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Most of the work done on vibration of plates published in the literature includes
analytical and numerical studies with few experimental results available. In this paper, an
optical system called the amplitude-fluctuation electronic speckle pattern interferometry for
the out-of-plane displacement measurement is employed to investigate the vibration
behavior of plates with rounded corners and with chamfers. The boundary conditions are
traction free along the circumference of the plate. Based on the fact that clear fringe patterns
will appear only at resonant frequencies, both resonant frequencies and corresponding mode
shapes can be obtained experimentally using the present method. Numerical calculations by
finite element method are also performed and the results are compared with the
experimental measurements. Good agreements are obtained for both results. It is interesting
to note that the mode number sequences for some resonant modes are changed. The
transition of mode shapes from the square plate to the circular plate is also discussed.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The basic principles of electronic speckle pattern interferometry (ESPI) were first proposed
by Butters and Leendertz [ 1] to investigate the transverse vibration behavior of a disk. This
technique (also called TV holography of electronic holography) is a fullfield, non-contact,
and real-time method to measure the deformation for structures subjected to various kinds
of loadings. As compared with the traditional holographic interferometry [2], the
cumbersome and time-consuming chemical development can be omitted for ESPI and the
experimental process will be speeded up. Since only +ys is needed to record and update
a frame of interferometric pattern, ESPI is faster in operation and more insensitive to
environment than holography. However, this method cannot attain the high image quality
as that of the holographic interferometry due to the low resolution of the video camera
system. But for practical applications, these disadvantages are outweighed by the high
sampling rate of the video camera. For these reasons, ESPI has become a powerful
technique used or many academic researches and engineering applications. The most widely
used experimental set-up to study dynamic responses by ESPI is the time-averaged
vibration ESPI method [3]. The disadvantage of this method is that the interferometric
fringes represent the amplitude but not the phase of the vibration. To improve this
shortcomings the phase-modulation method using the reference beam modulation
technique, was developed to determine the relative phase of displacement [4, 5]. Shellabear
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and Tyrer [6] used ESPI to carry out three-dimensional vibration measurements. Three
different illumination geometries were constructed, and the orthogonal components of
vibration amplitude and mode shape were determined. For the purpose of reducing the
noise coming from the environment the subtraction method was developed [7, 8]. The
subtraction method differs from the time-averaged method in that the reference frame is
recorded before vibration and is continuously subtracted from the incoming frames after
vibration. In order to increase the visibility of the fringe pattern and reduce the
environmental noise simultaneously, an amplitude-fluctuation ESPI (AF-ESPI) method
was proposed by Wang et al. [9] for out-of-plane vibration measurement. In the AF-ESPI
method, the reference frame is recorded in a vibrating state and subtracted from the
incoming frame. Consequently, it combines the advantages of the time-averaged and
subtraction methods, i.e., good visibility and noise reduction. Ma and Huang [10, 11] used
the AF-ESPI method to investigate the three-dimensional vibrations of piezoelectric
rectangular parallelopipeds and cylinders. Both the resonant frequencies and mode shapes
were presented and discussed in details.

The investigation of plate vibrations has received considerable attention for academic
research and engineering application for almost two centuries. There are hundreds of
technical publications accumulated in the literature [12-14] for the free vibration
characteristics of plates with various support conditions along the circumferential
boundaries. Gorman [15] employed the method of superposition, which was first proposed
to solve dynamic plate problems, to analyze the free vibration of a cantilever plate with
various aspect ratios. Two families of mode shapes, symmetric and antisymmetric types,
were described by mode contour plots and excellent convergence to exact values was shown
in his work. In 1978, Gorman [16] applied the same method to investigate the vibration
analysis of completely free rectangular plates, which overcomes the difficulty to satisfy the
governing differential equation and boundary conditions simultaneously. Three families of
modes and eigenvalues for the first six modes are illustrated with various plate aspect ratios.
Irie et al. [17] utilized a so-called series-type method to solve the natural frequencies and
mode shapes numerically for irregular-shaped plates. The variation of eigenvalues and
mode shapes for these plates, which include cross-, I- and L-shaped plates, are presented
according to the shape parameters. Irie et al. [18] also studied the free vibration of regular
polygonal plates with simply supported edge by the method proposed in reference [17]. The
resonant frequencies and mode shapes of polygonal plates can be obtained numerically by
considering the dynamic analogy with similar membranes. It should be pointed out that the
mode shapes of polygonal plates with the number of edges larger than six are similar to
those of circular plates. Irie et al. [ 19] employed the Ritz method to investigate the resonant
frequencies to square membranes and square plates with rounded corners for the simply
supported or clamped boundary condition. The resonant frequencies of the rounded plates
are between the values of circular and square plates under the same boundary conditions,
except for some special cases discussed in the literature. Maruyama and Ichinomiya [20]
used the time-averaged holographic interferometry to measure the resonant frequencies and
corresponding mode shapes of I-shaped plates under the clamped boundary condition. The
frequency parameters versus dimensionless length parameters are shown graphically and
compared with the numerical results or a rectangular plate.

