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A point transformation technique is developed to investigate the non-linear behavior of
a two-dimensional aeroelastic system with freeplay models. Two formulations of the point
transformation method are presented, which can be applied to accurately predict the
frequency and amplitude of limit cycle oscillations. Moreover, it is demonstrated that the
developed formulations are capable of detecting complex aeroelastic responses such as
periodic motions with harmonics, period doubling, chaotic motions and the coexistence of
stable limit cycles. Applications of the point transformation method to several test examples
are presented. It is concluded that the formulations developed in this paper are e$cient and
e!ective.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The study of the dynamic behavior of aircraft structures is a crucial step in #utter analysis,
since such research provides important information related to the e$cient and safe design of
aircraft wings and control surfaces. To investigate the dynamic response of aircraft
structures, non-linear analysis is needed to take into account the e!ects due to structural
non-linearities that occur in the restoring forces [1}5]. A detailed study on the non-linear
aeroelastic behavior of airfoils was presented in a recent review paper by Lee et al. [6].
There are three fundamental types of concentrated structural non-linearities: cubic, freeplay
and hysteresis sti!nesses. In our previous work [7], we studied a self-excited
two-degree-of-freedom (d.o.f.) aeroelastic system with a cubic restoring force. Through the
application of the center manifold theory and the principle of normal form, analytical
formulas are derived which are capable of accurately predicting the frequencies and
amplitudes of limit cycle oscillations. The goal of this paper is to continue our earlier study
to develop a mathematical technique for freeplay models. The investigation for hysteresis
models will be presented in Part 2 [8].
An aeroelastic model with freeplay has been investigated using analytical methods based

on describing function and harmonic balance methods, and numerical techniques using
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time-integration schemes [1, 4, 9]. The non-linear behavior of such systems has also been
studied numerically and experimentally by Conner et al. [10] and Tang and Dowell [11].
Although it seems that our earlier technique based on the center manifold theory can still be
applied if we replace the freeplay models by polynomial or rational polynomial
approximations, a detailed investigation carried out by Liu [12] has led to the conclusion
that such an approach should not be used for two reasons. First, it is important to note that
one feature of the freeplay is the existence of switching points in which changes in linear
subdomains occur. Since a slight change in the system parameters could a!ect the
non-linear aeroelastic behavior considerably, replacing a freeplay by a numerical
approximation, which eliminates the switching points, would cause the location of the
bifurcation point to be no longer exact. Second, since initial conditions play an important
role in the dynamic response of aeroelastic systems with freeplay non-linearity for some
range of airfoil parameters, the center manifold method, which does not take into account
any information due to initial conditions, would not be expected to provide a good
prediction for a freeplay or a hysteresis model.
Time-integration methods have often been used to study the response of an aeroelastic

system with freeplay restoring forces. It should be noted that, for a piecewice linear system
such as a freeplay model, it is not straightforward to analyze the stability of the numerical
schemes, because some of the eigenvalues corresponding to one of the linear subsystems
may have positive real parts. Furthermore, the standard time-integration scheme with
uniform time step cannot precisely locate the switching point where the change in linear
regions occurs. The importance of capturing switching points was noted by Lin and Cheng
[13] and Conner et al. [10]. Lin and Cheng [13] reported an example showing that an
entirely incorrect asymptotic behavior for a non-linear #utter can occur due to the error in
capturing the switching point in the Runge}Kutta numerical scheme. A detailed study of
the error analysis of the Runge}Kutta scheme for the aeroelastic system with non-linear
structures has been carried out by Liu et al. [14], which shows that the signi"cant
di!erences between the exact motion and the numerical solution may be observed for some
cases. However, for the cases discussed in this paper, the error caused by the inexact
location of the switching points are very small by keeping the time step small.
In this paper, we introduce a mathematical technique based on the point transformation

method [15]. Two formulations are developed to investigate the non-linear aeroelastic
model with a freeplay non-linearity. One attractive feature of the present approach
compared with a numerical time-integration scheme is that the formulations track the
system behavior to the exact point where the change in linear subdomains occurs.
Moreover, the solution corresponding to each linear region is determined analytically. It will
be demonstrated that the formulations developed are e$cient and e!ective. Not only can they
accurately predict the amplitude and frequency of the limit cycle oscillations, but also they are
capable of detecting complex non-linear aeroelastic behavior such as periodic motion with
harmonics, periodic doubling, chaotic motion and the coexistence of stable limit cycles.

2. THE MATHEMATICAL MODEL

Figure 1 shows a sketch of an airfoil oscillating in plunge and pitch. The mathematical
formulation for the self-excited two d.o.f. motion can be expressed as
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Figure 1. The sketch of an airfoil motion with two d.o.f.
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where the plunge de#ection is denoted by h, positive in the downward direction, and the
pitch angle about the elastic axis is denoted by �, positive with nose up. The elastic axis is
located at a distance a

�
b from the mid-chord where b is the half-chord, while the mass center

is located at a distance x�b from the elastic axis. �"h/b is the non-dimensional
displacement of the elastic axis, and the � denotes di!erentiation with respect to the
non-dimensional time which is de"ned as 
";t/b. ;* is a non-dimensional velocity
de"ned as ;*";/(b��), where ; is the velocity, and �N is given by �N "��/�� , where ��
and �� are the natural frequencies of the uncoupled plunging and pitching modes
respectively. �� and �� are the damping ratios, and r� is the radius of gyration about the
elastic axis. 	 is the airfoil/air mass ratio de"ned as m/(��b). G(�) and M(�) represent the
non-linear plunge and pitch sti!ness terms respectively. For an incompressible #ow, the lift
and pitching moment coe$cients C

