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Principal component analysis is used to simplify the extraction of the natural frequencies
and their corresponding orthonormal mode shapes directly from experimental data of
unknown #exible structures. A control law is designed using a state-space modal model and
is tested on di!erent structures. The results are extremely encouraging and demonstrate
successful implementation of the active control strategies. The controller actuator as well as
the detection sensor locations are examined throughout the structure length.
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1. INTRODUCTION

Vibration problems are connected basically with oscillatory motion of bodies. These bodies
are capable of some level of vibration when they are induced into motion by forces. Most of
these vibrations are undesirable due to their destructive and disturbing characteristics. The
dynamics of such systems are governed by partial di!erential equations and understanding
these is important for analyzing and modelling the system in order to choose the suitable
control laws for damping the unwanted vibration associated with the structure's resonant
modes. The best scheme is clearly the one that e$ciently cancels these unwanted vibrations.
Passive damping schemes can be considered as a &&redesign'' process which involves

altering the #exible structures' physical parameters, namely, sti!ness and damping, to
produce the desired response. Sometimes, however, the desired response cannot be obtained
using such schemes, especially at low frequencies or when wideband applications are
considered [1]. The main reasons for this are economic ones, and the problems of
mechanical resonance. Under these circumstances, the alternative is to use active methods.
Active methods usually use external adjustable active devices (actuators) to provide a way

of dynamically shaping or controlling the response. These components o!er a number of
advantages over the passive damping methods, namely the ease with which the frequency
bandwidth can be reshaped and their low weight and cost [2]. There are many types of
active methods that can be considered for obtaining a suitable control law; these include
PID, dead beat, neural networks, fuzzy logic control, optimal control, and state-space
control techniques. Information on the wider aspects of vibration control can be found in
the works of Al-Dmour [1], Pao and Franklin [3], Dosch et al. [4], Sievers and Von Flotow
[5], Snyder and Tanaka [6] and Zhang et al. [7]. Usually, numerical methods are used for
performing the simulation studies of the oscillatory structures; these mainly include modal
superpositionmethod, "nite-di!erence and "nite-element techniques [1, 8}10]. In principle,
#exible structures systems require an in"nite number of modes to describe completely their
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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behavior. The fundamental problem is to design a suitable control law that can deal with
a large dimensionality especially when dealing with digital computer-controlled
applications. Thus, it is common to restrict the analysis to few modes, so that the required
system performance is achieved in respect of sensitivity, excitation and vibration tolerances.
Some of these aspects are discussed by Kourmoulis [9], Porter and Crossley [11], Balas
[12], Toki and Hossain [13], Virk and Al-Dmour [14] and Al-Dmour [15, 16].
Consequently, state-space formulations have been used to model vibration problems in
a modal basis with prior knowledge of the structure parameters [17}20].
The knowledge of the natural frequencies and their corresponding mode shapes are the

core for the successful state-space representation of active controllers. There are many
methods which have been developed to extract such parameters from experimental
measured data [21, 22]. In particular, the principal component analysis (PCA) method has
a unique property for transforming directly a given correlated measured data to a new
non-correlated set of data which simplify the parameter estimation of #exible structures
[23, 24].
All the methods based on state-space controller used before, require the knowledge of the

structure characteristics to be executed. However, as the PCA provides a procedure that can
be implemented successfully to extract the system natural frequencies and their
corresponding mode shapes from measured data, a new approach based on such a method
can be developed to perform these control techniques without prior knowledge of the
model.
In this paper, an optimal control technique is considered to deal with the unwanted

vibration in di!erent structures, namely, multi-degree-of-freedom (d.o.f.) systems, and
a simply-supported beam. These structures are considered as illustrative applications for
the present study since they provide the essential principles behind many #exible structures
such as aircraft fuselage oscillations, helicopter rotor blades, bridge vibrations, and robotic
manipulator systems. In addition, a state-space model is utilized to generate a modal-based
solution where the state vector of the model is used to generate the controlling signal. Here,
the calculation of modal parameters, namely, mode shapes, and natural frequencies of the
considered #exible structures are obtained using the statistical procedure PCA. PCA is used
in this paper since it is e!ectively found to produce single d.o.f. data with well-separated
resonances, and minimize the e!ect of residual modes (i.e., modes outside the frequency
range of interest) in the response even in the presence of noise [24].
Before discussing the vibration control of the above-mentioned structures, it is

necessary to provide a brief introduction of the mathematical development of the
principal component analysis from a statistical point of view, system model and
optimal control techniques. This summary is useful for providing the notation used in
the paper.

