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Vibrations of and the energy propagation in an in"nitely long #uid-loaded sandwich
beam (a plate of the sandwich composition in one-dimensional cylindrical bending) bearing
concentrated masses and supported by springs are described in the framework of the sixth
order theory of multilayered plates coupled with the standard theory of linear acoustics.
A sandwich plate is loaded by a layer of a compressible #uid which is bounded opposite to
a plate side by a rigid ba%e. The dispersion equation for a #uid-loaded sandwich plate is
derived. The wave numbers (complex, pure real and pure imaginary) and relevant normal
modes (both the travelling and the evanescent ones) are obtained. Their dependence on the
parameter of a #uid's depth is studied. Then the Green matrix is constructed analytically as
a linear combination of normal modes to describe the response of a plate and an acoustic
medium to the point loading by a force or a moment. Continuity conditions at the loaded
cross-section of a plate and in a #uid are formulated. Attention is focused at the selection
of roots of the dispersion relation for the formulation of the continuity condition for a
#uid at the loaded cross-section. The convergence rate of an approximate solution based on
the modal composition of the Green matrix is estimated. The parametric study of the
&&structural'' and the &&#uid'' energy #ows in a #uid-loaded sandwich plate without inclusions
is performed for various excitation conditions. Then the Green matrix method is applied
to analyze the in#uence of a pair of identical inclusions on localization of vibrations
(modal trapping) and energy #ows. Conditions of localization of #exural waves at these
inhomogeneities are explored.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The present paper concerns several subjects each of which has received much attention in
the relevant literature. These subjects are: a theory of sandwich plates, the Green functions
for elastic structures in heavy #uid-loading conditions, energy transportation in coupled
acoustic}elastic systems, trapped modes in unbounded waveguides. The purpose of this
introduction is to discuss brie#y the formulation of a problem treated here with respect to
the related subjects rather than to give a detailed survey of research papers in the above
areas. Therefore, references cited below are aimed to underline a novelty of the formulation
which presents overlapping of these aspects.
A theory of sandwich plates suggested in reference [1] is used for the analysis of

stationary vibrations in cylindrical bending and attention is focused on the comparatively
low-frequency regime of motions. Then, governing di!erential equations of the sixth order
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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may appropriately be adopted to describe dynamics of such a plate. This theory deals with
dominantly #exural waves and also with dominantly shear waves which could be either of
an evanescent or of a travelling kind (depending on the frequency of excitation, see
references [2, 3]). It has been successfully applied to the analysis of vibrations of plates
bearing concentratedmasses and springs in reference [3] and to the analysis of vibrations of
#uid-loaded plates in reference [4].
The Green functions of vibrations of in"nitely long #uid-loaded elastic plates in

cylindrical bending have been constructed, for example in references [5, 6] and problems of
their forced vibrations have been thoroughly considered in references [5}8]. In all these
references, a classic Kirchho! theory is used, heavy #uid loading is produced by an
unbounded volume of an acoustic medium and the acoustic emission to a far "eld is
analyzed. However, in some applications, heavy #uid loading of an elastic structure is
produced by the layer of a #uid (for example, an ice shield on a shallow water, a pipe of
rectangular cross-section "lled by a #uid, etc.). In such a case (which is considered in the
present paper), the modal decomposition may be conveniently used to formulate the Green
functions and the analysis of a dispersion equation should be employed as a necessary part
of this procedure. For a purely acoustic waveguide composed by a #uid's layer of an in"nite
length placed between two absolutely rigid ba%es, the dispersion equation has an in"nite
number of roots and the energy transportation is possible only at frequencies above
a certain cut-on value. If an acoustic layer of a "nite depth is bounded by a Kirchho! plate
at one or both sides, then the analysis of the dispersion equation for such a system suggests
the absence of the cut-on frequency since the free travelling wave in a #uid-loaded plate
exists in such a case [9] at an arbitrary low frequency. The relevant eigenmode may
conveniently be classi"ed as a &&structure-dominated'' one, whereas &&#uid-dominated''
modes do not propagate in this regime. As the frequency of an excitation grows, other roots
of the dispersion equation become purely imaginary (space and time dependence are
adopted as exp(kx!i�t)) and &&#uid-dominated'' modes transform from evanescent to
travelling type at a set of cut-on frequencies.
Analysis of the energy transportation in #uid-loaded Kirchho! plates has been

performed, for example, in reference [8]. A similar problem for an in"nitely long cylindrical
shell (Kirchho! theory) "lled by a compressible #uid has been thoroughly analyzed in
references [10, 11]. The boundary integral equation method has been used in reference [12]
to analyze the input mobility and the energy transmission both in a near "eld and in a far
"eld in the case of mechanical excitation of such a cylindrical shell. To the best of the
author's knowledge, no research has been undertaken regarding vibrations of a plate of
sandwich composition in contact with the layer of an acoustic medium and energy
transportation in this system.
The excitation of an in"nitely long sandwich plate bearing a pair of concentrated masses

supported by sti!eners may result in mode trapping between these inclusions, as is shown in
reference [2]. In the present paper, the same phenomenon of trapping of #exural wave is
analyzed for a sandwich plate with heavy #uid loading that also contains the aspect of
novelty. This e!ect is analogous to the well-known phenomenon of mode trapping in purely
acoustical or purely elastic waveguides, which has been thoroughly studied, for example in
references [13, 14]. The localized ampli"cation of #exural vibrations in the #uid-loaded
structure may be conveniently explained in terms of energy #ows in the structure and in the
acoustic medium. Speci"cally, the trapped mode exists when a short circuit of the energy
#ows is developed in a certain region of the #uid-loaded structure (i.e., when the energy
#ows are directed opposite to each other in the structure and in the #uid). Finally, it should
be pointed out, that the classical formulation of the trapped mode problem is relevant to an
interaction between inclusions and a travelling incident wave coming from in"nity, but from
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a practical viewpoint it is probably more relevant to specify excitation conditions in terms
of an external loading. A case of most interest is then the forced vibrations of an in"nitely
long plate loaded by a concentrated force or moment and bearing concentrated inclusions.
Then, the Green function method [2, 3] appears to be a convenient tool for solving this
problem since the Green matrix is available in a simple analytical form.