�
(
) and C

�
(
) are given by [16]
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di!erential equations for the self-excited aeroelastic system (1) can be reformulated into a set
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of autonomous di!erential equations as X�"f (X), where X"�x
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where the coe$cients j, a
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,2, a
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,2, a
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�
and d

�
are related to the system

parameters and their expressions are given in Appendix A.
The structural non-linearities are represented by the non-linear functions G(x

�
) and

M(x
�
) in system (2). Generally speaking, for a freeplay model, M(x
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) is given by
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whereM
�
,M

�
, �

�
and � are constants. Here, we give the expressions forM(x

�
) in the pitch

d.o.f. Similar expressions for G(x
�
) in the plunge motion can be written by replacing x

�
with

x
�
. The sketch of the freeplay model is given in Figure 2.
Consider the eight-dimensional system given in equation (2) for a freeplay spring in pitch

and a linear spring in plunge, where M(x
�
) is given by equations (3) and G(x

�
)"�x

�
.

According to the three linear branches of the bilinear function for a freeplay model, the
Figure 2. General sketch of a freeplay sti!ness.
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phase spaceX3R� can be divided into three regions,R
�
(i"1, 2, 3), where each corresponds

to a linear system:
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Here A and B are 8�8 constant matrices, and F
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(i"1, 2, 3) are determined by the system parameters of the coupled
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the 4�4 block matrices, A
�
(i"1, 2, 3, 4), B

�
, and the vector F are de"ned in Appendix B.

3. POINT TRANSFORMATION METHOD

Consider the freeplay model shown in Figure 2. Let the Z}> plane represent the
eight-dimensional phase space, where Z"�x

�
� and >"�x
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, x
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, x

�
, x
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�. The

Z}> phase space is now divided into three regions R
�
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�
and R

�
according to the

subspacesZ"�
�
and Z"�

�
#� as shown in Figure 3(a). The system response can then be

predicted by following a general phase path. Assuming that a motion initially starts at
a point X

�
as shown in Figure 3(a), the trajectory begins in R

�
and passes through R

�
into

R
�
. Then it returns throughR

�
back intoR

�
. LetX
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andX
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be the points through which the

trajectory enters R
�
and R
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respectively. Let X
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and X
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be the points through which the

trajectory leaves R
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and R
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respectively. These points (X
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and X
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) are called

switching points, since they locate the places where the linear systems change. Let t
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be the

travelling time of the trajectory (fromX
�
toX
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) in regionR
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. Similarly, let t
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, t
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and t
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be the
Figure 3. General trajectory (a) and a period-one trajectory (b) of system (2) with a freeplay sti!ness in pitch.



Figure 4. Trajectories for system (2) with a freeplay sti!ness in pitch: period-one with harmonics where (a) the
smaller loop covers R

�
and R

�
; (b) the smaller loop covers R

�
and R

�
.
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travelling times of the trajectory in regionsR
�
, R

�
and R

�
respectively. The above process of

the point transformation is then repeated. When a steady state is reached, the trajectory
may consist of only four switching points X

�
, X

�
, X

�
, X

�
and four travelling times t

�
, t

�
, t

�
and t

�
as illustrated in Figure 3(b).

It should be noted that the system of equations in each region is strictly linear. Hence, the
exact solutions in R

�
, R

�
and R

�
can be expressed analytically. Using the analytical

solutions in di!erent regions, we can determine the maximum and minimum values of
� corresponding to ��"0. Moreover, based on the information provided by the switching
points, travelling times and the maximum and minimum amplitudes for �, we can predict
the type of steady state motion for the aeroelastic system. For instance, when the transients
have diminished, we may observe a repetition of the switching pointsX

�
,X

�
,X

�
,X

�
and the

corresponding travelling times t
�
, t

�
, t

�
, t

�
covering the entire region as shown in Figure

3(b). Then, the steady state motion is classi"ed as a limit cycle oscillation (LCO) with one
frequency. The existence of one frequency component is further con"rmed by only one
maximum and one minimum value for �. The frequency can be determined by f"1/¹,
where ¹ denotes the period which is the sum of the travelling times (i.e., ¹"��

�
�
t
�
). The

resulting LCO is of period-one, and the trajectory illustrated in Figure 3(b) has one
complete loop covering the three regions R

�
, R

�
and R

�
.

