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Mechanical high-frequency (HF) excitation provides a working principle behind many
industrial and natural applications and phenomena. This paper concerns three particular
effects of HF excitation, that may change the apparent characteristics of mechanical
systems: (1) stiffening, by which the apparent linear stiffness associated with an equilibrium
is changed, along with derived quantities such as stability and natural frequencies; (2)
biasing by which the system is biased towards a particular state, static or dynamic, which
does not exist or is unstable in the absence of the HF excitation; and (3) smoothening,
referring to a tendency for discontinuities to be effectively ‘‘smeared out’’ by HF excitation.
Illustrating first these effects for a few specific systems, analytical results are provided that
quantify them for a quite general class of mechanical systems. This class covers systems
that can be modelled by a finite number of second order ordinary differential equations,
generally non-linear, with periodically oscillating excitation terms of high frequency and
small amplitude. The results should be useful for understanding the effects in question in a
broader perspective than is possible with specific systems, for calculating effects for specific
systems using well-defined formulas, and for possibly designing systems that display
prescribed characteristics in the presence of HF excitation.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

High-frequency (HF) excitation may effectively change certain characteristics of
mechanical structures and systems, such as their equilibrium states, linear stiffness,
damping, and natural frequencies}and non-linear features such as the type of restoring
forces and energy dissipation, frequency response and bifurcation behavior. This work
focuses on three such effects, that occur across a wide range of systems, and from which
some of the other effects may be derived: (1) stiffening, by which the apparent linear
stiffness associated with an equilibrium is changed; (2) biasing, by which a system
subjected to HF excitation is biased towards a particular state, static or dynamic, which
does not exist or is unstable in the absence of the HF excitation; and (3) smoothening,
referring to a tendency for discontinuities to be effectively smeared out by HF excitation.

Illustrating first these effects for a few specific and very simple systems, it is the purpose
of the work to provide general analytical results that quantify the effects for a general
class of mechanical systems. This class incorporates systems that can be adequately
modelled by a finite number of second order ordinary differential equations, generally
non-linear, with periodically oscillating excitation terms of high frequency and small
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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amplitude. The HF excitation should be ‘‘strong’’, in the sense that displacements
associated with the HF sources should be very small, while the energy should be
significant.

A great many studies of specific effects of HF excitation for specific systems have been
published, most of them by Blekhman, who has also devised convenient mathematical
tools for predicting them [1]. Some early works in this field by Stephenson [2, 3], Hirsch [4],
and Kapitza [5] deal with the now well-known effect of the upright stabilization of a
pendulum with a rapidly oscillating support, and Chelomei [6] proposed to use similar
effects for stabilizing elastic systems. More recent investigations include using resonant HF
excitation to transport fluid or strings through pipes [7, 8], damp resonant vibrations of
strings and beams [9–12], induce linear motion in systems with asymmetrical friction
[13, 14], change the equilibriums, stability, natural frequencies, and non-linear frequency
response for a two-bar link [15], increase the buckling load and natural frequencies for
columns [16–18], quench friction-induced periodic or chaotic oscillations for non-linear
oscillators [19–21], stabilize or change the non-linear behavior of follower-loaded double
pendulums and articulated fluid-carrying pipes [22–24], explain the ‘‘floating’’ of the disk
on the inverted so-called ‘‘Chelomei’s pendulum’’ [16, 25, 26], and form other properties of
non-linear mechanical systems [27]. Effects of HF excitation have been investigated for
continuous flexible structures such as strings, beams and rotating disks [28–31], and with
consideration to change in basic material properties such as creep, relaxation, plasticity
[1, 32] (plus a number of works published only in Russian). Also, in the control sciences
the use of HF excitation in the form of so-called ‘‘dither’’-signals has been studied for
some time, e.g., see references [33–37].