2. THE DISPERSION EQUATION AND NORMAL WAVES FOR A FLUID-LOADED
SANDWICH PLATE

The theory of a sandwich beam is taken the form suggested in reference [1] and used in
references [2}4]. The element of a sandwich beam consists of two symmetrical relatively
thin, sti! skin plies and a thick, soft core ply. Dimensionless parameters are introduced to
describe the internal structure of the sandwich plate: �"h

����
/h

����
as a thickness parameter

(a ratio of a thickness of each individual skin ply to a thickness of the core ply), �"�
����
/

�
����
as a density parameter, �"E

����
/E

����
as a longitudinal sti!ness parameter and �

	
"G

����
/

G
����
as a shear sti!ness parameter. Hereafter, subscripts denoting parameters of skin plies

are omitted. The deformation of a sandwich beam element is governed by two independent
variables: a displacement of the mid-surface of the whole elementw (which is the same for all
plies) and a shear angle between the mid-surfaces of skin plies �.
Details of derivation of di!erential equations of motions of a sandwich plate may be

found in references [2}4]. Equations of motion of a #uid-loaded plate are formulated as
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is the intensity of a distributed lateral force, q� is the intensity of a distributed shear
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The Poisson's ratio � is assumed to be the same for all plies. The moments and forces are
related to a lateral displacement and a shear angle as

M
�
"!D

�
w��, M

�
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�
��, Q"� (�#w�). (1d)

Typical values of the material parameters for skin and core plies may be found in references
[2}4] or in reference [15, chapter 1]. The theory of bending of sandwich beams described
here is a generalization of classic Timoshenko theory [16] and the vector of generalized
displacements has three components (w, w�, �). In the case of a static deformation, this theory
results in equations of equilibrium identical to those given in reference [17, chapter 3].
Dynamics of an acoustic medium is governed by a wave equation for a velocity potential
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with a continuity condition at the #uid}structure interface, z"0

	�/	z"	w/	t. (3)

The second condition at z"!H (H is the depth of the layer of an acoustic medium) is

	�/	z"0. (4)

The acoustic pressure is formulated as

p"!�
��

	�

	t
. (5)

For de"niteness, a sandwich structure composed of isotropic individual layers is considered,
so that �"�

	
and equations (1a, b) become (here q
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To construct the Green functions for vibrations of an in"nitely long sandwich beam, it is
necessary to obtain the dispersion relation and formulate waves existing in an unbounded
structure. The loading terms in equations (6a, b) are then set to zero, and a solution is
sought in the form

w"A exp(kx!i�t), �"B exp(kx!i�t), �"C(z) exp(kx!i�t), (7a}c)

Standard algebra gives the following set of homogeneous algebraic equations:
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and upon setting the determinant of this system of algebraic equations to zero, the
dispersion equation is obtained in a non-dimensional form.
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where K"kh, �"�h/c, c"�E/�(1!�� ).



ANALYSIS OF VIBRATIONS AND ENERGY FLOWS 489
Apparently, for a given frequency parameter �, dispersion equation (9) has in"nitely
many roots. An arbitrarily large number of them may be found numerically as is described,
for example, in reference [10]. However, it is more convenient to expand the #uid-loading
term into power series and reduce equation (9) to the polynomial form. Its order is de"ned
by a chosen approximation level. Then, all the roots of the approximate polynomial
dispersion equation are easily found by using some symbolic manipulator, see, e.g.,
Mathematica [18]. These roots must be checked as to whether they ful"l original equation
(9). Further selection of the roots is based on the formulation of the Sommerfeld radiation
condition at in"nity for purely imaginary roots and the decay condition for complex roots,
i.e., Re (K



)(0, or, if Re(K



)"0, then Im(K



)'0. This latter choice is dictated by the

selection of time dependence as exp(!i�t), to ensure that the phase velocity of propagating
waves is directed away from a source of the excitation.
Since the location of roots of the dispersion equation controls formulation of the Green

matrix of a #uid-loaded sandwich plate, it is relevant to explore the in#uence of some
parameters, in particular, the depth of the #uid's layer on the shape of dispersion curves
K



(� ). An analysis of dispersion relations in purely acoustical waveguides or in purely

elastic waveguides is available in most of the textbooks on dynamics. These is also
a comprehensive literature related to analysis of dispersion relations in Kirchho! plates and
shells with heavy #uid loading, see, for example references [7, 9]. However, to the best of the
author's knowledge, a similar analysis has not yet been performed for a sandwich plate
loaded by a layer of an acoustic medium. For de"niteness, the following parameters of
a sandwich plate composition are speci"ed: �"0)25, �"0)0001, �"0)1, �"0)3. This
combination of parameters is typical of a plate of a naval structure made of thin steel skins
and PVC core [15]. This plate is loaded by water, so that �N "�

�����
/�"0)128 and

�"c/c
�����

"3)258. It is necessary to explore the roles of the frequency parameter�"�h/c
and the &&depth'' parameter �"H/h on the shape and location of dispersion curves. For
a plate without #uid loading, dispersion curves K



(� ) have been presented in references

[2, 3]. As follows from the results reported in these references, if the parameters of
a sandwich plate composition are selected as given above, then a minimal wave length at the
frequency of �"0)01 is about 8 times larger, than the thickness of the whole set of three
plies. Thus, it is reasonable to "x the frequency parameter at this value and to look at the
in#uence of the depth parameter only. It is illustrated in Figure 1(a}c), where dispersion
curvesK



(�) are sketched for the range of the depth parameter 2)5(�(50. In Figure 1(a),

real parts of roots of the dispersion equation are shown versus this parameter, whereas
in Figure 1(b) a dependence of imaginary parts of complex conjugate roots is displayed.
Curve A in Figure 1(b) displays a dependence of the purely imaginary wave number of
&&structure-dominated''mode on the parameter �. Finally, in Figure 1(c), a dependence of the
remaining two purely imaginary roots of the dispersion equation on the depth parameter is
shown. The dot at the vertical axis in Figure 1(a) designates a single purely real root
K

�
"!0)1958 for a sandwich plate without #uid loading; two purely imaginary roots in

this case are K
�
"0)00908i and K

�
"0)1935i. They are designated by dots at the vertical

axis in Figures 1(b, c) respectively.
Inspection of the #uid-loading term in equation (9) suggests, that in contrast to the case of

an unbounded volume of a #uid in contact with a plate, a layer of the depthH produces the
e!ect of an added sti!ness, rather than e!ects of an added mass or of a radiation damping
until the following condition holds true: ��K�#����'
/2. The case of a very small
depth of a layer of an acoustic medium is not of much practical relevance, since the model of
an ideal inviscid #uid probably is not valid then. Formally, a solution of the dispersion
equation in this limit gives two purely imaginary roots and a pair of complex conjugate
roots. All these roots are not shown in Figure 1(a}c) for 0(�(2)5. It should be pointed



Figure 1. Dispersion curves versus depth parameter � at �"0)01: (a) real parts of complex conjugate roots;
(b) imaginary parts of complex conjugate roots and a purely imaginary root; and (c) two purely imaginary roots.
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out that the absolute value of complex conjugate roots decays very rapidly with a growth in
the depth parameter. As the depth parameter reaches the value of �+2)6, this pair of roots
becomes purely real and one of them grows as shown by curve 1 in Figure 1(a). Another one
decays (see branch 2) until it matches growing purely real branch 3 at �+12)5. Branches
2 and 3 do not intersect, but leave the real axis and become the complex conjugate pair of
roots with the real part plotted as curve 4 in Figure 1(a). Their imaginary parts are plotted
as curves 4(a) and 4(b) in Figure 1(b). At �+20, they return to the real axis and split into
growing branch 5 and decaying branch 6. The latter one matches branch 7 at �+30 and
both real roots acquire imaginary parts shown in Figure 1(b) as curves 8(a) and 8(b). Their
real part is displayed by curve 8. This scenario is repeated at the points �+39 (complex
conjugate roots are split into branches 9 and 10), �+41 (purely real roots 10 and 11 merge
and transform to the pair of complex conjugate roots 12, 12(a), 12(b) and so on to the right
in Figure 1(a). Curve 1 in Figure 1(a) reaches zero at �+32 and transforms to purely
imaginary branch 1 in Figure 1(c). This is the "rst &&cut-on'' depth parameter at the given
frequency of �"0)01. Physically, it simply means that an acoustically dominated mode
has transformed from the evanescent to the propagating type. Branch 1 grows very fast
until it reaches another purely imaginary branch B at �+32)5. Similar to the cases
described in reference [10], these branches do not intersect each other. A growth in the
absolute value of the &&#uid-dominated'' wave number stops, whereas the absolute value of
the &&structure-dominated'' wave number begins to grow rapidly; see Figure 1(c).
The graphs in Figures 1(a}c) are not extended to larger values of the depth parameter

since all the characteristic features of dispersion curves are adequately described for �(50.
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The second and the third &&cut-on'' values of the depth parameter are �+127 and 240. It is
interesting to note that cut-on depth parameters for a layer of an acoustic medium between
two absolutely rigid walls at the same frequency found from an elementary formula
�


"m
/2��, m"1, 3, 5,2 are �

�
"48)2, �

�
"144)6, �

�
"241. As is seen, the third

&&cut-on'' value of the depth parameter is adequately predicted by use of this simpli"ed
model. This result is in perfect agreement with well-known results reported for other
#uid-loaded elastic structures, for example, for a #uid-loaded cylindrical shell; see references
[10, 11]. It is not necessary to continue analysis for other values of the frequency parameter,
since the pattern of dispersion curves K



(�) remains the same with the whole set of curves

just shifted towards larger values of the parameter � when the frequency parameter
� diminishes and in the opposite direction when it grows.
For each root K



, a modal coe$cient is found from equation (8b) as
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Then, formulas (10, 11) de"ne for each K


a wave which either travels from the left to the

right or decays in this direction.