The point transformationmethod is capable of predictingmore general periodic motions.
Note that it is not necessary that the switching points appear in the sequence as shown in
Figure 3(b). For example, the steady state trajectory displayed in Figure 4(a) which contains
six switching points. The additional two points X�

�
and X�

�
are introduced after completing

the sequence discussed previously. In this case, a complete loop consists of six points, X
�
,

X
�
, X

�
, X

�
, X�

�
, X�

�
, and six corresponding travelling times, t

�
, t

�
, t

�
, t

�
, t�

�
, t�

�
. Unlike the

trajectory shown in Figure 3(b), the complete loop covering the entire region also contains
a smaller loop covering two regions R

�
and R

�
. The smaller loop is de"ned as the one

covering only one or two regions. The resulting LCO is of period-one, since we observe only
one complete loop covering the entire region. However, the presence of a smaller loop
indicates that the LCO has a harmonic component. Since the LCO is of period-one, the
frequency is estimated by f"1/¹ where ¹"��

�
�
t
�
#��

�
�
t�
�
. The typical feature of an

LCO with harmonics can be veri"ed by four values for � when ��"0. Recall that for
a period-one LCO with one frequency, only two values of � corresponding to ��"0 exist.
Figure 4(b) illustrates a similar situation, but with the two extra switching pointsX�

�
andX�

�
due to the presence of a smaller loop covering regions R

�
and R

�
.



Figure 5. Trajectories for system (2) with a freeplay sti!ness in pitch: period-two LCO (a) without harmonics
and (b) with harmonics where two smaller loops cover R

�
and R

�
.
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The predicted LCOs discussed in Figures 3 and 4 are of period-one, since the point
transformation con"rms the presence of only one complete loop covering the entire region.
If, however, a complete loop covers the entire region n times, the LCO is classi"ed as
a period-n LCO and the frequency is given by f"1/¹, where the period ¹ is the sum of the
travelling times. For example, Figures 5(a) and 5(b) display period-two LCOs. Figure 5(a)
corresponds to a simple period-two LCO, and the trajectory contains eight switching points
and eight travelling times in a complete loop. In Figure 5(b), a complete loop contains two
smaller loops, indicating that the period-two LCO has harmonic components. If the
sequence of switching points does not repeat after a su$ciently long time, the motion may
be classi"ed as chaos.
In summary, the point transformation method can be used to detect a general period-n

LCO for an aeroelastic system with freeplay. Moreover, it can predict the presence of
harmonic components and is also capable of determining the frequency and the maximum
and minimum amplitudes of an LCO.
In the following sections, we present two formulations based on the above discussion.

Then the formulations developed will be applied to predict the non-linear aeroelastic
behavior for a freeplay model.

3.1. FORMULATION 1

This formulation begins with a given set of initial conditionsX
�
. First, the travelling times

are determined by solving a non-linear equation. Then, the switching points are calculated
by the multiplication of a known matrix by a known vector, which will be further explained
after the formulation is presented. If the round-o! error can be neglected, the formulation
will produce the exact solution for the aeroelastic system. The detailed procedure is given as
follows.
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denotes the nth element of the vector <.

Let the smallest positive solutions corresponding to the "rst and second equations be t* and
t** respectively. If t*(t**, let t
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, and go to
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Step 2: First, solve �e	�X
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The expressions ofA(t) and B(t) are de"ned in Appendix C. First, the travelling time t is
determined by solving a non-linear equation f (t)"0, where the explicit analytical
expression of f (t) can be found in reference [12]. This equation can be solved by any
standard procedure such as bisection or Newton}Raphson method. Then, the new state X

�
(i"1, 2, 3, 4) are computed from a known matrix by a known vector multiplications. For
example, in step 1, once the travelling time t

�
is determined, the new state vector X

�
can be

updated from X
�
according to X

�
"e���X

�
#B(t

�
)F
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. Recall that X
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and F
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are vectors,

and from Appendix C, e���"PJM
�
P�� andB(t
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)"QBM Q��, where P, JM

�
, BM andQ are known

matrices whose elements are de"ned in Appendix C. Hence,X
�
is determined by performing

linear algebraic operations. If no positive solution for f (t)"0 can be found in any of the
steps discussed above, the motion either diverges if the linear system has at least one
eigenvalue with a positive real part, or it converges to the equilibrium in that region if the
real parts of all eigenvalues of the linear system are negative. If the values of the switching
points or the amplitudes of � become unbounded, then the motion is divergent.

3.2. FORMULATION 2

If only the steady state solution of an aeroelastic model is of interest, the following
alternative formulation is proposed so that the travelling times and the switching points of
an LCO can be determined directly without going through the transient state. However, we
must "rst assume the speci"ed type of the investigated motion. For example, for
a period-one LCO, the four switching points are de"ned by
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solving the following system of non-linear equations
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Note that equation (4) is 32-dimensional since X
�
(i"1, 2, 3, 4) are eight-dimensional

vectors. The period of this period-one LCO is given by the sum of the total travelling time
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, and the frequency f is calculated by f"1/¹. The amplitudes �
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where X
�
and X

�
are solutions to equation (4).

To determine the frequency of an LCO, only the values of t
�
(i"1, 2, 3, 4) are of interest.

With some algebra, the 32-dimensional non-linear equations system equation (4) can be
further reduced to a four-dimensional system with respect to t

�
(i"1, 2, 3, 4).
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whereH
�
(i"1, 2, 3, 4) are the 8�8 matrix functions of t

�
(i"1, 2, 3, 4), andG

�
(i"1, 2, 3, 4)

are 8�1 vector functions of t
�
(i"1, 2, 3, 4). The expressions for H

�
and G

�
are de"ned in

Appendix D. The frequency of the period-one LCO motion can then be determined by
f"1/��

�
�
t
�
, and the four switching points are given by X

�
"H

�
(t
�
, t

�
, t

�
, t

�
)G

�
(t
�
, t

�
, t

�
, t

�
)

with i"1, 2, 3, 4. The amplitudes �
��

and �

���
are given by equation (5).