In this paper, the optical method based on the AF-ESPI is employed to study
experimentally the free vibration of plates with rounded corners and with chamfers. The
boundary conditions along the circumferential edge are traction free. Only a few papers
have been published in the literature on the vibration analysis for irregular-shaped plates up
to higher modes. The advantage of using the AF-ESPI method is that both resonant
frequencies and the corresponding mode shapes can be obtained simultaneously from the
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experimental measurement. In addition to the AF-ESPI experimental technique, numerical
computations based on a finite element package are also presented and good agreements of
resonant frequencies and mode shapes are found. The transition of mode shapes from
a square plate to a circular plate is illustrated. On making a comparison of the vibration
behavior between the plates with rounded corners and with chamfers, it is interesting to find
that for some modes the shape of corners does not affect the resonant frequencies.

2. THEORY OF AF-ESPI FOR OUT-OF-PLANE VIBRATION MEASUREMENTS

The optical arrangement of ESPI for out-of-plane vibration measurement is shown
schematically in Figure 1. When the specimen vibrates periodically, we record the first
image as a reference. The light intensity of this reference image detected by a CCD camera
can be expressed as [21]

1(F 2
I, = ;J {IA + Iy + 2./ Ly cos [qﬁ + Xn(l + cos ) A cos wt}}dt, (1)

0

where I is the object light intensity, I the reference light intensity, T the CCD refresh time,
¢ the phase difference between the object and reference light, A the wavelength of laser,
0 the angle between object light and observation direction, 4 the vibration amplitude and
o the angular frequency

LetI' = 27/A (1 + cos0) and t = 2mn/w, m is an integer, then equation (1) can be worked
out as

I = L + I + 2 /I Ig(cos ¢)Jo(T A), )

where J is a zero order Bessel function of the first kind.
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Figure 1. Schematic diagram of ESPI set-up for out-of-plane displacement measurement.
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After image processing and rectifying, the intensity of the first image can be expressed as

Il=IA+IB+21/IAIB|(COS¢)J0(FA)|. (3)
As the vibration of the specimen goes on, we assume that the vibration amplitude has

changed from A4 to 4 + AA because of the electronic noise or instability of the apparatus.
The light intensity of the second image can be represented as

1 T
I, = ;J {Iy + Iy + 2/ IyIgcos[¢ + (A + AA)cos wr]} dt. 4)
0

Expanding equation (4) using Taylor series expansion, retaining the first two terms and
neglecting the higher order terms, we can rewrite equation (4) as follows:

=1+ Iy 4+ 2/ Iz (cos p)[1 — 2T2(AA)? 1T (T A). (5)

By image processing and rectifying, I, can be similarly expressed as

Iy = I+ Ip + 2/ Lidg | (cos ) [1 — 2T (4 A)* 1To(T A)]. (6)

When these two images (the first and second images) are subtracted by the image
processing system, i.e., subtract equation (3) from equation (6), and rectified, the resulting
image intensity can be expressed as

1= 1~ 1y =2 os p) 2 (447 T A @)

From equation (7), it is indicated that the fringe pattern for the out-of-plane vibrating
motions obtained by the AF-ESPI method is controlled by a zero order Bessel function J,.
The nodal lines of vibration interferometric patterns are the brightness lines and this
characteristic can be used as qualitative observation or quantitative analysis for the fringe
patterns. In addition to the theory of out-of-plane measurement mentioned above,
the in-plane vibration measurement by AF-ESPI method can also be derived in a similar
way [10].