3. THE GREEN MATRIX FOR A FLUID-LOADED SANDWICH PLATE

To perform the analysis of forced vibrations of a #uid-loaded sandwich plate, the Green
matrix should be constructed. The elements of this matrix are easy to derive since the roots
of the dispersion polynomial and the modal coe$cients are readily available. They are
composed as linear combinations of the normal modes for the &&fundamental'' loading cases
at an arbitrary cross-section x"� of a #uid-loaded sandwich plate. Unlike the case of
a sandwich plate without #uid loading treated in references [2, 3], the loading conditions
should contain a &&#uid'' part.
For a unit transverse force acting at x"�, the "rst condition formulates a unit jump in its

value
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The second condition is related to the symmetry of a #exural de#ection with respect to the
loaded cross-section:

	=
�
(x, �)/	x"0. (12b)

The symmetry condition is also formulated for a shear angle

�
�
(x, �)"0. (12c)

The #uid velocity "eld produced by a transverse force acting at an in"nitely long sandwich
plate should also be symmetrical with respect to the cross-section x"�, e.g.,

	�
�
/	x"0. (12d)

This condition should hold at any point !H(z(0.
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A set of normal modes is substituted into equations (12),
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This system is underdetermined, but it is necessary to also ful"l condition (12d) in a #uid at
x"�. This continuity condition may be ful"lled only in the average sense and the exact
formulation of the Green matrix may be obtained in expansion on the normal modes when
MPR. In practical computations, a few terms in equations (13) can be retained so that the
Green matrix is constructed in an approximate manner, but the accuracy may always be
assessed by adding extra terms in expansions (13). The derivative of a velocity potential is
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The Galerkin orthogonolization technique is used for &&condensation'' of the continuous
&&#uid'' boundary condition (12d):
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(z) dz"0, j"4, 5,2,M. (14d)

Equation (14d) is formulated for &&extra'' roots of dispersion equation, which originated
from the #uid-loading term in equation (9). In selection of these roots, it is necessary to
address the analysis of dispersion curves. The &&structure-dominated roots'' are those
designated by curve 1 in Figure 1(a), and curve A in Figure 3(b) and curve B in Figure 3(c) of
section 4. Respectively, all other roots should be attributed to the &&#uid-dominatedmodes''.
Naturally, an extension of system (14) by adding one more root results in modi"cation of

values of the modal coe$cients found in a previous approximation. This gives a convenient
tool to judge the accuracy and the convergence rate of this algorithm. A brief analysis of this
issue has been performed for the set of parameters given above. Convergence has been
checked in direct comparison of values of the modal coe$cients found in subsequent
approximations. Another way to check the validity of subsequent approximations is related
to a comparison of the input power with the energy #ows in the structure and in the acoustic
medium (the check of the energy conservation), which will be discussed in detail in the next
section of the paper. A tolerance level of 1% has been reached with "ve modes retained in
computations in the range 3)8(�(12 of the depth parameter. In the range 12(�(21, it
is necessary to keep the six "rst modes, in the range 21(�(39 as the number of modes
increases to seven. It remains the same in the range 39(�(41, but in the range
41(�(50 it is necessary to keep eight modes. Summing up the results of computations, it
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may be concluded that besides all propagating modes, in the formulation of condition (14d)
it is necessary to include all evanescent modes up to a pair of those relevant to complex
conjugate roots of the dispersion equation (9) plus the next one. If the dispersion equation
only has either purely real or purely imaginary roots, then their number should not be less
than the number of modes retained in the analysis at the previous step (in terms of
progressing from smaller values of the parameter � to its larger values). As is seen from
Figure 1(a), multiple branching of dispersion curves makes it necessary to keep a substantial
amount of terms in expansion (13) to deal with the high-frequency excitation of a plate in
contact with a su$ciently thick layer of an acoustic medium. Hence, in the limiting case of
an unbounded volume, i.e., when �PR, summation on modes should be replaced by
integration and the problem of formulation of the Green matrix should be solved in terms of
integral transformations; see references [5}9] for the case of a Kirchho!'s plate.
The energy transportation is associated only with purely propagating modes and a far
"eld is actually composed only of the modes of this type. The contribution of the evanescent
modes is important only in some vicinity of the loading point and decays at a rather short
distance from this point. However, the correct formulation of a near "eld is very important
because it de"nes the input mobility of the #uid-loaded plate. Insu$cient accuracy in
ful"lment of boundary condition (14d) also results in violation of the energy conservation
law and in an incorrect formulation of a near "eld.
To complete the formulation of the Green matrix of a #uid-loaded sandwich plate, two

other &&fundamental'' cases should be considered: loading by a unit bending moment and
loading by a unit shear moment. In the former case, the &&structural'' loading conditions at
x"� are
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The "rst one formulates a unit jump in a bending moment at the loaded cross-section, the
second one is related to the absence of a lateral displacement at x"� and the last one
formulates the absence of any jump in a shear moment. Apparently, in this case the plate's
deformation is skew-symmetric with respect to the loaded cross-section x"�. The Fluid
velocity "eld produced by a unit bending moment acting at an in"nitely long sandwich
plate should also be skew-symmetrical, i.e.,
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This condition should hold at any point !H(z(0.
A set of the normal modes is substituted into equations (15),
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and one obtains the following system of linear algebraic equations:
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The last loading case is formulated as
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Standard substitution of formulas (16) into this set of conditions gives
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(z) dz"0, j"4, 5,2,M. (19d)

A solution of these systems uniquely de"nes all elements of the Green matrix of vibrations of
a #uid-loaded sandwich plate. The Green matrix is directly applicable to the analysis of
vibrations of an in"nitely long beam of sandwich composition, as it is formulated with the
Sommerfeld condition and the loading conditions already taken into account.