Mechanical HF excitation provides the basic working principle behind a range of
different industrial applications, e.g., transport of granular material or solid bodies on
vibration feeders, auto-focusing of camera lenses, submersion of piles, or separation of
solid materials according to size or density. Nature occasionally utilizes slow effects of HF
excitation, e.g., in making primitive living organisms able to drift and swim. And there are
some obviously harmful effects, e.g., self-unscrewing bolts and nuts on vibrating
machinery, and needle pointer instruments displaying bias error when operating in
strongly vibrating environments.

There are several studies providing valuable general results regarding different effects of
HF excitation, for more or less restricted classes of systems and excitations, e.g., references
[1, 33–44]. Since, there seems to be no published results in the form of analytical
predictions of the effects in question here, for generally non-linear finite-degree-of-freedom
mechanical systems with general periodic HF excitation, it is the subject of the present
work. The level of generality should be sufficient to cover a broad class of systems
occurring in applications, but not so general that it becomes impossible to extract
meaningful physical interpretation of the results. Results were aimed at those that would
be useful for (1) understanding the effects in question in a broader perspective than it is
possible with specific systems, (2) calculating effects for specific systems using well-defined
formulas, and (3) possibly designing systems with prescribed characteristics in the presence
of HF excitation.

Section 2 of the paper presents the concerned effects in terms of three very simple
physical systems, and also presents in short form a number of other typical examples.
Section 3 presents the general mathematical model to be studied, representing the example
systems of the previous section as well as many others}and shows how this system can be
transformed to provide only the essential averaged or ‘‘slow’’ motions that is of interest
here. Section 4 then defines and analyses the stiffening, the biasing, and the smoothening
effect based on these averaged equations.
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2. EXAMPLES

Three specific examples are presented in some detail, followed by brief mention of some
other systems in tabular form. The purpose is to illustrate the effects of concern in a simple
physical setting, and to provide specific reference for the subsequent general analysis.

2.1. EXAMPLE 1: PENDULUMONAVIBRATING SUPPORT (STIFFENINGAND BIASING)

Studies of the pendulum with a vibrating support (Figure 1) have a long history
[2–5, 45]. Here, it serves to illustrate the stiffening and biasing effects of HF excitation,
which in turn influence the effective natural frequency and the existence and stability of
equilibriums. The equation of motion is

ÿþ 2bẏð1� qO2 sinðOtÞÞsin y ¼ 0; ð1Þ

where y is the swing angle, t ¼ o0 *tt is the non-dimensional time, *tt the physical time,
o0 ¼

ffiffiffiffiffiffiffiffiffi
g=L

p
the linear natural frequency for oscillations near y ¼ 0; ’yy ¼ dy=dt; b the

damping ratio, q the relative amplitude of prescribed support oscillations, and O ¼ *OO=o0

the non-dimensional frequency of this excitation. We consider the case of small but rapid
vibrations of the support, i.e., q{1 and Oc1: Approximate solutions can be obtained by
a number of different perturbation methods, considering e ¼ O21 as a small parameter. By
the method to be described subsequently, the motions yðtÞ are split into slow and fast
components as follows:

yðtÞ ¼ zðtÞ þ O�1jðt;OtÞ; ð2Þ

where z describes the slow motions (at the time-scale of free pendulum oscillations), and
O�1j is a small overlay of fast motions (at the rapid rate of support vibrations). We
perceive t as the slow time scale and Ot as a fast time scale. The slow motions z are those of
primary concern, whereas the details of the fast overlay j are interesting only by their
effect on z: By the method to be described, one finds the following approximation for j:

jðt;OtÞ ¼ �qO sinðzÞ sinðOtÞ ð3Þ

while the slow motions z are approximately governed by

.zz þ 2b’zz þ ð1þ 1
2
ðqOÞ2cosðzÞÞsin z ¼ 0; ð4Þ

where in both equations small terms of the order O21 have been neglected. Hence, by
equations (2) and (3) the pendulum motions are given by

yðtÞ ¼ zðtÞ � q sinðzÞ sinðOtÞ: ð5Þ
Figure 1. Pendulum with a vibrating support.
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It appears, since q{1; that the rapidly oscillating overlay is very small; it constitutes the
trivial effect of the HF excitation. Non-trivial effects appear in the dynamics of the slow
motions z: As appears from equation (4) z is governed by a differential equation quite
similar to the original one (1), though, with the non-autonomous excitation term
qO2 sinðOtÞ replaced by the autonomous term 1