For a period-one LCO with harmonics, assuming that the small loop in the state space
covers regions R

�
and R

�
, there exist six switching points instead of four as in the simple

period-one motion. By adding two more switching points,

X
	
"�

�
�
s
	
� and X



"�

�
�
s


�,

where s
	
and s



are seven-dimensional vectors representing the switching points in the

subspace �X3R��x
�
"�

�
�. Equations (4) are then rewritten as

X
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�
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Consequently, the frequency is given by f"1/�

�
�
t
�
. Since the motion contains four values

of amplitude for � when ��"0, the following additional formulas:

solve �e	��X�
	
#B(t

�
)F

�
��
���

"0 for t
�
,

�
��


"�e	��X�
	
#B(t

�
)F

�
��
���
,

solve �e	��X�


#A(t

�
)F

�
��
���

"0 for t
�
,

�
���

"�e	��X�


#A(t

�
)F

�
��
���

(8)

are included into equation (5) to compute the LCO amplitudes.
Generally speaking, for a period-nLCOor a period-nLCOwith harmonics, equations (4)

and (5) or equations (7) and (8) must be modi"ed to determine the corresponding travelling
times and the amplitudes.
Although Formulation 1 starts with a given set of initial conditions, it is not

a time-integration scheme since the solution to each linear subsystem is determined
analytically. The formulation given in section 3.1 is capable of detecting any type of steady
state motion including convergent, divergent, period-n, period-n with harmonics, and
chaotic motions. Under the same system parameters, starting from di!erent initial
conditions, the trajectory may converge to di!erent LCOs, which indicates the coexistence
of the LCOs of the original system (2).
When Formulation 2 is applied, only the steady state behavior is detected since no

information with respect to the transients is used. This is very e$cient if only the steady
state solution is of interest. However, the formulations given in equations (4) and (5) (or
equations (7) and (8)) are valid only for detecting a period-one LCO (or a period-one LCO
with harmonics). For other types of motion, the formulation has to be modi"ed
correspondingly. Note that only the positive solutions of t

�
(i"1, 2, 3, 4) to equation (4) (or

equation (7)) are valid since the variables t
�
(i"1, 2, 3, 4) represent the travelling times. Also

note that one valid solution of equation (4) (or equation (7)) corresponds to one period-one
LCO (or one period-one LCO with harmonics) of the original system (2). However, there
may be other valid solutions to equation (4) (or equation (7)), indicating the coexistence of
period-one LCOs (or of period-one LCOs with harmonics). Furthermore, under the same
system parameters, we may have valid solutions to equation (4) (or equation (7)) and to
some other similar non-linear equation systems corresponding to other types of LCOs.
However, Formulation 2 cannot be used to predict convergent, divergent or chaotic
motions.

4. RESULTS AND DISCUSSIONS

To demonstrate the e!ectiveness of the point transformation method, Formulations
1 and 2 are applied to a freeplay model. The system parameters under consideration are
	"100, a

�
"!1/2, x�"1/4, ��"��"0, r�"0)5 and �N "0)2. These system parameters

are chosen from Price et al. [3]. The procedures discussed in the previous section do not
depend on the choice of parameters. The non-linear restoring force M(x

�
) is given by

equation (3) with M
�
"0, �"0)53, M

�
"0, and �

�
"0)253, and the plunge is linear with

G(x
�
)"x

�
.



Figure 6. Bifurcation diagram for �(0)"33 and ��(0)"�(0)"��(0)"0.

Figure 7. Period diagram for �(0)"33 and ��(0)"�(0)"��(0)"0.
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The linear #utter speed ;*
�
"6)2851 is determined by solving the aeroelastic system for

M
�
"�"�

�
"0. For ;*';*

�
, some of the eigenvalues in regions R

�
, R

�
and R

�
have

positive real parts. Thus, the solution is divergent. As;* decreases below;*
�
, the real parts

of all eigenvalues of systems in R
�
and R

�
are negative, but some eigenvalues of the system

in R
�
may have positive real parts. Hence, for ;*(;*

�
, the aeroelastic system admits

various non-linear behaviors. When all eigenvalues of the system in regionR
�
have negative

real parts, damped oscillation results, and the solution converges to its equilibrium point
after the transients die out. However, when some of the eigenvalues of the system in R

�
have

positive real parts, the solution could become a "xed point, a limit cycle oscillation or
a chaotic motion.
Numerous simulations over a wide range of velocities 0(;*/;*

�
(1 have been

performed using Formulation 1. Note that the non-linear aeroelastic response for a freeplay
model depends strongly on the initial conditions. In this study, the value of �(0) is selected to
be in the range$53 so that the steady state solution for pitch and plunge are small enough
for linear aerodynamics to be valid. For the results presented in this section, we report those
using a non-zero value for x

�
(0) (i.e., � (0)), and other values x

�
(0) for i"2, 3,2, 8 are set to

zero. To illustrate the complex non-linear system behaviors, we display a bifurcation
diagram and a period diagram in Figures 6 and 7. The results reported are obtained using
Formulation 1, and they correspond to the choice of �(0)"33. In these two "gures, the