2. PRINCIPAL COMPONENT ANALYSIS

The geometric interpretation for the PCA method will give a clear picture of the basis for
developing a mathematical model. Let us assume that two related variables x

�
, x

�
are

plotted as points in the X
�
}X

�
plane as illustrated in Figure 1.

Two variables y
�
, y

�
can be determined when the co-ordinates X

�
, X

�
are rotated by an

angle � which is denoted by>
�
, >

�
; the y

�
, y

�
variables can be related to the x

�
, x

�
variables

by utilizing the expressions

y
�
"x

�
cos �#x

�
sin �, y

�
"!x

�
sin �#x

�
cos �. (2.1, 2.2)



Figure 1. Geometrical representation of the principle component procedure.
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It is clear from Figure 1 that the points have a wide distribution pattern along>
�
while little

distribution occurs along >
�
. As a result, choosing a speci"c value of the angle can result in

maximizing the distribution along >
�
as well as minimizing it along >

�
. This leads to the

possibility of representing the data by only one co-ordinate, i.e., one variable. To de"ne the
line O>

�
, one starts by representing the ith-sampled data with the formulae [25, 26]

(op
�
)�"(op�

�
)�#(pp�

�
)�, i"1,2, N

�
, (2.3)

where p
�
p�
�
is the perpendicular distance from the point p

�
to the line O>

�
and N

�
is the

number of sampled points. The summation over all the data points after dividing the results
by N

�
!1 yields

1
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�
!1)
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���
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�
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�
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���
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�
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�
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or

(var)
�����

"(var)
�
#(var)

�
. (2.5)

The terms in equation (2.4) represent the variances of each variable given in equation (2.5).
One can deduce from the graph that the term on the left-hand side of equation (2.1) is

constant irrespective of the location of O>
�
. Consequently, the best position of O>

�
may be

accomplished by minimizing (var)
�
, and this process is actually equivalent to maximizing

(var) .

�
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This idea is explored and utilized as a starting point for the mathematical modelling of
PCA [26]. By assuming that a vector of dimension (p�1) with the elements
�x

�
, x

�
,2, x

�
�� is collected forN

�
samples the variance of the ith variable was expressed by

Mohammad [24] as

s
��
"

1

(N
�
!1)

��

�
���

(x
�
!xN

�
)�, (2.6)

where, xN
�
is the mean of the ith variable, and the covariance between the ith and the jth

variables is

s
��
"

1

(N
�
!1)

��

�
	��

(x
	�
!xN

�
) (x

�	
!xN

�
). (2.7)

Thus, one can build a covariance matrix [S] of dimension (p�p) where its elements are the
calculated variances and covariances. Therefore, the matrix [S] can be expressed by

[S]"
1

(N
�
!1) �

��

�
���

(�X�
�
!�X� �)(�X�

�
!�X� �)�]. (2.8)

The "rst principal component >
�
can be constructed by a linear combination of the given

p variables �x
�
, x

�
,2 , x

�
��,

>
�
"a

��
x
�
#a

��
x
�
#2#a

��
x
�

or >
�
"�a��

�
�X� (2.9, 2.10)

under the constraint

�a��
�

�a�
�
"1. (2.11)

The mean and the variance of >
�
can be calculated using the respective equations

y�
�
"�a��

�
�X� �, v


�
"�a��

�
[S]�a�

�
. (2.12, 2.13)

The best position of >
�

can be found by maximizing the variance v

�
. Lagrange

multiplication procedure is utilized to achieve this goal [27]. A new function <
�
is

constructed having the form

<
�
"�a��

�
[S]�a�

�
#�

�
(1!�a��

�
�a�

�
), (2.14)

where �
�
is the Lagrange multiplier coe$cient. The elements of the vector �a�

�
, and �

�
that

maximize v

�
can be obtained by di!erentiating equation (2.14) with respect to each element

of �a�
�
and equating the results to zero. The di!erentiation of <

�
with respect to the ith

element of �a�
�
is

�<
�
/�a

	�
"[2a

	�
[S]!2�

�
a
	�
]"0)0. (2.15)

The p di!erentiation equations can be gathered in a matrix that has the form

([S]!�
�
[I]) �a�

�
"�0�, (2.16)

where [I] is the unity matrix. Thus, �
�
is one of the roots of the characteristic equation

([S]!�[I]) and �a�
�
its corresponding eigenvector. To obtain �

�
, one should multiply
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equation (2.16) by �a��
�
which results in

