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1. INTRODUCTION

Some examples of axially moving continua are high-speed magnetic tapes, band-saws,
power-transmission chains and belts, textile and composite "bers, aerial cable tramways,
#exible robotic manipulators with prismatic joints, #exible appendages on spacecraft, paper
sheets during processing, pipes and beams conveying #uid, etc. This subject has been
studied widely [1}12]. Some studies related to pipes conveying #uid were represented in
references [13}19]. Second and fourth order pipes were investigated by neglecting #uid
friction e!ects, the energetics is considered, and the principal parametric resonances of
tensioned pipes conveying #uid with harmonic velocity have been investigated. The studies
concerning #uid conveying pipes and travelling string or beam with stationary mass can be
found in references [20}29].
In this study, the vibrations of highly tensioned pipes with stationary mass are

investigated. The #uid velocity is assumed to be constant. Two di!erent end conditions are
considered. The #exural sti!ness of the pipe is assumed to be negligible. The natural
frequencies are analytically presented. Amplitude variations of vibrations are studied. The
e!ects of #uid velocity, position of stationary mass and ratio of #uid and #uid}pipe masses
per unit length are investigated.

2. EQUATIONS OF MOTION AND APPROXIMATE SOLUTIONS

The dimensionless equation of motion for tensioned pipe conveying #uid and carrying
a stationary mass in transverse vibrations is [29]

�1#�� (x!x
�
)�wK #2��vwR �#(v�!1)w��"0 (1)

and the "xed}sliding and sliding}sliding end conditions for this problem are [17, 19]

w (0, t )"w� (1, t)"0, w� (0, t )"w� (1, t)"0. (2, 3)

In equations (1)}(3),w is the transverse displacement,wK , 2wR �v and v�w�� denote local, Coriolis
and centrifugal acceleration components, respectively, v is the constant #uid velocity. The
ratio of stationary mass to total mass of pipe and #uid �, and the ratio of mass of #uid to
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#uid and pipe mass per unit length �, respectively, are
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where m
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denote stationary mass, masses of #uid and pipe per unit length

respectively. The length of the pipe is ¸. A stationary mass placed at x"x
�
is de"ned by

a Dirac delta function. The derivatives with respect to the spatial variable and time are
shown by ( )� and ( ) ) respectively.
Solutions of the approximate eigenvalue problem are restricted to systems in which the

mass ratio �, is small. The transition of solutions from those of the tensioned pipe conveying
#uid to those of the tensioned pipe conveying #uid and carrying a stationary mass system
was studied by the method of strained parameters to determine a "rst order perturbation
solution for small � by OG z and Evrensel [29] for "xed}"xed end conditions. The transverse
displacement function was given in terms of the shape function and frequency, and
expanded in terms of �. In a similar way the downstream and upstream wave numbers
without stationary mass can be obtained [17, 19, 29] as
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and the natural frequency equations are for "xed}sliding and sliding}sliding end conditions
are, respectively,
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where n is the mode number and i"�!1. By following the solutions in references
[17, 19, 29], the shape functions for "xed}sliding and sliding}sliding end conditions are
obtained, respectively, as
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and the perturbed eigenvalue is
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where>M ���
�
and>M ���

�
are the shape function and the complex conjugate of it at the "rst order

of perturbation respectively. The imaginary part of the perturbed eigenvalue corresponds to
the frequency of oscillations and the real part is related to the amplitude variation of the
system with stationary mass. The second part of equation (9) is related to the stationary
mass and the imaginary part of it is correction term for the frequencies.
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3. NUMERICAL ANALYSIS

In this section, numerical solutions for the natural frequencies and amplitude variations
for di!erent end conditions and parameters will be presented.
In Figures 1(a}d), the natural frequency variation with #uid velocity is given for di!erent

� (0)1 and 0)2) and x
�
(0)2, 0)5 and 0)8) values for "xed}sliding end conditions for the "rst two

modes for �"0)5. Natural frequencies decrease with an increase in the #ow velocity and at
the critical velocity divergence instability occurs. This is the characteristics of the axially
moving continua. The mass ratio � decreases the frequencies as expected [25, 27}29]. The
frequencies are a!ected much when the stationary mass is moved towards the sliding end in
Figure 1. Natural frequency of the system versus #uid velocity for "xed}sliding end conditions, �"0)5:**, no
mass; - - -, x

�
"0)20; - ) - ) -, 0)50; ) ) ) ), 0)80. (a) n"1, �"0)1, (b) n"1, �"0)2, (c) n"2, �"0)1, (d) n"2, �"0)2.
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the "rst mode. In Figures 2(a}d), the variation of frequency with #uid velocity is presented
for sliding}sliding end conditions. � (0)1 and 0)2) and x