3. EXPERIMENTAL RESULTS AND NUMERICAL ANALYSIS

The isotropic aluminum plates (6061T6) with rounded corners are used in this study for
experimental investigations and numerical calculations. The material properties of the
plates are mass density p = 2700kg/m?>, Young’s modulus E = 70 GPA and the Poisson
ratio v = 0-33. The geometric dimensions of the rounded plates are illustrated in Figure 2(a).
The radius of the corner r is taken to be 5, 10, 20, and 30mm in this analysis. For
convenience, we note that R-10 represents the rounded late with radii of the corners being
10mm. In order to increase the intensity of light reflection of specimens and the contrast of
fringe patterns, the surfaces of the plates are coated with white paint that is mixed with fine
seaweed powder.

A self-arranged AF-ESPI optical system as shown in Figure 1 is employed to perform the
out-of-plane vibration measurement for the resonant frequency and the corresponding
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Figure 2. Geometric dimension and configuration of the (a) rounded and (b) chamfered plates.

TaBLE 1

First 10 resonant frequencies obtained from AF-ESPI and FEM for rounded plates

R-0 R-5 R-10 R-20 R-30 R-40

AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM
Mode (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

494 510 507 516 521 532 579 590 670 683 792 814

735 745 725 746 735 746 728 750 751 768 1374 1400

890 945 940 957 963 987 1070 1091 1209 1233 1805 1893
1271 1324 1308 1340 1347 1378 1455 1500 1630 1671 3110 3171
2330 2357 2322 2375 2350 2418 2470 2570 2720 2815 3240 3327
2345 2424 2408 2456 2442 2528 2625 2707 2821 2918 4965 5112
2630 2634 2567 2636 2575 2641 2688 2742 2943 3003 5326 5436
2930 2974 2980 3048 3160 3227 3670 3786 4375 4531 5780 5922
3805 4021 3985 4059 4045 4130 4220 4302 4438 4579 7035 7250
4402 4499 4420 4501 4410 4513 4533 4652 4880 4998 7910 8154

OO0 PBA W —

—_

mode shape. As shown in Figure 1, a 30-mW He-Ne laser with wavelength A = 632-8 nm is
used as the coherent light source. The laser beam is divided into two parts, the reference and
object beam, by a beamsplitter. The object beam travels to the specimen and then reflects to
the CCD camera. The reference beam is directed to the CCD camera via a mirror and the
reference plate. It is important to note that the optical path and the light intensity of these
two beams should remain identical in the experimental set-up. The specimen is placed on
a sponge to simulate the traction-free boundary condition and is excited by a piezostack
actuator. The piezoelectric actuator is usually attached by adhesive in the center of the
opposite face of the specimens. However, if the nodal lines pass the center of the specimen,
then the piezoelectric actuator will be moved to another location. To achieve the sinusoidal
output, a function generator connected to a power amplifier is used.

Numerical results of resonant frequencies and mode shapes are carried out by using the
commercially available software, ABAQUS finite element package [22]. The eight-node
two-dimensional quadrilateral thick shell elements (S§R5) and reduced integration scheme
are used to analyze the problem. This element approximates the Midlin-type element that
accounts for rotary inertia effects and first order shear deformations through the thickness.

Table 1 shows the experimental and numerical results of resonant frequencies of the first
10 modes for rounded plates with different radii of corners. We note that R-0 represents the
square plate and R-40 is the circular plate with radius 40 mm. As shown in Table 1, we can
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(AF-ESPI) (FEM result) (AF-ESPI) (FEM result)

A

Figure 3. Mode shapes of the R-5 plate obtained by AF-ESPI and FEM.

see that these two results are quite consistent. They always have the uncertainty of the
experimental determination of resonant frequencies land this may result in the opposite
trend as indicated in Table 1 for R-5 and R-10 for mode 2, 7 and 10. Since the weight of the
specimen increases slightly by the attached actuator, the resonant frequencies obtained
from experimental measurement turn out to be lower than the numerical results. Besides,
the errors are probably due to the material property measurement, the finite element
approximation method and the boundary condition.