�a��
�
[S]�a�

�
!��a��

�
�a�

�
"0, (2.17)

since

�a��
�
�a�

�
"1, therefore �

�
"�a��

�
[S]�a�

�
, (2.18, 2.19)

but as

v

�

"�a��
�
[S] �a�

�
, �

�
"v


�
. (2.20, 2.21)

As the aim of this procedure is to maximize v

�
, �

�
is found to be the greatest root of the

matrix [S]. The second principal component >
�
may be obtained using similar steps that

are adapted for determining>
�
but with extra constraint, to ensure that>

�
is orthogonal to

>
�
, and a maximum of the remaining p!1 variables. Thus, >

�
may be expressed by

>
�
"a

��
x
�
#a

��
x
�
#2#a

��
x
�
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�
"�a��

�
�X� (2.22, 2.23)

with the constraints

�a��
�
�a�

�
"1 and �a��

�
�a�

�
"0. (2.24, 2.25)

A function is constructed with two Lagrange multipliers as

<
�
"�a��

�
[S]�a�

�
#�

�
(1!�a��

�
�a�

�
)#	�a��

�
�a�

�
. (2.26)

Di!erentiating equation (2.26) with respect to each element of the vector �a�
�
the result is

then equated to zero and gathered in the matrix

([S]!�
�
[I])�a�

�
!	�a�

�
"�0�. (2.27)

To "nd 	, multiply equation (2.27) by �a��
�
with the result that
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and since

�a��
�
[S]�a�

�
"0, �a��

�
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�
"0, (2.29, 2.30)

Therefore,

	"0. (2.31)

Thus, equation (2.26) becomes

([S]!�
�
[I])�a�

�
"�0�. (2.32)

This is similar to equation (2.16). It follows that �
�
is the second largest root of [S] which is

equal to v

�
, and �a�

�
is its corresponding eigenvector. Consequently, in general the ith

principal component >
�
can be constructed as a linear combination of the p variables �x

�
,

x
�
,2, x

�
��, i.e.,

>
�
"�a��

�
�X�, i"1,2, p, (2.33)
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where �a�
�
is the eigenvector of the ith eigenvalue �

�
of the matrix [S], and �

�
is equal to the

variance v

�
; this deduction can be written in matrix form as

[U]�[S][U]"[�], (2.34)

where [U] is a matrix of p orthonormal eigenvectors of dimension (p�p) and [�] is
a diagonal matrix with eigenvalues of [S], of dimension (p�p).
Since the inverse of the orthogonal matrix is equal to its transpose, equation (2.34) can be

rewritten as

[S]"[U][�][U]�. (2.35)

Furthermore, the singular value decomposition (SVD) technique is a numerical procedure
which factorizes a given matrix [A] of dimension (p�p) into the following form [28]:

[A]"[U][�][U]�. (2.36)

Thus, the SVD technique can be used as a tool on the matrix [S] to specify the PCA
variables �y

�
, y

�
,2 , y

�
�. The factorization of the covariance matrix [S] indicates that the

correlated p variables can be transformed to new, non-correlated, p-principal variables. As
examination of the values of the diagonal matrix � may reveals that the magnitude of the
variances v


�
, where r(i(p, is so small that it can be ignored. Thus, the diagonal elements

of the � matrix have the values

�"�
�
�
"v


�
,

�
�
"0)0,

1)i)r,

r)i)p.
(2.37)

As a result, it is possible to represent the matrix [S], without losing important information
in the data, approximately by

[S]:[U]�[�]�[U]�, (2.38)

where [U]� is the orthonormal matrix of dimension (p�r) and [�] is the diagonal matrix of
dimension (r�r).
Consequently, one can transform the correlated p variables to r non-correlated principal

variables.

2.1. PRINCIPAL TIME RESPONSE FUNCTIONS

Consider a linear continuous #exible structure modelled by an N
�
d.o.f. lumped system.

The displacement output responses of such a structure when excited by a step disturbance
force at N

�
locations, where N

�
(N

�
, can be obtained by

�X(t)�"

��

�
���

���
�
CA

�
sin�
��

#

�
2�#�x

�
(t)�, (2.39)

where �X(t)� is the displacement vector of dimension (N
�
�1); ���

�
is the jth column of the

normalized mode shape matrix [�] of dimension (N
�
�1), 


��
is the jth natural frequency of

the system, CA
�

is the jth element of the amplitude vector �CA�, with
�CA�"!1�[�]��[k]���f (t)�, [k] is the sti!ness matrix of dimension (N

�
�N

�
), �f (t)� is
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the applied force vector of dimension (N
�
�1), �x

�
(t)� is the steady state displacement vector

of dimension (N
�
�1) and is equal to [k]���f(t)�.