4. ENERGY FLOWS IN AN INFINITELY LONG HOMOGENEOUS FLUID-LOADED
SANDWICH PLATE DRIVEN BY A TRANSVERSE FORCE, BY A BENDING MOMENT

OR BY A SHEAR MOMENT

The formulation of the Green matrix given in the previous section permits one to
compute easily the input mobility of a homogeneous plate and to compare the energy #ows
through the structure and through the acoustic medium in various excitation conditions.
Since stationary vibrations are considered, only energy #ows averaged over a period are
discussed hereafter. The energy #ow in a sandwich plate is de"ned as

N
�����
(x)"

1

2
Re[Q(x)�L (x)!M

�
(x)�L � (x)!M

�
(x)�) (x)]. (20a)

In formula (20a), �(x)"!i�w (x) and �(x)"!i��(x) are velocities of an element of the
plate in its lateral and in-plane shear motions, and �L (x), �K (x) are their complex conjugates.
The energy #ow in an acoustic medium is

N
�����
(x)"

1

2 �
�

	�

p (x, z)�N
�
(x, z) dz. (20b)

In formula (20), �L
�
(x, t) is a complex conjugate of the axial component of the #uid velocity.

Finally, the input power is formulated as

N
�����

"

1

2
Re[Q(�)�L (�)!M

�
(�)�L � (�)!M

�
(�)�K � (�)]. (20c)

In equation (20c), � is a co-ordinate of the loading point.
The energy balance (the conservation law) gives the apparent relation between these three

quantities to be held at an arbitrary cross-section of the plate x"Const,

N
�����
(x)#N

�����
(x)"N

�����
. (21)
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For convenience, hereafter a non-dimensional power per unit width is introduced as
NM "N/�hc� . From a practical viewpoint, the energy transportation in #uid-loaded
structures is an important issue in various applications, such as, for example, propagation of
noise and vibrations in #oating plates and #uid-"lled pipelines. Then, two aspects should be
discussed in detail. The "rst one is the distribution of the energy #ow between the
&&structural path'' and the &&#uid path'' in a far "eld, the second one is the energy exchanges in
a near "eld. It should be pointed out that the Green functions technique is a tool equally
applicable for the analysis a near "eld and a far "eld. In a near "eld, the energy put into the
#uid-loaded structure by purely mechanical excitation is partly transmitted to the #uid.
Typically, some #uctuations in the amounts of energy distributed between the #uid and the
structure occur at a certain distance from the excitation point. The transition from a near
"eld to a far "eld is associated with the onset of a balance between the amounts of energy
transported by the &&#uid path'' and by the &&structural path''. This is an important issue since
di!erent devices are used to suppress the propagation of a #uid and a structure-borne
sound.
The parameters of a water-loaded sandwich plate composition are speci"ed as before, i.e.,

�"0)0001, �"0)1, �"0)25, �"0)3 and some computations are carried out for this plate.
The relatively high-frequency excitation �"0)01 is considered "rst. The analysis of
dispersion curves K



(�) at this frequency suggests several qualitatively di!erent cases to be

explored. The "rst one is relevant to the thickness of a #uid layer taken as �"10. The
energy #ows from the excitation point to the right in the plate and in the #uid are displayed
in Figure 2(a) by curves 1 and 2 respectively. The upper straight lines gives a half of the
energy input produced by the concentrated force. Evidently, due to the symmetry of
excitation conditions, the power input is equally distributed among the left and the right
parts of the plate. As follows from the analysis of dispersion curves, in this case no
propagating &&#uid-dominated'' modes exist, so that the energy transportation in the #uid
layer is fairly small and it is associated with the &&structure-dominated'' modes. This graph
suggests the clear interpretation of near"eld and far"eld zones regarding the energy
transportation. There is a re-distribution of the energy between the structure and the #uid in
a near "eld, whereas proportion of the energy carried by the structure and by the #uid is
held "xed in a far "eld. A near "eld is located in the vicinity of the excitation point, e.g.,
�x �(70 h in this case. Very close to the loading point, the energy is &&dropped'' from
the plate to the acoustic medium, but at a short distance from this zone it is returned back to the
structure (see curves 1 and 2). It is also interesting to note that there is a small region in the
#uid-loaded plate where the energy #ow in the structure slightly exceeds the input power.
This does not violate the energy conservation law since the energy #ow in a #uid is negative;
see curve 2. Such a localized energy short circuit indicates the ampli"cation of structural
vibrations. The next case illustrated by Figure 2(b) is �"30, when the wave number of one
of the &&#uid-dominated'' modes is still purely real and negative, but its magnitude is very
small. Curves 1 and 2 display a dependence of structural and #uid energy #ows, respectively,
on a distance from the excitation point. In contrast to the previous case, a near "eld is
spread over a much larger distance. It is also remarkable that the energy #ow in an acoustic
medium is negative in many places, indicating the presence of multiple loops of the energy
circulation. A decay in the amplitudes of #uctuations is clearly observed in Figure 2(b).
Thus, the energy distribution between the plate and the #uid becomes constant, but this
balance is established su$ciently far from the excitation point. Most of the energy in the far
"eld is transported through the structure. The last case is �"50, when the depth parameter
is well above its "rst cut-on value. As is seen in Figure 2(c), the energy #ow is distributed
between the #uid and the structure approximately in proportion 1/4 (in an averaged sense),
i.e., unlike the previous two cases, a considerable amount of the energy is transported by the