For conciseness, only experimental results of mode shapes for R-5 and R-30 plates are
presented. Figures 3 and 4 show the first 10 mode shapes or both experimental
measurements and numerical simulations. For the finite element calculations, the contours
of constant displacement for resonant mode shapes are plotted in order to compare with the
experimental observation. In Figures 3 and 4, we indicate the phase of displacement in finite
element results as solid or dashed lines, where the solid lines are in the opposite direction
from the dashed lines. The transition from solid lines to dashed lines corresponds to a zero
displacement line, or a nodal line. The zero order fringe, which is the brightest fringe on
experimental results, represents the nodal lines of the rounded plate at resonant frequencies.
The rest of the fringes are contours of constant amplitudes of displacement, which can be
quantitatively calculated by Jy(I'4) =0 according to equation (7) for out-of-plane
measurement. The mode shapes obtained by experimental results can be verified by
comparing the node lines and fringe patterns with the numerical finite element calculations,
and excellent agreements are found.
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(AF-ESPI) (FEM result) (AF-ESPI) (FEM-result)
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Figure 4. Mode shapes of the R-30 plate obtained by AF-ESPI and FEM.
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Figure 5. Comparison of the non-dimensional frequencies by AF-ESPI and FEM for the rounded plates. R-5:
—A—, FEM; A, AF-ESPL; R-10: —<&—, FEM; ©, AF-ESPL; R-20: —5—, FEM; O, AF-ESPL; R-30: —O—,
FEM; @, AF-ESPIL.
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In order to discuss the influence of the radii of rounded corners on the resonant
frequency, the resonant frequency f is expressed in terms of a non-dimensional frequency
parameter 12 given by

12p(1 —v?)

2 =2nfL? i ,

where L is the maximum length between the opposite edges and h is the thickness of the
rounded plate. Figure 5 shows the relation of non-dimensional resonant frequency and

160

120 FMode 10

r/L

Figure 6. The results of non-dimensional frequencies for rounded plates with different radii of corners. Mode 1:
—}—, FEM; +, AF-ESPI; Mode 2: —<—, FEM; ©, AF-ESPI; Mode 3: —&—, FEM; O, AF-ESPI; Mode 4:
—O—, FEM; @, AF-ESPI; Mode 5: —A—, FEM; A, AF-ESPI; Mode 6: —s—, FEM; %, AF-ESPI; Mode 7:
—&—, FEM; %, AF-ESPL; Mode 8: —%—, FEM; %, AF-ESPL; Mode 9: —<—, FEM; #, AF-ESPI; Mode 10
——, FEM; B, AF-ESPIL

TaBLE 2
First 10 resonant frequencies obtained from AF-ESPI and FEM for chamfered plates

Cham-0 Cham-5 Cham-10 Cham-20 Cham-30

AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM
Mode (Hz) (Hz) (Hz) (Hz (Hz (Hz (Hz (Hz) (Hz)  (Hz)

494 510 515 523 555 558 687 695 785 805
735 745 727 746 726 746 736 758 926 961
890 945 944 971 1010 1037 1218 1243 1432 1475
1271 1324 1331 1358 1405 1436 1640 1676 1960 2007
2330 2357 2354 2395 2414 2486 2740 2817 3305 3402
2345 2424 2425 2491 2575 2639 2795 2825 3380 3480
2630 2634 2544 2636 2600 2651 2997 3093 3605 3697
2930 2974 3030 3134 3415 3507 4393 4544 5096 5306
3895 4021 3972 4095 4125 4212 4487 4640 5375 5595
4402 4499 4395 4503 4396 4534 4693 4863 5748 5980

OO 001NN W

—
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mode number for rounded plates with different radii of corners. It is interesting to note that
resonant frequencies of the second mode are almost constant and resonant frequencies of
the eighth mode vary drastically for the rounded plates. Figure 6 shows the dependence of
frequency parameter (A%) on r/L for the rounded plates. Note that r/L = 0 represents the
square plate and r/L = 0-5 represents the circular plate. We find that the frequencies of the
eighth mode are increasing drastically and higher than the ninth mode for /L > 0-39, which
means that the orders of these two modes exchange each other. It is clearly shown in
Figure 6 that some modes of the square plate will transform or reduce to the correspondent
modes of the circular plate. There are three groups of mode transitions and which are
expressed as follows:

Mode of the square plate Mode of the circular plate
1,2 — 1
6,7 — 5
8, 10 — 7

It is indicated from these results that some modes of the square plate will combine to form
the correspondent modes of the circular plate which are composed of only the nodal
diameters and circles.

In this study we also investigate the vibration characteristics of the plates with chamfers
for the traction-free boundary condition. The geometric dimensions of the chamfered plates

(AF-ESPI)

-

Mode 2

Mode 3

Mode 4

Mode 5

Figure 7. Mode shapes of the Cham-10 plate obtained by AF-ESPI and FEM.
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(AF-ESPI) (FEM result) (AF-ESPI) (FEM result)
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Figure 8. Mode shapes of the Cham-20 plate obtained by AF-ESPI and FEM.
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40

1 2 3 4 5 6 7 8 9 10
Mode number
Figure 9. Comparison of the non-dimensional frequencies by AF-ESPI and FEM for the chamfered plates.