�
(0)2, 0)35 and 0)5) are assumed for

these end conditions. The frequency values for the sliding}sliding case are greater than those
for the "xed}sliding case. The n"0 for the sliding}sliding case corresponds to the rigid
body motion. Moving the mass towards the middle of the sliding}sliding pipe decreases the
frequencies further in the "rst mode. In Figures 3(a}d) and 4(a}d), the natural frequency
variation with the position of stationary mass is drawn for the two pipes for the "rst mode
for �"0)1. For the "xed}sliding case (Figures 3(a}d)), the frequencies decrease as the mass
is moved towards the sliding end for all � ratios. The "gures depict the variation for di!erent
Figure 2. Natural frequency of the system versus #uid velocity for sliding}sliding end conditions, �"0)5:**,
no mass; - - -, x

�
"0)20; - ) - ) -, 0)35; ) ) ) ), 0)50. (a) n"1, �"0)1, (b) n"1, �"0)2, (c) n"2, �"0)1, (d) n"2,

�"0)2.
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#ow velocities (0)2, 0)4, 0)6, 0)8). For sliding}sliding case (Figures 4(a}d)), the frequencies
increase when the mass is placed towards the middle of the pipe. The e!ects of #ow
velocities (0)2, 0)4, 0)6, 0)8) on the frequencies can be seen in the "gures. In Figures 5(a}d)
and 6(a}d), the variation of amplitude of oscillations with #uid velocity is presented for the
"xed}sliding and sliding}sliding cases for the "rst two modes. The mass is placed in three
di!erent locations, x

�
"0)2, 0)5, 0)8. The amplitude variation increases when the mass is

moved towards the sliding end for the "xed}sliding pipe case as shown in Figures 5(a, b). In
the second mode (Figures 5(c, d)), moving mass towards sliding end decreases the amplitude
variations for all #ow velocities. Increase in mass ratio � results in an increase in
Figure 3. Natural frequency of the system versus position of stationary mass for "xed}sliding end conditions,
n"1, �"0)1: **, �"0)25; - - -, 0)50; - ) - ) -, 0)75; ) ) ) ), 1)00. (a) v"0)2, (b) v"0)4, (c) v"0)6, (d) v"0)8.
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the amplitude variations. For the sliding}sliding case, moving mass towards the middle
decreases the amplitude variations for the "rst mode and the reverse situation can be
observed for the second mode as shown in Figures 6(a}d). In Figures 7(a}d) and 8(a}d),
the amplitude variation with the position of stationary mass is presented for four di!erent
#ow velocities and � values in the "rst mode. For the "xed}sliding case, as the � ratio
increases, the amplitude variation increases for all stationary mass positions when #ow
velocities are v"0)20 and 0)40. When the #ow velocities are increased (v"0)60 and 0)80),
amplitude variation curves interchange their sequences and the system with lower � values
has higher amplitude variation. For the sliding}sliding case, moving the mass towards the
Figure 4. Natural frequency of the system versus position of stationary mass for sliding}sliding end conditions,
n"1, �"0)1: **, �"0)25; - - -, 0)50; - ) - ) -, 0)75; ) ) ) ), 1)00. (a) v"0)2, (b) v"0)4, (c) v"0)6, (d) v"0)8.
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middle of the pipe decreases the amplitude variations for all � values, all positions of
stationary mass and for v"0)20, 0)40. As the #ow velocity is increased (v"0)60, 0)80), the
#ow with lower � values has lower amplitude variation.

4. CONCLUSIONS

The linear transverse vibration of highly tensioned pipes conveying #uid with constant
velocity is considered. The pipe has a negligible #exural sti!ness and carries a stationary
Figure 5. Amplitude variation versus #ow velocity for "xed}sliding end conditions, �"0)5: - - -, x
�
"0)20; - ) - ) -,

0)50; ) ) ) ), 0)80. (a) n"1, �"0)1, (b) n"1, �"0)2, (c) n"2, �"0)1, (d) n"2, �"0)2.



Figure 6. Amplitude variation versus #ow velocity for sliding}sliding end conditions, �"0)5: - - -, x
�
"0)20;

- ) - ) -, 0)35; ) ) ) ), 0)50. (a) n"1, �"0)1, (b) n"1, �"0)2, (c) n"2, �"0)1, (d) n"2, �"0)2.
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mass. The natural frequencies are presented for "xed}sliding and sliding}sliding end
conditions. The e!ect of the value and position of the stationary mass is investigated. The
variation of amplitude with the position of stationary mass is analyzed for di!erent #ow
velocities and mass ratios.
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