These responses are recorded for N
�
sampled points and then the matrix [S]gg can be

calculated from the collected data as follows:

[S]gg"[X][X]� of dimension (N
�
�N

�
), (2.40)

where [X] is the time response data matrix for theN
�
locations, of dimension (N

�
�N

�
). The

matrix [S]gg is an equivalent representation of the covariance matrix [S]. Consequently, one
can factorize [S]gg using SVD procedure as

[S]gg"[U][�][U]�. (2.41)

As a result, the factorization of [S]gg will reveal N
�
singular values that have signi"cant

magnitudes, which can be obtained from the [�] matrix. Thus, the generalized
N

�
co-ordinates can be transformed to N

�
non-correlated principal co-ordinates, i.e.,

�X�
�
"[U]��X�, (2.42)

where �X� is the correlated responses vector, of dimension (N
�
�1), �X�

�
is the

non-correlated responses vector of dimension (N
�
�1), and the data set for the

non-correlated responses can be expressed in matrix form as

[X]
�
"[U]�[X] of dimension (N

�
�N

�
). (2.43)

However, in practice the number of d.o.f. N
�
measured is usually less than the number of

response locations N
�
. Now, the matrix [�], which resulted from factorizing the [S]gg

matrix, will reveal only the "rst N
�
singular values with signi"cant magnitudes. Thus, it is

possible, without losing valuable information, to represent approximately [S]gg by

[S]gg:[U]�[�]�[U]�� . (2.44)

Consequently, the [U]� matrix can be used to transform the generalized N
�
co-ordinates to

N
�
non-correlated principal co-ordinates applying the following formulae:

�X�
�
"[U]��X� of dimension (N

�
�1), (2.45)

�X�
�
"[U]��X� of dimension (N

�
�N

�
). (2.46)

A similar representation of [S]gg can be obtained when a measured data of real structures
are recorded. The [X]

�
eigenvector matrix and the estimated natural frequencies that are

found from the non-correlated single d.o.f. data are utilized in generating the required
control signals for suppressing the vibration of the considered structures.

3. MODEL DESCRIPTION OF FLEXIBLE SYSTEMS

Undamped #exible system can be modelled in matrix form by using the di!erential
equation [20]

[M] �qK �#[K]�q�"�f�, (3.1)

where [M] and [K] are generalized mass and sti!ness matrices of the structure, �qK � and �q�
are vectors of acceleration and displacement of the nodal points of the structure, and �f� is
a vector of external forces acting on the structure.
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Equation (3.1) can be put in modal space in order to simplify the analysis for determining
the solution by using the well-known modal transformation [17, 18] as

�q�"[�]�u�, (3.2)

where �u� is a vector of modal co-ordinate of the system, and [�] is the mass normalized
mode shape matrix, normalized such that

[�]�[M][�]"I. (3.3)

With such a transformation, equation (3.1) can then be transformed into the uncoupled
form

�uK �#[�]�u�"[�]� �f�, (3.4)

where [�] is the modal frequency matrix, given by

[�]"[�]�[K][�]"diag. �
�
�
�, i"1,2 , N, (3.5)

where N is the number of modes of the #exible system under consideration.
Here, the mode shapes and the modal frequencies are both found from the PCA

procedure discussed in section 2. It should be noted here that these equations are developed
by assuming zero structural damping. The modal equations can then be written in the
standard state-space forms as

�z� �"[A]�z�#�B� f


#�D� f

�
, y"Cz, (3.6, 3.7)

where

�z�"�
u

uR � , A"�
0


�i

1

0� (i"1, 2,2 , N)

is the ith mode model matrix; f


and f

�
are the control and disturbance forces acting on the

structure respectively;

�B�"�
0

�
�
(�



)� and �D�"�

0

�
�
(�

�
)� (i"1, 2,2, N)

are the control and disturbance input vectors placed at location �


and �

�
on the structure

respectively and

C"�
�

�
(�

��
)

0

0

�
�
(�

��
)� (i"1, 2,2, N)

is the output matrix for displacement (or de#ection) and velocity sensors placed at location
�
��
and �

��
on the structure respectively.