Cham-5:—A—, FEM; A, AF-ESPI; Cham-10: —¢&—, FEM; &, AF-ESPI; Cham-20: ——, FEM; O, AF-ESPI;
Cham-30: —OS—, FEM; @, AF-ESPI.
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160

120 FMode1o

Figure 10. The results of non-dimensional frequencies for chamfered plates with different chamfer lengths.
Mode 1: —+—, FEM; +, AF-ESPI; Mode 2: —&—, FEM; &, AF-ESPIL; Mode 3: —H—, FEM; O, AF-ESPI;
Mode 4: —O—, FEM; @, AF-ESPI; Mode 5: —A—, FEM; A, AF-ESPI; Mode 6: —+—, FEM; %, AF-ESPI,;
Mode 7. —%—, FEM; &, AF-ESPI; Mode 8: —%—, FEM; %, AF-ESPI; Mode 9: —<—, FEM; @, AF-ESPI; Mode
10: —#5—, FEM; B, AF-ESPL

100

160

80 140
120

100

c/L(orr/L)

Figure 11. (a)(b) Comparison of the non-dimensional frequencies between the rounded and chamfered plates.
Chamfered plates: —i—, FEM; B, AF-ESPI; rounded plate: —A—, FEM; A, AF-ESPL

are illustrated in Figure 2(b) and the lengths of chamfer ¢ are taken to be 5, 10, 20, and
30mm. It is indicated that the symbol Cham-10 represents the chamfered plate ¢ = 10 mm.
On performing the experimental procedure and numerical calculation as mentioned above,
the resonant frequencies and corresponding mode shapes of chamfered plates are obtained
and are compared with the numerical results. Table 2 shows the experimental and
numerical results of resonant frequencies for the first 10 modes. Figures 7 and 8 are the first
10 mode shapes for the Cham-10 and Cham-20 plates. The relation of the non-dimensional
frequency parameter and mode number is illustrated in Figure 9 for the chamfered plates.
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Figure 10 shows the dependence of frequency parameter (4?) on ¢/L for the chamfered
plates. The resonant frequencies almost increase in a similar tendency or most of the modes,
except for the second and eighth modes. Besides, it is indicated that the orders of modes
6 and 7 exchange each other for ¢ > 10 mm, which is similar to what occurs for modes 8 and
9 for rounded plates as mentioned above.

Finally, we discuss the difference of resonant frequencies between the rounded and
chamfered plates on the condition that the radii of corners r are equal to the lengths of
chamfer c. Figure 11 shows the variation of resonant frequencies between them and we can
see that the resonant frequencies for chamfered plates are larger than that for rounded
plates. It is also interesting to note that the resonant frequency of mode 2 is nearly
a constant value for r/L (or ¢/L) < 0-25. This means that the shapes of corners and the value
for r/L (or ¢/L) are insensitive to the resonant frequencies of the second mode for r/L (or
¢/L) < 0-25. A similar trend is also observed in modes 7 and 10 for r/L (or ¢/L) < 0-2.

4. CONCLUSIONS

It has been shown that the optical ESPI method has the advantages of non-contact and
fullfield measurement, submicron sensitivity, validity of both static deformation and
dynamic vibration, and direct digital image output. A self-arranged amplitude-fluctuation
ESPI optical set-up with good visibility and noise reduction has been established in this
study to obtain the resonant frequencies and the corresponding mode shapes of
irregular-shaped plates at the same time. Compared with the spectrum analysis or modal
analysis method, AF-ESPI is more convenient in experimental operation. Numerical
calculations of resonant frequencies and mode shapes based on a finite element package are
also performed and good agreements are obtained if compared with experimental
measurements. The influence of the shape of corners, which include rounded corners and
chamfers, on the vibration analysis of square plates is discussed in detail. For the completely
free boundary condition, the mode shapes of a square plate with round corners are shown to
transform into those of a circular late, which are nodal diameters and nodal circles. The
exchange of some modes in number for these two types of plates is observed. They are the
eighth and ninth mode for the rounded plate and the sixth and seventh mode for the
chamfered plate. From the variation of non-dimensional frequency parameter (A?) versus
corner shape parameter (/L or ¢/L), we find that the resonant frequency and mode shape of
the second mode will not be affected by the shape of corners for #/L (or ¢/L) < 0-25.
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