2
ðqOÞ2 cosðzÞ; describing an average effect of

the HF excitation. The effective restoring force in the presence of HF frequency thus
changes from frðzÞ ¼ sinðzÞ to

frðzÞ ¼ ð1þ 1
2
ðqOÞ2 cos zÞsin z; ð6Þ

which is depicted in Figure 2(a) for three values of the excitation intensity qO: Of concern
here is the effective stiffness, which we define as the slope of the restoring force curve at the
static equilibriums. As appears from Figure 2(b), at the two equilibriums corresponding to
the straight downward or upward pointing pendulum (z ¼ 0; �p), this stiffness increases
in the presence of HF excitation (i.e. when qO=0). Specifically, using equation (6) we find
that the stiffness for both equilibriums increases by the same quantity 1

2
ðqOÞ2:

dfr

dz
¼

1þ 1
2
ðqOÞ2 for z ¼ 0;

�1þ 1
2
ðqOÞ2 for z ¼ �p:

(
ð7Þ

For the equilibrium at z ¼ 0 the change in effective stiffness corresponds to a change in
effective natural frequency, from unity to o1;

o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
ðqOÞ2

q
: ð8Þ

Thus, near the down-pointing equilibrium, the free pendulum oscillations occur at a higher
frequency when the support is vibrating rapidly up and down. For example, with a
pendulum clock mounted on a table vibrating at intensity of qO ¼ 1; the clock will runffiffiffiffiffiffiffiffiffiffi

1þ 1
2

q
� 1 � 22% faster than if the table is at rest.

For the up-pointing equilibrium at z ¼ �p the situation is different, because in the
absence of HF excitation this equilibrium is unstable}as reflected by negative stiffness
(cf., equation (7) and Figure 2(b)). Thus an increase in effective stiffness, if sufficiently
large, may stabilize this equilibrium. As appears from equation (7) this occurs when
ðqOÞ2 > 2; which is a well-known result (e.g., references [1, 5, 45, 46]). With this condition
fulfilled, small disturbances to the upright equilibrium of the pendulum decays at an
effective natural frequency o2 that increases with the level qO of excitation:

o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2q

2O2 � 1

q
: ð9Þ
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Figure 2. (a) Effective restoring force frðzÞ in the presence of different levels of intensity qO of rapid support
vibrations. Equilibrium points: *, stable; *, unstable; &, stable if dfr=dz > 0 (i.e., only for the dotted curve).
(b) Effective linear stiffness f 0

r ðzÞ ¼ dfr=dz; (c) potential energy PðzÞ ¼
R

fr dz:
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Also, under such conditions two new equilibriums are created, given by z ¼
arccosð�2ðqOÞ�2Þ; for which equation (6) has zeroes only when o2

2 > 0: These equilibriums
are always unstable, and thus act as ‘‘potential barriers’’ that has to be overcome if the
pendulum is to be moved between the two stable equilibriums at z ¼ 0 and �p (cf., the
curve for qO ¼ 2 in Figure 2(a) and 2(c)).

It appears that the change in effective stiffness, here considered the primary effect,
has derived effects in the form of stabilization and creation of new equilibriums.
Another derived effect is a change in the effective non-linearity of the system, which
can be seen by Taylor-expanding (4), including leading order non-linearities. Then
one finds the following approximate equations of motion, valid near the vertical
equilibriums:

for z � 0 : .zz þ 2b’zz þ ð1þ 1
2
q2O2Þz � 1

6
ð1þ 2q2O2Þz3 þOðz5Þ ¼ 0;

for z � �p : .zz þ 2b’zz � ð1� 1
2

q2O2Þðz � pÞ þ 1
6
ð1� 2q2O2Þðz � pÞ3 þOððz � pÞ5Þ ¼ 0:

ð10Þ

Considering the leading non-linear cubical term, it appears that for z � 0 its softening
character becomes more pronounced with increased level qO of excitation, whereas
for z � p the hardening character of the non-linearity becomes softening for sufficiently
large qO:

The present system may also serve to illustrate an example of the biasing effect of
HF excitation. For this we imagine that the pendulum is excited and swings in the
horizontal plane, so that the gravity term (the number one) is replaced by zero in
equations (1) and (4). Then, in the absence of the HF excitation, all positions y or
z are equilibriums for the pendulum, i.e., the pendulum has no preference or bias
for pointing in any particular direction. However, as appears from equation (4) with
the gravity term zeroed, when qO=0 there are four equilibriums: z ¼ 0;p;�p@2;
and one can easily show that only z ¼ 0;p are stable. Hence, in the presence of
rapid support excitation the pendulum is biased to line up with the direction of
excitation.

The effects mentioned above are not just mathematical artifacts; they can quite easily be
demonstrated in the laboratory by using a small pendulum driven, e.g., by an electric
jigsaw [47] or loudspeaker [48]. Also, the pendulum equation (1), in particular, if Taylor-
expanded to order three, is representative of a great many other systems and structures.
For example, a single-mode approximation for a beam with pulsating axial excitation has
this form, and thus the effects described above is pertinent for this case as well. Then the
results for the upright equilibrium apply if the average axial beam load exceeds the
buckling load, whereas the results for the down pointing equilibrium apply for sub-critical
loads. The situation with a horizontal pendulum}having no restoring force in the absence
of support excitation}corresponds to a beam that has no transverse stiffness at all, i.e., to
an untaught string.

2.2. EXAMPLE 2: MASS ONAVIBRATING PLANE (SMOOTHENINGAND BIAS)

Figure 3(a) shows the system: a mass m of extension L; attached by a spring of stiffness
K to a horizontal plane that vibrates at a small amplitude qL and high frequency *OO: The
friction between mass and plane is given by a simple asymmetric Coulomb form, i.e., the
friction force is mgmð ’XX Þ; where the coefficient m depends on the direction of motion, as
shown in Figure 3(b) (many materials possess this property, e.g., the skin or fur of animals,



Figure 3. (a) Mass on a vibrating plane; (b) coefficients of dry friction.
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as do certain asymmetrical processes such as vibrational piling and penetration):

mð ’XX Þ ¼
mþ for ’XX > 0;

�m� for ’XX50;

(
mð ’XX Þ 2 ½�m�; mþ� for ’XX ¼ 0: ð11Þ

The non-dimensional equation of motion is

.xx þ o2x þ %mm sgnð ’xxÞ þ mD ¼ qO2 sinðOtÞ ðsgnð0Þ 2 ½�1; 1�Þ; ð12Þ

where %mm denotes the average coefficient of friction, and mD the asymmetry in friction:

%mm ¼ 1
2
ðmþ þ m�Þ; mD ¼ 1

2
ðmþ � m�Þ ð13Þ

and where x ¼ X=L denotes the position, t ¼ o0 *tt the non-dimensional time (*tt physical
time), ’xx ¼ dx=dt; o0 ¼

ffiffiffiffiffiffiffiffiffi
g=L

p
a characteristic frequency, o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=M=

p
o0 the natural

frequency of small oscillations when there is no friction, q the amplitude of the excitation,
and O ¼ *OO=o0 its non-dimensional frequency. By using o0 rather than o as the
characteristic frequency, we allow for setting o ¼ 0 to study what happens when there is
no spring. The vibrations from the plane are assumed to be sufficiently strong to cause the
mass to slide in both directions, i.e., qO2 > maxðmþ;m2Þ:

Again we determine approximate solutions for the case Oc1; q{1; by splitting motions
into slow and fast components:

xðtÞ ¼ zðtÞ þ O�1jðt;OtÞ; ð14Þ

where z holds the slow motions, and O�1j is a small overlay of zero average fast
motions. Proceeding as for Example 1 above, it is found that the fast motions are
approximately

jðt;OtÞ ¼ �qO sinðOtÞ ð15Þ

while the slow motions are approximately

.zz þ o2z þ %mmhsgnð’zz � qO cosðOtÞÞi þ mD ¼ 0; ð16Þ

where small terms of the order O21 have been neglected, and h i denotes the ‘‘fast time’’
averaging operator, defined for integrable functions f ðt;OtÞ that are 2p-periodic in Ot:

hf ðt; tÞi �
1

2p

Z 2p

0

f ðt; tÞ dt; t ¼ Ot; t fixed: ð17Þ

Hence, by equations (14) and (15), motions of the mass are given by

xðtÞ ¼ zðtÞ þ q sinðOtÞ: ð18Þ

The average in equation (16) can be calculated by noting that the argument of the
signum function is positive for Ot 2 ½Ot1;Ot2�; where Ot1 ¼ arccosð’zz=qOÞ and Ot2 ¼
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2p� Ot1; and otherwise negative. As a result the equation of slow motions becomes

.zz þ o2z þ %ff ð’zzÞ ¼ 0;

%ff ð’zzÞ ¼
%mm sgnð’zzÞ þ mD for j’zzj5qO;

%mm 1�
2

p
arccosð’zz=qOÞ

� �
þ mD for j’zzj5qO:

8><
>: ð19Þ

Comparing with the original equation (12) for x; it appears that the non-autonomous
excitation term has disappeared, and that the term representing friction force has changed
for velocities j’zzj5qO: Figure 4 depicts the effective friction force %ff : As compared with the
unforced case (dashed line), it is seen that the HF excitation effectively smooths the
discontinuity at ’zz ¼ 0: In fact, it makes sense to linearize the otherwise essentially non-
linear friction force: Taylor-expanding the arccos-term in equation (19) for j’zzj{qO; one
finds that for small velocities the slow motions are governed by

.zz þ %bb’zz þ mD ¼ 0; %bb ¼
2

p
%mm

qO
ð20Þ

from which a well-known result appears (e.g., reference [1]): HF excitation can make dry
friction appear as linear viscous damping, with the equivalent damping coefficient
gradually vanishing as the frequency of excitation is increased. (Indeed this is an everyday
experience, e.g., when placing small objects on a rapidly vibrating surface, they may seem
to ‘float’ with little resistance to motions along the surface.)

Also, as a second effect the HF excitation may introduce bias}a preference to certain
states over others. First, we note that in the absence of HF excitation the mass is in static
equilibrium as long as the spring force is too small to overcome friction, i.e., as long as
2mþ5o2x5m2 or, in terms of the average and the asymmetry in friction: jo2x þ mDj5 %mm:
To find static equilibriums in the presence of HF excitation we let ’zz ¼ .zz ¼ 0 in (19) solve
for z and find the solution z ¼ *zz;

*zz ¼ �
mD
o2

: ð21Þ

Thus, the mass is biased to occupy a particular position, rather than a range of
positions, an effect that increases with asymmetry in friction and with spring flexibility
(/ o�2). This kind of bias may explain misreading from scale instruments in strongly
vibrating environments.

Another example of bias can occur when there is no restoring spring, i.e., o2 ¼ 0: Then
it is found, letting .zz ¼ 0 in equation (19) and solving for ’zz; that a steady equilibrium
solution exists, corresponding to the mass moving at the constant speed ’zz ¼ *’zz’zz;

*’zz’zz ¼ �qO sin
p
2
mD= %mm


 �
� �

p
2

qOmD= %mm for mD= %mm{1: ð22Þ
f (z)
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Figure 4. Effective friction force %ff ð’zzÞ in the presence of high-frequency excitation of amplitude q{1 and
frequency Oc1; as given by equation (19). }}, qO=0; - - - - -, qO ¼ 0:
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This ‘‘drift’’ velocity vanishes as the two coefficients of friction become identical, i.e., as
mD ! 0: Indeed, the asymmetry need not be in the friction coefficients. A quite similar
effect is induced if the vibrating plane is excited along a skew direction (different from
vertical and horizontal), or if the mass has an internal degree of freedom oriented at a
skew angle with respect to gravity. This kind of bias accounts for many phenomena
commonly observed in strongly vibrating environments, e.g., self-loosening of screws and
nuts, and vibrational transportation of objects.