TABLE 1

Cases studies for freeplay

Case ;*/;*
�

Type of motion ¹ �
��

(deg) �

���
(deg)

1 0)20 p-1 33)4464 0)8311 0)1689
2 0)22 p-1-h 37)9893 0)8872 0)1653
3 0)2510 p-2-h 83)5829 0)9063 0)1567
4 0)3 Chaotic
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horizontal axis is the bifurcation parameter ;*/;*
�
. The vertical axis is the maximum and

minimum values of the pitch angle when ��"0 in Figure 6. In Figure 7, we present the
values of the LCO's period, and the classi"cation of the steady state solution is also
described where p-n denotes a period-n LCO and p-n-h denotes a period-n LCO with
harmonics.
For 0(;*/;*

�
)0)13, a single point is shown in the bifurcation diagram, which

indicates that the solution converges to an equilibrium point. Since zero travelling time is
determined by Formulation 1, this corresponds to a zero value for the period shown in
Figure 7. For example, when ;*"0)07;*

�
, no positive solution for the travelling time can

be found in Step 3 of Formulation 1. The zero time implies that the solution will not pass
through the regionsR

�
and R

�
. Since the real parts of all eigenvalues of the system in R

�
are

negative, the solution converges to the equilibrium point in R
�
. For 0)14);*/;*

�
)0)215,

two amplitudes of � corresponding to the maximum and minimum of pitch when ��"0 are
shown in Figure 6. This indicates that the solution is an LCO with period-one. It has one
frequencywith the period given in Figure 7. For 0)216);*/;*

�
)0)245, four amplitudes of

� and ��"0 are shown in Figure 6, and four switching points are detected by both
formulations. Thus, the solution is a period-one LCO with harmonics, and the period,
which is the same amount as the total travelling time, is shown in the corresponding period
diagram. Note that there exists a small jump in the value of the LCO period when the
solutions change from simple period-one to period-one with harmonics. Increasing ;*
slightly to ;*"0)25;*

�
, we observe a large jump in the period and eight values of � when

��"0 for the steady state. Note that the period is almost double, indicating the appearance
of a period-doubling phenomenon. The solution becomes a period-two LCO with
harmonics. The type of motion remains unchanged for 0)25);*/;*

�
)0)529 except for

two intervals when 0)252);*/;*
�
(0)325 and 0)466);*/;*

�
)0)488, where the

solution becomes chaotic as shown in Figure 6. A large number of amplitudes of � when
��"0 are detected in the chaotic regions, and they appear to lie along a vertical line in the
bifurcation diagram. As ;* increases to 0)53;*

�
, a large drop with a factor of two in the

period occurs, and the solutions change from period-two with harmonics to period-one
with harmonics. A further small reduction in amplitude for pitch appears when
;*/;*

�
"0)732, and the solution becomes a simple period-one LCO.

In order to illustrate the equivalence of both Formulations 1 and 2, four typical cases are
selected for a more detailed examination. The results corresponding to the choice of initial
condition �(0)"33 are presented in Table 1 and in Figures 8}11. In Table 1, ¹ represents
the period, and �

��

and �

���
denote the absolute maximum and minimum values of pitch.

The solutions obtained from both formulations are essentially identical, and they are in
good agreement with the numerical solution obtained by the Runge}Kutta time-integration
scheme. The results obtained from the point transformation method are denoted by "lled
circles in the "gures, and the numerical solutions from the time-integration scheme are



Figure 8. (a) The time history and (b) power spectral density (PSD) plot of pitch motion for Case 1 in Table 1.
, Runge}Kutta time-integration result; �, point transformation result.

Figure 9. (a) The time history and (b) PSD plot of pitch motion for Case 2 in Table 1. , Runge}Kutta
time-integration result; �, point transformation result.

Figure 10. (a) The time history and (b) PSD plot of pitch motion for Case 3 in Table 1. , Runge}Kutta
time-integration result; �, point transformation result.
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illustrated by solid lines. It should be noted that the time step is usually chosen so that the
time-integration method provided a stable numerical solution. Since for an aeroelastic
system with freeplay, some of the eigenvalues of the system in region R

�
may have positive

real parts, it is di$cult to perform the standard stability analysis. In numerical simulations,



Figure 11. Chaotic motion of Case 4 in Table 1: (a) the switching points by using point transformation method;
(b) the phase path by using Runge}Kutta time-integration; (c) the PSD plot.
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the time step �t is chosen to be su$ciently small in order to ensure that a good accuracy is
achieved. Here, �t can only be selected numerically when the solution computed by �t is
essentially the same as those obtained using �t/2. We found that the choice of �t depends
strongly on the bifurcation parameter. For the freeplay model presented in Table 1, the
result by using �t"0)3 is found to be a good numerical solution for ;*"0)2;*

