation at low
frequency is one less than for the corresponding axial motion.

2.3. COMPARISONS WITH MEASUREMENT RESULTS

Measurement data of the radiation ratio of a UIC 920mm wheel has been obtained by
TNO [16]. The wheel, attached to its axle, was located in a semi-anechoic room and excited
by a shaker attached to the web. The acceleration was measured at 8 positions on a single
cross-section directly opposite the excitation point, and therefore on an anti-nodal plane.
The sound power was measured using intensity scans of a number of areas, which together
completely enclosed the wheel. The radiation ratio was obtained according to equation (1)
for each mode, but of course only at its natural frequency.
The results from these measurements are shown in Figure 6 in the form of a radiation

index (10 log10 s). At high frequencies the average result is +3 dB, indicating a possible
calibration error, although extensive investigation failed to locate this. Compared to this
high-frequency asymptote, the three results below 1 kHz are the most noteworthy. The
n=0 axial mode at 290Hz has a radiation ratio similar to the high-frequency results;
according to the predictions in Figure 4(a), this mode has its natural frequency at the first
peak of the radiation ratio curve, at a value just below 1. The n=2 axial mode at 370Hz is
about 10 dB below the high-frequency results, which is entirely consistent with Figure 4(a).
The n=3 axial mode at 920Hz is 3 dB below the high-frequency results. In the predictions,
this frequency corresponds to the first dip in the curve at which s drops to about 0.5.
Hence, apart from the unexplained 3 dB shift in all the results, the measurements

confirm the predictions. They also show that, for most modes of an actual wheel, the
natural frequencies occur in the region where the radiation ratio is close to 1.

3. DEPENDENCE ON WHEEL GEOMETRY

3.1. EFFECT OF WHEEL RADIUS

In this section the radiation ratios of the various modes of a wheel are compared for a
set of notional wheels of different radii. These are wheels shown in Figure 7, from which it
can be seen that the tyre and hub regions are similar to the wheel in Figure 1, whereas the



Figure 6. Measured radiation index of various axial modes of 920mm freight wheel. � , 0-nodal-circle axial
modes; +, radial modes, o, 1-nodal-circle axial modes. Numbers of nodal diameters, n, are indicated against each
point [16].

Figure 7. Notional wheel cross-sections used for studying the effect of wheel radius. (a) 0.38m, (b) 0.42m,
(c) 0.46m, (d) 0.50m.
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web is straight and of variable length. In each case, the modes of vibration of the wheels in
question have been calculated and assigned as the boundary conditions in the boundary
element calculation.
For a reduction in wheel radius it is found that the radiation ratio curves are similar, but

are shifted to the right. Figure 8 shows the results for 0-nodal-circle axial modes from all
four radii, together with that for the reference wheel. These are plotted against frequency
normalized by the ratio of the wheel radius, r, to the reference value, r0=0�46m. It can be
seen that all the results collapse onto a single curve for a given value of n. A fitted curve is



Figure 8. Radiation ratios of 0-nodal-circle axial modes for five wheels of different radii. (a) n=0, (b) n=1,
(c) n=2, (d) n=3, (e) n=4, (f) n=5. – – –, predictions for each wheel; }}, curve fit.
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also shown in this figure; it will be discussed in section 4 below. Similar results are also
found for the 1-nodal-circle modes.
In Figure 9, the radiation ratio for radial motion of the tyre is shown for wheels of

different radii. In this case the frequency is normalized by (r/r0)
1/2. Again similar features

are seen in each case, although the results for the reference wheel differ somewhat from
those for the straight webbed wheels, particularly for n=0 and 1. Again a fitted curve is
shown that will be described in section 4.