2.3. EXAMPLE 3: BRUMBERG’S PIPE (SMOOTHENINGAND BIASING)

Figure 5 shows Brumberg’s pipe [49], which is shaken horizontally and vertically at high
frequencies *OO and 2 *OO; respectively, in a gravity field g: Inside the pipe slides a solid mass of
characteristic length L and coefficient of dry friction m: Under proper relative phasing of
the two excitations, the longitudinal inertia forces acting on the mass are directed upwards
at just those intervals of time where the transverse normal forces, and thus the friction
forces, are weakest}whereas at time intervals where the longitudinal inertia is directed
downwards, the friction forces are strongest. As a result the mass may travel up the pipe,
against gravity, at a constant average speed with a small overlay of rapid oscillations. For
the present purpose we consider harmonic excitations with a relative phasing that
maximizes this effect (see reference [1] for results with arbitrary phasing):

Qx ¼ �axL sinð2 *OO*ttÞ; Qy ¼ ayL sinð *OO*ttÞ ð23Þ

by which the non-dimensional equation of motion becomes:

.xx þ 1þ mayO2jsinðOtÞjsgnð ’xxÞ þ 4axO2 sinð2OtÞ ¼ 0 ðsgnð0Þ 2 ½�1; 1�Þ; ð24Þ

where x ¼ x=L denotes the position, t ¼ o0 *tt is the non-dimensional time, o0 ¼
ffiffiffiffiffiffiffiffiffi
g=L

p
a

characteristic frequency, ’xx¼ dx=dt; ax and ay are the horizontal and vertical excitation
amplitudes respectively, and O ¼ *OO=o0 denotes the fundamental excitation frequency. For
the magnitudes of parameters we assume the excitation is high in frequency and small in
amplitude, and that friction is weak, i.e. O ¼ Oðe21Þ; ax;y ¼ OðeÞ; m ¼ OðeÞ; e{1; which
implies ax;yO ¼ Oð1Þ and mO ¼ Oð1Þ:

Brumberg obtained an exact but complicated solution to equation (24). Here, we follow
reference [1] and split the motions into slow and fast components:

xðtÞ ¼ zðtÞ þ O�1jðt;OtÞ; ð25Þ
Figure 5. Brumberg’s pipe.
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where j is a small overlay of fast oscillations having zero average:

jðt;OtÞ ¼ axO sinð2OtÞ ð26Þ

and z describes the slow motions, approximately governed by

.zz þ 1þ mayO2hsgnð’zz þ 2axO cosð2OtÞÞjsinðOtÞji ¼ 0; ð27Þ

where h i is the averaging operator defined by equation (17). Calculating the average in
question, the final equation for the slow motions becomes

.zz þ 1þ
2

p
mayO2 %hhð’zzÞ ¼ 0; %hhð’zzÞ ¼

sgnð’zzÞ for j’zzj52axO;

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� ’zz=ð2axOÞÞ

p
for j’zzj52axO:

(
ð28Þ

Seeking stationary solutions corresponding to the mass moving at the constant average
speed *’zz’zz up the pipe, we let ð’zz; .zzÞ ¼ ð*’zz’zz; 0Þ and find that

*’zz’zz ¼ axO 2� 1þ
1

ð2=pÞmayO2

 !2
0
@

1
A;

2ð
ffiffiffi
2

p
� 1Þ

p
mayO251; ð29Þ

where the latter condition ensures existence and stability of the solution, and the main
assumptions behind the analysis should be recalled: ax;yO ¼ Oð1Þ; mO ¼ Oð1Þ; and Oc1:
Hence, in the presence of HF excitation of proper strength and phasing, the mass is biased
to move at constant speed against gravity.