Figure 2. Energy #ows in a homogeneous plate loaded by a transverse force at �"0)01: (a) �"10; (b) �"30;
and (c) �"50.
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acoustic medium. Another distinctive feature of this graph is the steady #uctuation of the
energy #ows in the structure and in the #uid which of course preserves overall energy
balance (21).
Graphs similar to those in Figure 2 are easily obtained for larger values of the depth

parameter (e.g., �"100) and lower frequencies (e.g., �"0)0001) with other parameters
kept the same as before. In this case, the energy #ows in the plate and in the #uid from the
excitation point to the right are displayed in Figure 3 by curves 1 and 2 respectively. The
upper straight line gives a half of the energy input by a concentrated force. This graph has
the same features as the graph displayed in Figure 2(a), but an amount of the energy
transported in the #uid is not much less than an amount of the energy transported in the
structure. This may be explained simply by an increase in &&capacity'' of the #uid path with
a growth in the depth parameter.
Now, we brie#y address the loading of an in"nitely long sandwich plate by a unit

concentrated bending moment and by a unit concentrated shear moment. All parameters of
the sandwich composition are the same as before. In Figure 4(a, b), the energy #ow is plotted
versus a distance from the excitation point for the case of a unit bending moment.
The frequency parameter is �"0)01, the depth parameter is �"10 and 50 respectively.
The magnitude of the power input is considerably smaller, than in the previous case of the
excitation by a unit lateral force, but a distribution of the energy between the structure and



Figure 3. Energy #ows in a homogeneous plate at �"0)001, �"100.

Figure 4. Energy #ows in a homogeneous plate loaded by a bending moment �"0)01: (a) �"10; and
(b) �"50.
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the #uid is qualitatively the same as shown in Figure 2(a, c). There is also a #uctuation in
this distribution in the case, when the depth parameters exceed the "rst cut-on value, but its
amplitude is much smaller than in the previous case. Finally, for the case of excitation by
a shear moment it has appeared that for the particular set of parameters considered here,
the energy input (NM

�����
"0)00275) depends very weakly on the depth parameter and all the

power is transmitted through the plate, while participation of the acoustical path is
negligibly small. The absence of the acoustical power #ow is explained by a rather weak
interaction between shear and transverse motions of the plate having a very soft core ply.
Therefore, the structural dominantly shear mode does not produce large lateral motions of
a sandwich plate and it generates a weak acoustic "eld.
All the results reported in this section are obtained for an in"nitely long homogeneous

plate. In practice, it is more realistic to deal with a plate connected to some other structures.
At the junction points, the interaction of various modes may result in re-distribution of the
energy #ows between the plate and the #uid. This aspect is addressed in the following
section of the paper.
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5. VIBRATIONS OF AND ENERGY FLOWS IN A FLUID-LOADED
SANDWICH PLATE WITH TWO IDENTICAL INCLUSIONS

As is known for the case of vibrations of an in"nitely long sandwich plate without #uid
loading (see reference [3]), inclusions signi"cantly distort its shape of vibrations. In this part
of the paper, the role of two identical inclusions in the energy transportation through
a sandwich plate in heavy #uid loading conditions is considered. The forced vibrations of an
in"nitely long sandwich plate may then be associated with the resonant behaviour typical to
the trapped mode e!ect, and this will be investigated now.
Let two identical inclusions of massM

�
supported by linear springs of the same sti!ness

K
�
be placed at the points x

�
, x

�
. The distance between these points is denoted as

l"x
�
!x

�
. Assume for simplicity that these inclusions do not produce inertial forces and

moments in response to shear and rotational displacements and that the springs resist
only vertical displacements. A driving generalized force (a concentrated transverse force,
a concentrated bending moment, or a concentrated shear moment) of the unit amplitude
and the frequency � acts at the point x"x

�
. The Green functions obtained in

section 3 formulate the shape of vibrations of a sandwich beam with no inclusion in all these
cases. The equation of motions of each mass is formulated as

!M
�
��w

�
"R

�
!K

�
w

�
, j"1, 2, (22)

while the amplitude of a displacement of the plate at an arbitrary point is given by

w (x)"F
��
=

�
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�
)!R

�
=

�
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�
)!R

�
=

�
(x, x

�
). (23)

In equation (23), F
��

"1 is a driving concentrated force of the unit amplitude for n"1,
a driving concentrated bending moment for n"2 or a driving concentrated shear moment
for n"3. This equation is equally applicable to all these excitation cases. Respectively,
functions =

�
, n"1, 2, 3 are the components of the Green matrix formulating a lateral

displacement in response to a force or to moments respectively. Note that forces R
�
, R

�
act

vertically downwards on the plate, leading to the minus sign in equation (11).
The continuity conditions at x"x

�
, j"1, 2 give the following system of linear algebraic

equations for the amplitudes of displacements of the concentrated masses:
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Here, �
�
"�K

�
/M

�
is the eigenfrequency of the isolated mass supported by the

spring, and �"K
�
h�/D is the non-dimensional sti!ness of the attachment. If n"1, then a

concentrated force is applied, and the non-dimensional parameter of a force is f
��

"F
��
/Eh.

If n"2 or 3, then a concentrated moment is applied and the non-dimensional parameter of
a moment is f

��
"F

��
/Eh� .