Therefore, equation (3.6) can be partitioned into N2�2 state-space representation for
one-control point and one-disturbance point forces so that they can be solved on
a computer system as

�
zR
�

zR
���
�"�

0

!
�
�

1

0� �
z
�

z
���
�#�

0

�
�
(�
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�
#�

0

�
�
(�

�
)� f

��
, i"1, 2,2 , N. (3.8)
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Equation (3.8) represents N second order state-space blocks with each representing
a decoupled mode. It is these equations that will be utilized to model the structure system
behavior and to derive state-space control laws for suppressing the vibration of the
considered structures.

4. LINEAR STATE FEEDBACK CONTROLLERS

In many practical cases, only a limited number of e!ective (or dominant) modes are
excited. The objective of active damping is to suppress the vibration of such dominant
modes. The controller design methodology is proposed to determine the feedback gains and
then compute that suitable control signal that is applied to a control actuator placed in
a suitable location at the #exible structure. The generation of the control signal is based
upon the response calculated by velocity responses. Here, adding damping to the undamped
structure system presented in equation (3.1) controls the vibration problem. It is known that
the linear quadratic theory is one of the most e$cient approaches that can be used with the
state-space model for generating an optimal control signal [29]. The approach procedure is
to minimize a linear quadratic cost index donated J which is given in reference [30] as

J"�
�

�

(�z��[C]�[Q][C]�z�#�f


��[R] �f



�) dt, (4.1)

where [Q] and [R] are positive-de"nite diagonal weighting matrices. It is well-known that
the solution to the above minimization problem is given by the linear feedback control law

f


(t)"![R]���B��[P]�z�, (4.2)

where matrix [P] depends on the solution of the Riccati equation which is expressed in
reference [20] by

[P][A]#[A]�[P]![P] �B�[R]��[B]�[P]#[Q
 ]"[P� ], (4.3)

where [Q
 ]"[C]�[Q][C] and [R] is chosen such that [Q
 ]/[R]NR [9]. Since it is
desirable to have constant feedback gains in the vibration control system of time-invariant
structures' parameters, only the steady state value of the Riccati equation will be used in this
work. Therefore, this leads to the value of P� being zero.

5. SIMULATION RESULTS

Active control methods for vibration suppression are considered to o!er a good generic
methodology. The overall procedure to be carried out is to measure the output
displacement (or velocity) of the structure using suitable sensors. A state-space model is
utilized to generate the state vector that is needed in calculating the feedback control signal.
Then, the resulting signal is applied to the control actuator. This procedure needs to be
repeated continuously at an appropriate sampling rate.
The presented approaches discussed in sections 3 and 4 are used to suppress the vibration

of the dominant modes of di!erent unknown structures, namely, three and "ve (d.o.f.)
systems, and simply supported beam. To demonstrate the active vibration suppression of
such structure systems, the natural frequencies, and mode shapes need to be carefully
examined so that good vibration suppression can be achieved.
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5.1. A THREE-d.o.f. SYSTEM

A three d.o.f. system having the mass and sti!ness matrices

[m]"

1 0 0

0 1 0

0 0 1

(Kg), [k]"

2 !1 0

!1 2 !1

0 !1 2

(Nm���10�),

is used to demonstrate the validity of the presented approach in section 2. The natural
frequencies and their corresponding normalized mode shapes are calculated using the
iterative method [31]. These are

f
��

"12)1812 Hz, f
��

"22)4743 Hz, f
�	

"29)408 Hz and

[�]"

1)0 1)0 1)0

1)41 0)0 !1)41

1)0 !1)0 1)0

,

where [�] is the normalized mode shape matrix. The mass normalized mode shape matrix
[�] can be determined from applying the formula [31]

[�]"[[m
�
]�
�]��[�],

where [m
�
] is the diagonal modal mass matrix and may be calculated from

[m
�
]"[�]�[m][�].

The value of the matrix [�] is found to be

[�]"

!0)5 0)707 !0)5

!0)707 0)0 0)707

!0)5 !0)707 !0)5

.

A step input force of magnitude 0)1N is applied at mass 1 and the displacement output
response at the three masses are calculated using the mode superposition method [32]. The
time and frequency responses at mass 3 are presented in Figure 2 which shows the system
natural frequencies.
The matrix [S]gg is found from these displacement data utilizing equation (2.40). Then the

PCA procedure is implemented to factorize the matrix [S]gg, and obtain the matrix [U] as

[U]"

!0)5 0)712 !0)493

!0)707 !0)0008 0)707

!0)5 !0)702 !0)51

.