�
. As ;*

increases to 0)25;*
�
, much smaller time step �t"0)0125 must be used to obtain an accurate

solution. The choice of �t becomes more critical as the solution approaches chaos. Hence,
solving an aeroelastic system using a numerical method becomes very time consuming,
because a large number of computing steps per cycle is required especially when ;* nears
the chaotic regions. Moreover, the appropriate value for �t can be determined only through
a sequence of numerical computations using �t, �t/2, �t/4,2, etc.
For Case 1, using Formulation 1 starting with �(0)"33, an LCO is detected after eight

cycles. Four switching points and four travelling times are recorded, and they are similar to
those displayed in Figure 3(b). Since two amplitudes of � corresponding to ��"0 are
determined (Figure 8), we conclude that the LCO is period-one with the frequency given by
the non-dimensional f"1/¹"0)0299. The predicted frequency is in excellent agreement
with that determined from the power spectral density (PSD) plot based on the time history
of the numerical solution (Figure 8(b)). When Formulation 2 is applied, the same amplitudes
and frequency are obtained directly without the transient stage. As;* increases to 0)22;*

�
,

six switching points and travelling times are recorded, and they are similar to those shown



TABLE 2

Coexistence of limit cycle oscillations

Case ;*/;*
�

x
�
(0) (deg) Type of motion ¹ �

��

(deg) �

���
(deg)

1 0)2161 0)3 p-1-h 37)5344 0)8341 0)1149
2 0)2161 3 p-1 35)6384 0)8403 0)1597
3 0)22 !3 p-1-h 37)9893 0)8347 0)1128
4 0)22 3 p-1-h 37)9893 0)8872 0)1653
5 0)7 !0)5 p-1-h 81)9875 1)5179 0)2451
6 0)7 !5 p-1 72)05 1)2973 !0)2973
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in Figure 4(a). The existence of a smaller loop covering regionsR
�
and R

�
indicates that the

LCO has harmonics. Four amplitudes of � when ��"0 are detected, and they are in good
agreement with the numerical solution (Figure 9(a)). The frequency f"1/¹"0)0263 agrees
well with the "rst dominant frequency reported from the PSD plot shown in Figure 9(b).
The point transformation method con"rms the existence of the harmonic components, but
it is unable to predict the value of the harmonics which appears at 2f"0)0526 as shown in
the PSD plot.
For Case 3, the period ¹"83)58, which is almost double the period ¹"37)98 reported

for Case 2. Both Formulations 1 and 2 indicate 12 switching points and eight amplitudes of
� when ��"0. Moreover, the switching points displayed in the phase plane are similar to
those shown in Figure 5(b), where the complete loop covers the entire region twice, and it
also contains two smaller loops covering regions R

�
and R

�
. Hence, the resulting LCO is of

period-two with harmonics. Figure 10 shows the pitch amplitudes corresponding to ��"0
and the predicted frequency of the LCO.
When;*"0)3;*

�
, the values of switching points, travelling times, and the amplitudes of

� obtained using Formulation 1 do not settle down to a repeated sequence even after
a su$ciently long time when 
'15 000. The switching points appear to be on a vertical line
in the phase space of �}�� as shown in Figure 11(a). The amplitudes of � when ��"0 also lie
on a vertical line in the bifurcation diagram shown in Figure 6. The suggests that the motion
is chaotic. The chaos is con"rmed from a phase trajectory of �}�� (Figure 11(b)) resulting
from the numerical time-integration scheme, and a typical &&two-well potential'' trajectory is
observed. It is also worthwhile to note that the locations of the two inner loops are near the
subspaces corresponding to �"0)25 and 0)753. The PSD spectrum (Figure 11(c)) from the
numerical solution also con"rms the existence of broadband frequency components, an
indication of chaos. The particular case was also investigated by Price et al. [3], and they
concluded that the motion is indeed chaotic.
One of the important features of the freeplay model is that the aeroelastic system admits

the coexistence of stable LCOs. Table 2 reports the case with the speed ratio
;*/;*

�
"0)2161, 0)22 and 0)7. Starting with various initial conditions for � (0), di!erent

LCOs are predicted by Formulation 1. For example, for ;*"0)2161;*
�
and � (0)"0)33,

the LCO converges to a period-one LCO with harmonics, where the frequency is given by
f"0)0266. Changing the initial condition to � (0)"33, the solution becomes a simple
period-one LCO, and the frequency is given by f"0)0281. For;*"0)22;*

�
, the solutions

corresponding to the initial conditions �(0)"$33 are of the same type, namely period-one
LCO with harmonics. Although the periods are identical, the amplitudes of � when ��"0
are di!erent. The point transformation method con"rms that the locations of the six
switching points are actually di!erent, and they are similar to those shown in Figure 4(a)



Figure 12. The time histories and phase paths, (a) and (b) for Case 5, (c) and (d) for Case 6 in Table 2.
, Runge}Kutta time-integration result; �, point transformation result.
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and 4(b). Note that the smaller loop covers regionsR
�
andR

�
for Case 3 and regionsR

�
and

R
�
for Case 4. For;*"0)7;*

�
, four switching points are found by the point transformation

method when �(0)"!0)53 and !5)03. However, the number of amplitudes of � when
��"0 are found to be four and two as shown in Figure 12(a) and 12(c), corresponding to the
above initial conditions. This gives an indication of the existence of harmonic components
for Case 5. The phase trajectory constructed from the numerical time-integration solution
con"rms the existence of a smaller loop as shown in Figure 12(b) and 12(d). However, since
the smaller loop exists only in the region R

�
, no extra switching point is found in the point

transformation method.
Although no explicit information concerning the initial condition is required in

Formulation 2, the coexistence of stable LCOs can be determined by solving di!erent sets of
non-linear equations or by changing the initial guess values to solve the same set of
non-linear equations. For ;*/;*