Figure 9. Radiation ratios of radial motion for five wheels of different radii. (a) n=0, (b) n=1, (c) n=2, (d)
n=3. - - -, predictions for each straight-webbed wheel; }}, prediction for reference wheel; ������, curve fit.
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3.2. EFFECT OF WEB SHAPE

The shape of the wheel web was found to have no significant effect on the results for
axial motion, but it has considerable effect on those for radial motion. To demonstrate
this, a number of notional wheels have been considered, shown in Figure 10. These wheels
all have a radius of 0�42m, and are compared with wheel (b) from Figure 7, referred to as a
‘‘normal’’ wheel. The hub and running surface is kept constant in each case but the web
width and the tyre depth are varied.
The radiation ratios for radial motion of the tyre are shown in Figure 11 for the wheel

with the solid web, i.e., wheel (b) in Figure 10. The motion here is thus only on the outer
surface of the tyre. From the high-frequency asymptote of 1, these curves begin to drop
just below 1 kHz in all cases, with a slope of f 2. A further steepening of the gradient occurs
at a lower frequency that depends on n.
In Figure 12, the results for the various notional wheel designs are compared for each

value of n. The largest differences occur for n=0. The highest radiation ratio at low
frequencies occurs for the wheel with the solid web. For the other wheels, partial
cancellation occurs between the acoustic sources corresponding to motion of the outer and
inner surfaces of the tyre. If the two surface areas were equal, this cancellation would leave
a dipole-type radiation at the tyre. However, since the areas cannot be equal, a residual
monopole component remains which dominates the low-frequency behaviour. As the web



Figure 10. Notional wheel cross-sections used for studying the effect of wheel web shape, each of radius
0�42m. (a) wide web, (b) solid web, (c) double thickness tyre, (d) half-thickness tyre.

Figure 11. Radiation ratios of radial motion for wheel with solid web and radius 0�42m. }}, n=0; – � �,
n=1; ������, n=2; � � � �, n=3; - - -, n=4.
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or the tyre are made thinner, the low-frequency monopole component is reduced in
magnitude.
Similar trends, though to a smaller degree, are found in the results for the modes with

n51. As the number of nodal diameters increases, the effect of the web and tyre geometry
becomes smaller.

4. APPROXIMATE FORMULAE

4.1. AXIAL MOTION

In this section, simple formulae are sought that will describe the radiation ratios
obtained above by using boundary element predictions. The radiation ratios for axial
motion have been seen to have the form of a multipole, with a low-frequency slope
corresponding to f 2n+4 and these frequency dependences have been related to a physical



Figure 12. Radiation ratios of radial motion for various straight-webbed wheels with radius 0.42m. }},
normal wheel;� � �, double thickness tyre; ������ half-thickness tyre; � � � �, solid web; - - - wide web. (a) n=0, (b)
n=1, (c) n=2, (d) n=3.
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explanation in terms of simple source approximations. A suitable function to fit such a
curve is

saðnÞ ¼
1

1þ ð fcaðnÞ=f Þ2nþ4
; ð3Þ

where sa is the radiation ratio for axial motion and fca is a transition frequency for axial
motion, both being dependent on n. It has been seen in Figure 8 that fca is inversely
proportional to the radius of the wheel. The value of fca has been determined by fitting
a curve of the form of equation (3) to the results, as in Figure 8, with fca selected
according to

fcaðnÞ ¼ c0m=2pr; ð4Þ

where m is a scaling parameter that has been varied. In determining the optimum value of
m; the frequency range considered has been limited to frequencies below 2000Hz, as the
high-frequency part of the curves is not affected by the choice of m:Moreover, frequencies
at which s510�3 were also omitted, as smaller values do not contribute significantly to the
overall noise level, and inaccuracies can be introduced through the numerical integration
of equation (2). The dB error in the radiation ratio has been determined at each
calculation frequency within this range and for each wheel. The value of m that minimizes
the mean square error has then been chosen as the most suitable one. This is shown in



Figure 13. Factor m used for determining transition frequency fca for axial motion, see equation (4). }},
found by minimizing r.m.s. error in radiation ratio; - - -, from curve fit, equation (5).
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Figure 13, along with a simple curve fit to this value of m as a function of n, given by

m¼ 1�90þ 1�015n � 0�0189n2: ð5Þ

Figure 14 shows the mean and r.m.s. differences between the boundary element results and
the radiation ratios calculated using equations (3–5). The mean error indicates any bias in
the curve which is small, whereas the r.m.s. error indicates the amount of fluctuation of the
BE results around the approximate results. The corresponding radiation ratios predicted
by equations (3–5) are included in Figure 8. Clearly these curves are a compromise. While
missing some of the detailed shape of the BE curves, particularly the oscillation around 1,
the overall form is reproduced well. The r.m.s. error increases with higher values of n. In
practice, this is due to the region below fca, whereas the natural frequencies of modes with
n>3 will be well above the corresponding value of fca, so that s
1:

4.2. RADIAL MOTION

The corresponding exercise of deriving simple formulae for radial motion is slightly
more complex. The slope of the curves in Figures 5, 9 and 11 has been seen to follow f 2n+2

at low frequencies while the dependence on wheel radius has already been shown to be of
the form r�1/2. There will also be a dependence on the tyre width, but since this parameter
does not vary significantly for real wheels, it is not investigated further here.
It is instructive to begin with the wheel with the solid web, as here no cancellation occurs

between inner and outer tyre and therefore the curves are simpler. Based on the slope
noted above and the structure of two transition frequencies, the proposed model is

srðnÞ ¼
1

1þ ðfr2ðnÞ=f Þ2
for n ¼ 0; ð6aÞ

srðnÞ ¼
1

1þ ðfr1ðnÞ=f Þ2n
�

1

1þ ðfr2ðnÞ=f Þ2
for n > 0; ð6bÞ

where fr1=120n and fr2=800Hz in this case (r=0�42m). The first of these is related to the
wavelength in the wheel tyre whereas the second depends only on the wheel geometry.



Figure 14. Error in radiation index of axial 0-nodal-circle modes if equations (3–5) are used.}}, r.m.s. error
for all frequency points in range, – – –, mean error.

Figure 15. Approximate radiation ratios of radial motion for wheel with solid web and radius 0.42m from
equations (6). }}, n=0; � � �, n=1; ������ n=2; � � � �, n=3; - - - n=4.
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Equation (6b) implies a frequency dependence of f 2n+2 for f55fr1 and f 2 in the
intermediate frequency range fr15f5fr2.
The results of this model are shown in Figure 15. By comparing this to Figure 11, it can

be seen that the results for n>0 agree quite closely with the BE results. The results for n=0
show a discrepancy of about a factor of 4 below 200Hz, where the BE results rise above
those of equation (6a). However, since no significant n=0radial motion occurs in practice
below 1 kHz (the relevant mode of vibration occurs at about 3 kHz), this discrepancy is
considered acceptable.
The next step is to consider the various wheels with different web and tyre dimensions.

The BE predictions were shown in Figure 12. At high frequencies, the results follow
closely those for the solid web (Figure 11) and equations (6) can be used to model
these curves. However, at low frequencies, the radiation ratio drops by an amount that
differs between wheels. It may be supposed that the magnitude of this drop is dependent
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on the ratio of the areas

g ¼ ðSout � SinÞ=ðSout þ SinÞ; ð7Þ

where Sout is the area of the outer surface of the tyre (the tread) and Sin is the area of the
inner surfaces of the tyre. Thus the total area of the tyre active in radial motion is
Sout+Sin. At low frequencies, cancellation between the radiation from the inner and outer
surfaces leaves a residual area of Sout�Sin. The frequency below which the radiation ratio
drops is found to be given approximately by

fr3 ¼ 280þ 150n ð8Þ

for this wheel radius. For frequencies below fr3 it is found that the radiation ratio is
reduced from that given by equations (6) by a factor of approximately

ffiffiffi
g

p
: The resulting

predictions are given in Figure 16 which may be compared with the BE results of Figure
12. Using this factor works well for n52. For n=0 the factor should be nearer to g but, as
noted above, the prediction for the solid-webbed wheel is less accurate anyway at n=0; see
also Figure 9(a). In any case, the results are unlikely to be significant as n=0radial motion
does not occur at low frequencies. For n=1 the simple model gives a slight over-prediction
at low frequencies for the normal and thin-tyred wheels; see also Figure 9(b).
Figure 16. Approximate radiation ratios of radial motion for various straight-webbed wheels with radius
0.42m. }}, normal wheel; � � �, double thickness tyre; ������, half-thickness tyre; �� � �, solid web; - - - wide
web. (a) n=0, (b) n=1, (c) n=2, (d) n=3.