It is clear that the vectors of the matrix [U] are approximately similar to the vectors of the
matrix [�]. Thus, one can use the matrix [U] to decouple the coupled displacement data to
three single-d.o.f. systems as shown in Figure 3. From these graphs or their corresponding
frequency response functions, it is possible to estimate the system natural frequencies as
f
��

"12)1094 Hz, f
��

"22)4609 Hz, f
�	

"29)4922 Hz, which are similar to the system
natural frequencies. As a result, these natural frequencies and the eigenvectors of the matrix



Figure 2. Time response of the three-d.o.f. structure obtained at mass 3 with the corresponding frequency
response.
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[U] can be used to calculate accurately the systems coupled displacement outputs by
equation (2.46).
Furthermore, the estimated parameters are used to calculate the system response and the

required optimal control signal using equations (4.2) and (4.3) via the Matlab control
toolbox [33]. Here, the weighting matrices [Q] and [R] are chosen according to the
discussion presented in section 3, so that the value of [Q
 ]/[R]NR. The calculated control
signal is introduced in the system after a delay time of 2)56 s from the starting time of
simulation to suppress its vibration as shown in Figure 4. In this case, the control actuator
and the detection sensor are both "xed at mass 1, i.e., the location where the input force is
applied. It can be concluded here that the suggested procedure works well in controlling an
unknown full order system.
Moreover, the location of the control actuator and the chosen detection sensor are going

to be changed to study their e!ect on achieving good global minimization of the masses
motions. The control actuator is placed at masses 2 and 3 while the detection sensor is
chosen to be placed at mass 1. The results in time and frequency response function are
presented in Figures 5 and 6 respectively. It is observed that a bad vibration cancellation
appears when the control actuator is "xed at mass 2. This is due to the fact that this location
is near a node for the second mode. Thus, the controller fails to suppress completely the
second natural frequency as illustrated in Figure 6. However, as mass 3 is vibrating at all the
systems' three natural frequencies, the vibration cancellation is quite good as shown in
Figure 5. From these investigations, one can infer that the control actuator should be
located at locations where the contribution of the mode shapes is maximum. The mode
shapes and their contributions at each mass of the considered system that are attained for
the system modes are shown in Figure 7; the mode contributions are determined by
summing the absolute values of mode shapes of all the considered modes at the same mass.
This rule is used with all the remaining simulation examples. Furthermore, similar results
are obtained when the location of the detection sensor is changed while the control actuator
is placed at the optimal location at mass 1 as shown in Figures 8 and 9. It should be noted



Figure 3. The principal time and frequency responses of the simulated three-d.o.f. system.
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that the disturbance force is assumed to be placed at mass 1 where the maximum
contribution of the mode shapes is present.

5.2. A FIVE-d.o.f. SYSTEM

The mass and sti!ness of a simulated "ve-d.o.f. system are

[m]"

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

(kg), [k]"

2 !1 0 0 0

!1 2 !1 0 0

0 !1 2 !1 0

0 0 !1 2 !1

0 0 0 !1 2

(Nm���10�).



Figure 4. The controlled structure measured response at mass 3.

Figure 5. The structure responses when the disturbance force and detection sensor are both located at mass
1 and the controller is placed at mass 3: **, before cancellation; - - - - - -, after cancellation. Left side shows the
response of mass 1, right side refers to mass 2.
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The system natural frequencies and their corresponding normalized and mass normalized
mode shapes are found to be f

��
"8)2385 Hz, f

��
"15)9155 Hz, f

�	
"22)5079 Hz,

f
��

"27)57 Hz, f
��

"30)74 Hz,

[�]"

0)5 1)0 1)0 1)0 0)5

0)87 1)0 0)0 !1)0 !0)87

1)0 0)0 !1)0 0)0 0)0

0)87 !1)0 0)0 1)0 0)0

0)5 !1)0 1)0 !1)0 1)0

,



Figure 6. The structure responses when both the disturbance force and the detection sensor are located at mass
1 and the control actuator is placed at mass 2:**, before cancellation; - - - - - -, after cancellation. (a) refers to mass
3, (b) to mass 2 and (c) to mass 1.
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[�]"

!0)29 !0)50 !0)58 !0)58 !0)29

!0)50 !0)50 0)0 0)50 0)43

!0)58 !0)0 0)58 0)0 !0)58

!0)50 0)50 0)0 !0)58 0)43

!0)29 0)50 !0)58 0)58 !0)29

.