�
"0)2161, solving equations (4) or (6) gives the LCO in

Case 2, and the solution of equation (7) leads to the LCO in Case 1. Similarly, when
;*/;*

�
"0)22, solving equation (7) gives the LCO in Case 3. In order to determine the

motion type for Case 4, a di!erent set of non-linear equations must be developed, since the
switching points are now in a di!erent sequence. Cases 5 and 6 correspond to two di!erent
types of LCOs, but both have four switching points, X

�
, X

�
, X

�
and X

�
. The switching

points and travelling times are determined by solving the same non-linear equations (4) in
Formulation 2 but with di!erent initial guess values. Table 3 reports the values of the initial
guess which are used for solving equation (4) in which other initial starting values s

�
(i"1, 2,



TABLE 3

Results of Formulation 2 for Cases 5 and 6 in Table 2

t
�

t
�

t
�

t
�

Initial guess 10 30 10 30
Final solution 8)85644138 20)57834338 7)86033041 44)68989101

Initial guess 5 20 10 20
Final solution 20)18151269 21)03447205 10)70421369 22)42792629
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3, 4) are set to zero. The corresponding solution for t
�
, t

�
, t

�
and t

�
are presented in Table 3.

These results con"rm the coexistence of two stable LCOs with two di!erent periods, namely
¹"82 and 72 for Cases 5 and 6 respectively.

5. CONCLUSIONS

Amathematical technique based on the point transformationmethod has been developed
to investigate the dynamic response of a self-excited two-d.o.f. aeroelastic system with
structural non-linearity represented by a freeplay sti!ness. The method provides an
accurate prediction since the switching points where the changes in linear subdomains
occur are located exactly, and the solution in each subdomain is determined analytically.
The formulations are developed, and they have been applied to investigate the non-linear
aeroelastic behavior of a freeplay model. The results of the present study show that both
formulations can accurately predict the frequency and amplitude of limit cycle oscillations.
Moreover, the formulations are also capable of detecting complex non-linear behavior such
as periodic motions with harmonics, period doubling, chaotic motions and the coexistence
of stable limit cycles. Formulation 2 is particularly attractive since it can detect the presence
of a particular type of LCO directly without considering the transients. From the
illustrative examples presented in this paper, it is clearly demonstrated that analytic
predictions are in excellent agreement with those resulting from a numerical
time-integration scheme. The point transformation formulations are developed for an
aeroelastic system with a structural non-linearity in the pitch d.o.f. However, the analysis
can readily be extended to include non-linearities in both d.o.f.
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APPENDIX A: DEFINITIONS OF COEFFICIENTS
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APPENDIX B: DEFINITIONS OF MATRICES AND VECTORS

A
�
"�

0 1 0 0

a
��

!jc
��
1

;*�
�

a
��

a
��

#jd
�
��

��
;*�

�
a
��

0 0 0 1

a
��

#jc
��
1

;*�
�

a
��

a
��

!jd
�
��

��
;*�

�
a
��� ,

A
�
"�

0 0 0 0

a
�	

a
�


a
��

a
��

0 0 0 0

a
�	

a
�


a
��

a
��
� , A

�
"�

1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0� , A
�
"�

!�
�

0 0 0

0 !�
�

0 0

0 0 !�
�

0

0 0 0 !�
�
� ,

B
�
"�

0 1 0 0

a
��

!jc
�
M

��
1

;*�
�

a
��

a
��

#jd
�
��

��
;*�

�
a
��

0 0 0 1

a
��

#jc
�
M

��
1

;*�
�

a
��

a
��

!jd
�
��

��
;*�

�
a
��� , F"�

0

!jc
��
1

;*�
�

0

jc
��
1

;*�
�

0

0

0

0
� .

APPENDIX C: COMPUTATION OF THE MATRICES

Let the matrices A and B be decomposed such that A"PJ
	
P�� and B"QJ

�
Q��, where

J
	
and J

�
are the Jordan canonical forms of A and B:

J
	
"�

a b 0 0 0 0 0 0

!b a 0 0 0 0 0 0

0 0 c d 0 0 0 0

0 0 !d c 0 0 0 0

0 0 0 0 �
��

0 0 0

0 0 0 0 0 �
��

0 0

0 0 0 0 0 0 �
��

0

0 0 0 0 0 0 0 �
��

� ,
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and

J
�
"�

e f 0 0 0 0 0 0

!f e 0 0 0 0 0 0

0 0 �
��

0 0 0 0 0

0 0 0 �
��

0 0 0 0

0 0 0 0 �
��

0 0 0

0 0 0 0 0 �
��

0 0

0 0 0 0 0 0 �
�	

0

0 0 0 0 0 0 0 �
�


� ,
where �a$bi, c$di, �

��
, �

��
, �

��
, �

��
� and �e$fi, �

��
, �

��
, �

��
, �

��
, �

�	
, �

�

� are eigenvalues of

A and B respectively. The matrixA(t)"� �
�
e	����� d
 can be computed by A(t)"PAM P��,