Figure 17. Error in radiation index of radial motion if equations (6), (7) and (9) are used.}}, r.m.s. error for
all frequency points in range, – – –, mean error.
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The curves shown in Figure 9 are based on equations (6)–(8), with the transition
frequencies fr1, fr2 and fr3 given above factored by (r/0�42)

�1/2:

fr1 ¼ 120n=ðr=0�42Þ
1=2; fr2 ¼ 800=ðr=0�42Þ

1=2; fr3 ¼ ð280þ 150nÞ=ðr=0�42Þ1=2: ð9a2cÞ

Figure 17 shows the r.m.s. difference between the results from these simple formulae and
the BE results, which are only available for n44. These differences are averaged over the
results for four different radii and the four different web/tyre geometries. Apart from n=0,
where large discrepancies are present below 200Hz, the results show reasonable
agreement.

5. DIRECTIVITY OF WHEEL RADIATION

The results so far have concentrated on the radiation ratio, which allows the sound
power to be predicted from a knowledge of the vibration amplitude and distribution. To
obtain the sound pressure at a given point in the far field, the directivity of the sound field
is also required.
In practice, the noise due to a wheel is usually observed at a position that is fixed relative

to the ground as the train passes, and the quantity of interest is an average sound level due
to the train rather than the precise time-varying sound pressure level. A similar
consideration applies for interior noise, since the airborne sound transmission to the
interior is determined by the overall sound field in a region under the vehicle rather than
the sound pressure at any particular location under the floor. Moreover, the directivity of
the noise from a wheel will be affected by local geometric features such as the bogie frame
and vehicle body. For these reasons, the detailed directivity is of little practical relevance.
It is sufficient to obtain an indication of the approximate nature of the directivity.
Measurements are presented in reference [17] of the sound field around each of five

different types of railway wheel, excited at their natural frequencies. In each case
microphones were located around a semi-circular frame of radius 1�5m, centred at the
centre of the wheel. The wheel was excited radially on the tyre, on the opposite side to the



Figure 18. Sound pressure normalized to input force around an NS Intercity wheel for radial modes. The
wheel axis lies at the angle 08, angles greater than 908 represent positions behind the wheel. (a) n=3, 2470Hz; (b)
n=5, 4060Hz [17].
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microphones, by repeated impacts. Measurements were presented in terms of the sound
pressure normalized to the input force rather than the directivity as such.
Example results are shown in Figures 18 and 19 for an NS Intercity 920mm diameter

wheel, for 1-nodal-circle and radial modes respectively. This wheel has a straight web so
that its radial and axial motions are less well coupled than those of the freight wheel shown
in Figure 1 [17]. Although the results are rather complex, it can be seen that the sound
pressure for the radial modes has a similar level around the semi-circular arc, whereas the
axial modes have a lower sound pressure above the wheel tread (908) than in the axial
direction (08). The sound pressure was generally found to have a minimum on or close to
the axis of the wheel for both types of mode, due to cancellation between the contributions
from different parts of the mode shape; a maximum was obtained for n=0 [17].
Results in reference [17] for wheels with a curved web resembled the radial mode results

of Figure 18, since the predominantly axial modes also contain radial motion.
In seeking a simple model to represent the overall behaviour seen in Figures 18 and 19, a

distinction is made between axial and radial motion. For radial motion the sound field can
be closely approximated by an omni-directional field, whereas for the axial motion a
dipole distribution is more appropriate since this has a maximum in the axial direction and
a minimum in the plane of the wheel. Such results are shown in Figure 20.

6. CONCLUDING REMARKS

The radiation ratio of a railway wheel vibrating in various mode shapes has been
obtained from boundary element calculations. Simple parametric models have been



Figure 19. Sound pressure normalized to input force around an NS Intercity wheel for 1-nodal-circle axial
modes. The wheel axis lies at the angle 08, angles greater than 908 represent positions behind the wheel. (a) n=3,
2740Hz; (b) n=5, 3850Hz [17].

Figure 20. Sound pressure distribution for (a) monopole-type source, (b) dipole-type source.
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established from these results for the radiation ratios of axial and radial motion, showing
the dependence on the number of nodal diameters, the wheel radius, and other geometric
features. These formulae are much more efficient than full boundary element predictions
and depend only on a few simple geometric parameters. They have been included in the
latest versions of the TWINS program (Track–Wheel Interaction Noise Software) for
predicting railway rolling noise [5, 6]. Similarly, the directivity is based on a dipole
distribution for axial motion and a monopole (omni-directional) distribution for radial
motion.
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