The mode shapes and their contributions at each mass are shown in Figure 10. The graph
indicates that the best locations for the control actuator and detection sensor should be at
mass 1 and/or 5. A step input force of 0)1N is applied at mass 1 and the output displacement
responses are recorded at all the masses with only the "rst three natural frequencies
included in the calculated data. The factorization of the matrix [S]gg reveals the following



Figure 7. Modes shapes and contributions at all the masses of a three-d.o.f. system.
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[U] matrix:

[U]"

!0)288 !0)502 !0)5776 !0)5647 !0)119

!0)4991 !0)501 !4)3�10�� 0)706 !3)82�10��

!0)5772 !1)1�10�	 0)5775 0)3859 0)4295

!0)501 0)4991 3)7�10�� !3)8�10� !0)7081

!0)2898 0)4995 !0)577 0)1756 0)36

.

It is clear that the "rst three vectors of the matrix [U] are similar to the ones given in matrix
[�]. The remaining two vectors in the [U] matrix represent the contribution of the last two
natural frequencies that are not included in the data. The natural frequencies of the
decoupled system as estimated from these data are found to be f

��
"8)212 Hz,

f
��

"15)925 Hz, f
�	

"22)495 Hz. These values are similar to the "rst three natural
frequencies of the system. The estimated three natural frequencies and their corresponding
orthonormal mode shapes [U] are used to construct the coupled data. Figure 11 shows
the coupled data in time and frequency domains as measured at mass 4.
Consequently, the control signal is calculated and passed to the system via the control

actuator which is placed at mass 1 (collocated with the detection sensor) after 2)56 s from the
starting time of simulation. A good cancellation of the system vibration is accomplished
as illustrated in Figure 12. It is worth mentioning that the simulation was carried out
for 5)12 s.
Then, the controller is invoked from the starting time of simulation; the overall results are

shown in Figure 13 as measured at all the masses of the structure. These results demonstrate
and con"rm the capability of the suggested procedure and control strategy used to



Figure 8. The structure responses when the disturbance force and the controller are both located at mass 1 and
the detection sensor is placed at mass 2:**, before cancellation; - - - - - , after cancellation. (a) refers to mass 1 with
mode 2 relatively unobservable; (b) to mass 2; (c) to mass 3 and (d) to mass 1 with mode 2 completely unobservable.
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e$ciently control vibration in the structure where global minimization at the masses is
achieved.
The e!ectiveness of the controller in vibration cancellation for non-collocated control

actuator and detection sensor is now examined. The control actuator and the detection
sensor are attached at masses 1 and 5 respectively. The selected locations are chosen to
satisfy mode contribution conditions presented in Figure 10. Figure 14 shows the structure
responses at masses 1, 3 and 5 where considerable cancellation is achieved, which is highly
similar to that as shown in Figure 13. This is expected since the mode shape in the selected
locations of control actuator and detection sensor for all the considered modes are similar.

5.3. SIMPLY SUPPORTED BEAM

An aluminium beam of 0)8 m length and cross-sectional area of 2)1894�10��m is used
as a practical example. The beam is modelled as a 28-d.o.f. system where the elements of the



Figure 9. The structure responses when the disturbance force and the controller are both located at mass 1 and
the detection sensor is placed at mass 3:**, before cancellation; - - - - - -, after cancellation. (a) refers to mass 1; (b)
to mass 2 and (c) to mass 3.
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#exibility matrix [�] can be found using the formula form reference [24]

�


"((l!a)/6EIl) (l�x!x	!(l!a)�x) for x)a, (5.1)

where a is the distance of the unit applied force from the left support, EI is the modulus of
rigidity of the beam, x is the distance with respect to the left support of the beam of length l.
Similarly, in digitized form, it can be written as

�

�"((N

�
#i#1)/6EI(N

�
#1)) l	 �[(N

�
#1)�i!j	]![(N

�
!i#1)��j]�,

i"N
�
, N

�
!1,2 , 1, j"i, i!1,2 , 1, (5.2)

where N
�
is the number of segments and �


�"�

� .

Since the sti!ness matrix [K] is the inverse of [�], one can adopt a Gaussian elimination
routine to obtain [K] from [�], therefore,

[K]"[�]��. (5.3)



Figure 10. Modes shapes and contributions at all the masses of a "ve-d.o.f. system.