Then, the shape of forced vibrations of the sandwich beam becomes
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Respectively, a shear angle at an arbitrary cross-section of the sandwich plate is formulated as
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It follows from equations (24) that a plate may perform vibrations trapped between two
masses when the determinant of this system of linear algebraic equations is zero: i.e.,
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� )�

�
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The wave numbersK
�
, j"1, 2,2,M and the coe$cients=M

�
, j"1, 2,2,M are frequency

dependent as speci"ed by equations (9) and (14) so that this equation may be solved
numerically.
The set of parameters of a water-loaded sandwich plate is taken to be the same as in

previous sections, the excitation frequency is �"0)01, the other parameters are �"10,
�/�

�
"0)5. In Figure 5, the energy #ows propagating to the left and to the right from the

excitation point through the structure are presented by curves 1 and 2, the energy #ows
propagating to the left and to the right from the excitation point through the acoustic
medium are presented by curves 3 and 4. The concentrated transverse force is located at
x"0, inclusions are positioned at x

�
"100h and x

�
"200h. As is seen, the presence of two

inclusions results in complete isolation of the &&outer'' part of a sandwich plate to the right
from inclusions from the energy #ow. All power input is actually channelled to the
homogeneous part of the plate to the left from the excitation point and most of the energy is
transported by the structure. In fact, since the energy #ow is directed to the left, it has the
negative sign. Thus, in Figure 5 the energy #ows for x'0 are taken with their own signs,
while energy #ows for x(0 are for convenience taken with opposite signs.
To explore the e!ect of trapped mode vibrations for a plate of the same set of parameters,

it is necessary to plot a dependence of the determinant (26) on the distance between
inclusions. It is convenient to have the position of the "rst inclusion "xed at, say, x

�
"100h

and to use as an independent variable the co-ordinate of the second point. This dependence
is shown in Figure 6. The real part of the determinant, its imaginary part and module are
presented by curves 1, 2 and 3 respectively. The "rst resonant frequency is relevant to the
location of the second inclusion at x

�
"116)5h. The second one is relevant to its location at

x
�
"133h. In fact, such a short distance between inclusions is fairly close to the limit of

validity range of the theory of sandwich plates adopted here. This also justi"es a choice of
�"0)01 for the anaysis of dispersion curves performed in section 2 of this paper.
Figure 5. Energy #ows in a plate with two inclusions loaded by a transverse force, �"0)01, �"10.



Figure 6. Frequency determinant versus position of the second inclusion at �"0)01, �"10.

Figure 7. Mode trapping at the "rst resonant case, transverse excitation; (a) absolute values of amplitudes of
vibrations; and (b) energy #ows.
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In Figure 7(a), the absolute value of a displacement is plotted versus an axial co-ordinate
in the case, when x

�
"100h, x

�
"116)5h by curve 1. Curve 2 displays the absolute value of

a displacement of the plate with no inclusions. It is interesting to note that to the left of the
excitation point, the amplitude of vibrations of a homogeneous plate is approximately
2 times smaller than the amplitude of vibrations of a plate with two inclusions. There is
a sharp peak of the amplitude of a supported plate between inclusions, that is physically
explained by mode trapping. The amplitude of vibrations is also rather large between the
excitation point and the "rst inclusion and within a certain distance from the right inclusion
(approximately up to x"160h). Further to the right, the amplitude of displacement of
a supported plate is much smaller, than that of a homogeneous one. These results provide
an explanation for the pattern of energy #ows shown in Figure 7(b). To the left from x"0,
the picture is qualitatively the same as the one shown in Figure 5. It is more interesting to
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look at the energy #ows to the right from the excitation point. The energy #ow through the
structure (curve 1) is oscillating and so is the acoustic energy #ow. It is remarkable, however,
that the sum of these two components is maintained on balance fairly close to zero. At
around x"160h, each of these components reaches a certain value which does not vary
with further growth in x. The presence of the negative energy #ows through the acoustic
medium constitutes a physical mechanism of localization of vibrations of a plate (the
resonant mode trapping).
A character of mode trapping discussed for the "rst resonant frequency is quite di!erent

from the one found for the second resonant frequency. In Figure 8(a), the absolute value of
a displacement is plotted versus an axial co-ordinate in the case, when x

�
"100h, x"133h

by curve 1. Curve 2 displays the shape of vibrations of a plate with no inclusions. It is
interesting to note that everywhere except for the interval 50h(x(250h, the amplitude of
vibrations of a homogeneous plate is approximately the same as the amplitude of vibrations
of a plate with two inclusions. The resonant mode trapping manifests itself by two sharp
peaks of the amplitude of a supported plate between inclusions, see also Figure 8(b) which
displays the zoomed part of Figure 8(a). Such a shape is relevant to the skew-symmetric
mode of vibrations. A dependence of components of the energy #ow on an axial co-ordinate
is shown in Figure 8(c). The energy #ows propagating to the left and to the right from the
excitation point through the structure are presented by curves 1 and 2, the energy #ows
propagating to the left and to the right from the excitation point through the acoustic
medium are presented by curves 3 and 4. As is seen, in these excitation conditions, mode
trapping does not prevent propagation of the energy to the right from the excitation point
in the same amount as to the left. The multiple short circuits in this case are arranged in
such a manner, that the mean energy #ow at any cross-section x'0 remains the same and
equal to half of the energy input. The case considered here is relevant to the absence of free
propagating acoustic modes, i.e., the excitation frequency is beyond its cut-on value.
In the case, where in addition to the propagating structural modes there is also the

propagating acoustic one, it is su$cient to put �"50. In this case, frequency determinant
(26) depends on the position of the second inclusion as is shown in Figure 9(a). Its real part,
its imaginary part and its absolute value are designated by curves 1, 2 and 3 respectively.
The "rst minimum of curve 3 is reached at x

�
"130)9h. In Figure 9(b), the absolute value of

the amplitude of a displacement is plotted versus an axial co-ordinate in the case, when
x
�
"100h, x