where

AM "�
v(a, b, t) s (a, b, t) 0 0 0 0 0 0

!s(a, b, t) v(a, b, t) 0 0 0 0 0 0

0 0 v(c, d, t) s (c, d, t) 0 0 0 0

0 0 !s(c, d, t) v(c, d, t) 0 0 0 0

0 0 0 0 l (�
��
, t) 0 0 0

0 0 0 0 0 l (�
��
, t) 0 0

0 0 0 0 0 0 l(�
��
, t) 0

0 0 0 0 0 0 0 l (�
��
, t)
�

and the matrix B(t)"� �
�
e������ d
 can be computed by B(t)"QBM Q��, where

BM "�
v(e, f, t) s(e, f, t) 0 0 0 0 0 0

!s(e, f, t) v(e, f, t) 0 0 0 0 0 0

0 0 l (�
��
, t) 0 0 0 0 0

0 0 0 l (�
��
, t) 0 0 0 0

0 0 0 0 l (�
��
, t) 0 0 0

0 0 0 0 0 l (�
��
, t) 0 0

0 0 0 0 0 0 l(�
�	
, t) 0

0 0 0 0 0 0 0 l (�
�

, t)
� ,

and where the functions v : R�PR, s :R�PR, and l :R�PR are given by

v(a, b, t)"�
�

�

e������ cos(b(t!
)) d
"

!a#ae�� cos(bt)#be�� sin(bt)

a�#b�
,
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s(a, b, t)"�
�

�

e������ sin(b (t!
)) d
"

b!be�� cos(bt)#ae�� sin(bt)

a�#b�
,

l (�, t)"�
�

�

e������ d
"�
e��!1

�
, �O0,

t, �"0.

Also, e	�"PJM
	
P�� and e��"QJM

�
Q��, where

JM
	
"�

e�� cos(bt) e�� sin(bt) 0 0 0 0 0 0

!e�� sin(bt) e�� cos(bt) 0 0 0 0 0 0

0 0 e�� cos(dt) e�� sin(dt) 0 0 0 0

0 0 !e�� sin(dt) e�� cos(dt) 0 0 0 0

0 0 0 0 e���� 0 0 0

0 0 0 0 0 e���� 0 0

0 0 0 0 0 0 e���� 0

0 0 0 0 0 0 0 e����
�

and

JM
�
"�

e�� cos( ft) e�� sin( ft) 0 0 0 0 0 0

!e�� sin( ft) e�� cos( ft) 0 0 0 0 0 0

0 0 e���� 0 0 0 0 0

0 0 0 e���� 0 0 0 0

0 0 0 0 e���� 0 0 0

0 0 0 0 0 e���� 0 0

0 0 0 0 0 0 e��	� 0

0 0 0 0 0 0 0 e��
�
� .

APPENDIX D: DEFINITIONS OF H
�
AND G

�

H
�
(t
�
, t

�
, t

�
, t

�
)"(I!e	��e���e	��e���)��, H

�
(t
�
, t

�
, t

�
, t

�
)"(I!e���e	��e���e	��)��,

H
�
(t
�
, t

�
, t

�
, t

�
)"(I!e	��e���e	��e���)��, H

�
(t
�
, t

�
, t

�
, t

�
)"(I!e���e	��e���e	��)��.

where I denotes the identity 8�8 matrix.

G
�
(t
�
, t

�
, t

�
, t

�
)"e	��e���e	��B(t

�
)F

�
#e	��e���A(t

�
)F

�

#e	��B(t
�
)F

�
#A(t

�
)F

�
,



NON-LINEAR AEROELASTIC ANALYSIS. PART 1 469
G
�
(t
�
, t

�
, t

�
, t

�
)"e���e	��e���A(t

�
)F

�
#e���e	��B(t

�
)F

�

#e���A(t
�
)F

�
#B(t

�
)F

�
,

G
�
(t
�
, t

�
, t

�
, t

�
)"e	��e���e	��B(t

�
)F

�
#e	��e���A(t

�
)F

�

#e	��B(t
�
)F

�
#A(t

�
)F

�
,

G
�
(t
�
, t

�
, t

�
, t

�
)"e���e	��e���A(t

�
)F

�
#e���e	��B(t

�
)F

�

#e���A(t
�
)F

�
#B(t

�
)F

�
.

APPENDIX E: NOMENCLATURE

a
�

non-dimensional distance from airfoil mid-chord to elastic axis
b airfoil semi-chord
c chord
h plunge displacement
m airfoil mass
r� radius of gyration about the elastic axis
t time
x� non-dimensional distance from the elastic axis to the center of mass
C

�
(
), C

�
(
) aerodynamic lift and pitching moment coe$cients

G(�), M(�) non-linear plunge and pitch sti!ness terms
LCO limit cycle oscillation
PSD power spectral density
; free stream velocity
;* non-dimensional velocity (";/b��);*

�
linear #utter speed

X system variable vector
� non-dimensional plunge displacement ("h/b)
� pitch angle of airfoil
fM non-dimensional frequency ("fb/;)
� frequency of the motion
	 airfoil/air mass ratio ("m/��b�)

 non-dimensional time (";t/b)
� pitch angle for the central region of the freeplay sti!ness
� density


�
, 


�
constants in Wagner's function

�
�
, �

�
constants in Wagner's function

��, �� viscous damping ratios in plunge and in pitch
�N frequency ratio ("��/��)�� , �� natural frequencies in plunge and in pitch
�(
) Wagner's function
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