Figure 11. The response of the "ve-d.o.f. structure in time and frequency domains as measured at mass 4.
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Figure 12. The controlled structure responses as measured at masses 4 and 1 respectively.
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In addition, the diagonal mass matrix [M] can be constructed by assuming that the mass of
each segment is concentrated at its mid-span. Thus, the mass elements of the simply
supported beam may be obtained using

m(i, i)"��l, i"1, 2, 3,2 , N
�
, (5.4)

where � is the mass per unit length. The "rst three natural frequencies of the system
are found using the calculated mass and sti!ness matrices, being: f

��
"8)2385 Hz,

f
��

"15)9155 Hz, f
�	

"22)5079 Hz and their corresponding normalized mode shapes are
presented in Figure 15. A disturbance force of 0)1N is assumed to be applied at 0)22m from
the left support of the beam to excite the system with only the "rst three modes included
in the calculated data. The estimated natural frequencies are found in a similar way as
for the above examples where they are found to be f

��
"8)253 Hz, f

��
"15)897 Hz,

f
�	

"22)511 Hz. The control strategy discussed in section 4 is again implemented for
vibration cancellation of such structures. The positions of detection sensor and control
actuator are chosen according to the results presented in Figure 15. The time and frequency
responses calculated at location 0)35m are as shown in Figure 16.
To assess the behavior of the controller upon vibration cancellation over the entire beam

length, the controller and the detection sensor are both located at location 0)35m for the
collocated case. Figure 17 shows that a signi"cant reduction in the vibration level has been
achieved throughout the length of the beam where the controller is turned on after 2)56 s
from the starting time of simulation. In addition, this result demonstrates that the controller
and the modal model work well for such a purpose. Figure 18 and 19 show the time and
frequency domains of the behavior of the controlled beam along its length for collocated
and non-collocated cases respectively.
The average power spectral density throughout the length of the beam before and after

cancellation for collocated case is given in Figure 20. The average attenuation over all the
considered modes is found to be 43)93 dB. It is clear that a similar performance can be
attained for the uncollected case where the attenuation is found to be 43)5 dB.
Consequently, it is worth mentioning that the kinks in the graph in Figure 20 indicate the
modal nodes.



Figure 13. The controlled structure responses within time and frequency domains measured at all the masses
along the structure: **, before cancellation; - - - - - -, after cancellation. (a) refers to mass 1; (b) to mass 2; (c) to
mass 3; (d) to mass 4 and (e) to mass 5.
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Figure 14. The controlled structure responses within time and frequency domains measured at some selected
masses for the non-collocated control actuator and detection sensor: **, before cancellation; - - - - - -, after
cancellation. (a) refers to mass 1; (b) to mass 3 and (c) to mass 5.
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6. CONCLUSIONS

In this paper, principal component analysis (PCA) was introduced as a technique to
estimate the natural frequencies and the mode shapes for the structures under
consideration. PCA was found to have two main advantages; "rst, it has the ability to
produce e!ectively single-d.o.f. data with well-separated resonances and secondly, it
minimizes the e!ect of the residual modes. The estimated parameters were utilized in
designing the modal model and controlling the vibration of such structures. The control
law was designed using state-space representation and tested on three- and "ve-d.o.f
structures as well as on a simply supported beam structure. The results demonstrate the
successful implementation of an optimal control strategy for cancelling the vibration. The
control technique was successfully carried out for collocated and non-collocated control
actuator/detection sensor locations. Further studies for the determination of the control
actuator and the detection sensor suitable locations has been investigated. A simple way for



Figure 15. Modes shapes and contribution throughout the length of a simply supported beam structure.

Figure 16. Time and power spectral density responses of uncontrolled simply supported beam measured at
location 0)35m.
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Figure 17. Beam response before and after cancellation when the controller is turned on after 2)56 s.

Figure 18. Beam response along its length after cancellation for collocated case.

Figure 19. Beam response along its length after cancellation for non-collocated case.
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Figure 20. Average power spectral density for the collocated case: **, before cancellation; - - - - - -, after
cancellation.

568 A. S. AL-DMOUR AND K. S. MOHAMMAD
specifying such suitable positions was based on calculating the mode shapes continuations
at the lumped masses. It is worth mentioning here that, a comparison was carried out
between this proposed method and other techniques, which did not require prior
knowledge of the model such as fuzzy logic and genetic algorithm and will be published in
the future. This work shows that the presented procedure is successful in vibration
suppression of #exible structures when compared with the other methods. In view of the
simulation results, it can be concluded with some con"dence that the PCA procedure with
active control strategies o!ers a viable solution for vibration problems.
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