�
"130)9h by curve 1. Curve 2 displays the absolute value of the amplitude of

a displacement of the plate with no inclusions. This graph is quite similar to the one
displayed in Figure 7(a), but there is also a di!erence which can be explained by excitation
at a frequency above the cut-on one. In a far "eld, there is a harmonic #uctuation of
the amplitude of vibrations around some mean value. In Figure 9(c), the energy #ows
propagating to the left and to the right from the excitation point through the structure are
presented by curves 1 and 2, the energy #ows propagating to the left and to the right from
the excitation point through the acoustic medium are presented by curves 3 and 4. The
energy propagation to the left is almost the same as in the case of a homogeneous sandwich
plate; see Figure 2(c). The levels of the energy #ows in the structure and in the #uid are
approximately the same in the region between the excitation point and inclusions and
also in the zone between inclusions. Their pattern is rather complicated there, but it is
remarkable that the energy #ow emerging from the zone with inclusions to the right is
composedmostly by the acoustic part, rather than by the structural one. As is seen in Figure
9(c), the negative energy #ow in the structure between inclusions enhances the acoustic
energy #ow. It should also be pointed out that the amplitude of vibrations between
inclusions is smaller in this case than in a case when there are no #uid-dominated
propagating modes.



Figure 8. Mode trapping at the second resonant case, transverse excitation,�"0)01, �"10: (a) absolute values
of amplitudes of vibrations; (b) absolute values of amplitudes of vibrations between inclusions; and (c) energy #ows.

502 S. V. SOROKIN
The dynamics of a #uid-loaded sandwich plate with two inclusions is in#uenced by
several parameters. In particular, the roles of the depth parameter � and the frequency
parameter � are linked to each other as has been discussed in respect to the dispersion
relation. The roles of sti!ness and inertial characteristics of inclusions are similar to those in
the case of a plate with no #uid loading, see reference [3], and they are not explored any
further. For brevity, instead of a parametric study of vibrations excited by a point transverse
force, vibrations of a plate loaded by a concentrated moment are brie#y studied. All
parameters of the sandwich plate composition and parameters of inclusions are kept the
same, #uid loading is produced by a water layer of �"10, the driving unit bending moment
is applied at x"0, the excitation frequency is �"0)01. The "rst inclusion is located at
x
�
"100h. The second inclusion is put at x

�
"116)9h. In Figure 10(a), the absolute value of

the amplitude of lateral vibrations of a plate with inclusions versus an axial coordinate x is
shown by curve 1, the shape of vibrations of a plate without inclusions is illustrated by curve
2. It is seen that although localization phenomenon still exists, the maximum amplitude



Figure 9. Mode trapping at �"0)01, �"10, transverse excitation,�"0)01, �"10: (a) frequency determinant
versus position of the second inclusion; (b) absolute values of amplitudes of vibrations; and (c) energy #ows.
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between inclusions is much smaller than that in the case of transverse excitation. This is
explained by the large di!erence between elastic modules of skin and core plies, �"0)0001.
The curves in Figure 10(b) are plotted for the same parameters, but the second inclusion is
located at x

�
"133h. Such a distance between inclusions is relevant to the second resonance

of a plate as is con"rmed by curve 1 plotted for a plate with inclusions. Apparently, curves
2 in Figures 10(a, b) display the same shape of vibrations. The energy #ow in both
these cases is almost exactly the same as in the case of a homogeneous plate; see the
discussion in section 4. Finally, in the case of a shear excitation, the role of inclusions is
insigni"cant and the energy is transported only in the structure as also has been discussed in
section 4.

6. CONCLUSIONS

A complete investigation has been presented of stationary vibrations of an in"nitely long
sandwich plate in contact with a layer of an ideal compressible #uid. The analysis of



Figure 10. Mode trapping at �"0)01, �"10, excitation by a bending moment; (a) the "rst resonant case; and
(b) the second resonant case.
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dependence of roots of the dispersion equation on the frequency parameter and on the
depth parameter is performed. Then, elements of the Green matrix describing the response
of a plate to the point loading by a transverse force or by moments are constructed
analytically as linear combinations of the normal modes. Formulation of the response of
a #uid-loaded structure by the Green matrix is truncated to a "nite number of these modes
and a convergence rate is estimated. For a sandwich plate with no inclusions, the analysis of
the energy #ows is performed by the direct use of the Green matrix. Excitation by a point
force and by point moments is considered. It is found that the distribution of the input
power between the &&structural'' transmission path and the &&acoustic'' transmission path is
strongly a!ected by the frequency parameter and the &&depth'' parameter. Speci"cally, these
parameters control not only the proportion between the energy #ow in the structure and in
the #uid, but also the length of a near"eld zone. It is found that for a sandwich plate with
a very soft core ply, excitation by a shear motion does not produce large energy #ow in the
#uid. Then, the case of forced vibrations of an in"nitely long #uid-loaded sandwich plate
with two identical inclusions is considered. The phenomenon of trapping of the #exural
modes is explored. For each particular set of parameters a spectrum of &&resonant'' distances
between inclusions is detected, when strongly localized large amplitude vibrations are
generated by a transverse point force applied at a su$ciently large distance from the span
between inclusions. It is found that the energy #ows in the structure and in the #uid are
strongly a!ected by the presence of these inhomogeneous. In particular, the energy #ows
either in the structure or in the #uid directed towards the excitation point are detected at
certain distances from the point. The pattern of distribution of the energy #ows creates
a mechanism for trapped modes generation. It is also shown that a trapped mode may
produce a screening phenomenon and prevent energy propagation beyond inclusions.
Finally, in the case of a shear excitation, it is found that inclusions responding to transverse
motions do not a!ect the energy propagation in sandwich plates with a soft core.
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