Brumberg’s pipe shares features with the mass on a vibrating plane (Example 2 above),
as is revealed when Taylor-expanding (28) for small ’zz; rearranging, and neglecting small
terms of order ’zz2 and higher:

.zz þ 1ffiffi
2

p
p
mO

ay

ax

’zz ¼
2ð

ffiffiffi
2

p
� 1Þ

p
mayO2 � 1: ð30Þ

Two features are apparent: (1) A smoothening effect, where the essentially non-linear
dissipation term in the original equation (24) (representing dry friction) is replaced by a
linearizable dissipative term (representing equivalent viscous damping); and (2) A bias
effect, represented by the first term of the right-hand side of equation (30), which may
change the original bias of the system mass from downwards to upwards in gravity.

From a mathematical point of view, the distinctive feature of this example is the
occurrence of a velocity variable in a rapidly oscillating term (here ’xx in equation (24)). This
may prevent using perturbation methods unless certain restrictions are imposed on the
order magnitudes of parameters, since with HF excitation velocities can be large even if
fluctuations in positions are small. Hence terms of this type should be included in the
general model to be discussed.

2.4. OTHER EXAMPLES

Figure 6 shows a range of recently examined systems displaying stiffening, biasing,
smoothening, or combined effects to HF excitation}with brief descriptions and literature
references given in the legends. All of them are covered by the general mathematical model
to be described next. Blekhman’s book [1] should be consulted for earlier work on a wide
variety of similar systems and phenomena, including granular materials, fluid flow,
synchronization, vibrorheology, vibrotransportation, industrial processes, celestial
mechanics, and ‘‘dynamic’’ materials.



Figure 6. High-frequency excited systems, representative of the effects of stiffening (b,e,f,g), biasing
(a,b,c,d,e,h), and smoothening (a,h,i). (a) Vibration-induced movement using friction layers and a HF-resonator
[13, 14]. (b) Change of equilibriums, stability, natural frequencies, and non-linear response for a HF-excited two-
bar link [15]. (c) Using resonant HF excitation to pump fluid [7] or continuous material [8] through pipes. (d)
Using vibration-induced sliding to damp resonant vibrations of strings and beams [9–12, 55]. (e) Chelomei’s
pendulum: has a freely sliding disk. With HF excitation both the disk and the pendulum stabilizes against gravity
[16, 25, 26]. (f) Stabilization and change of non-linear behavior for follower loaded double pendulums with HF
support excitation (left) [22, 23], and for articulated pipes carrying HF pulsating fluid (right) [24]. (g) Increasing
the buckling load and natural frequencies for a column using HF excitation [16–18]. (h) Quenching friction-
induced stick–slip vibration by using HF excitation [20]. (i) Quenching chaotic oscillations for a stick–slip friction
oscillator using HF excitation [21].
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3. THE GENERAL SYSTEM, AND ITS AVERAGED FORM

3.1. SCOPE ANDAPPROACH

We consider a general class of systems with HF excitation, broad enough to cover a
large variety of systems of scientific and industrial interest, but also sufficiently specific to
provide results that are physically interpretable. The purpose of the analysis is to set up
expressions quantifying the stiffening, the biasing, and the smoothening effects for this
general system. As should be clear from the above examples, the effects are understood to
characterize the averaged behavior of the system, i.e., what can be observed when ignoring
the details of the small overlay of HF oscillations. This corresponds to lowpass filtering the
observed response}either digitally, if the response consists of computer simulated or real
sampled data, or analogously, as with response perceived by band limited devices such as
physical instruments and human senses.

However, we here want to make predictions regarding the filtered response, without
actually knowing the unfiltered response: Since the general system to be studied is non-
linear, setting up general solutions is not possible. Instead we transform the original
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problem into another one whose solution is the filtered response, i.e., its equations govern
the slow or average motions of the system. For this one can consider O�1 as a small
parameter, O being a fundamental frequency of the excitation, and then employ a number
of different perturbation techniques, e.g., standard averaging or multiple time-scaling
methods (see references [15, 29, 30, 38, 50] for example using multiple time scaling for
systems with HF excitation, or reference [50] on using generalized KBM averaging).

This work employs a method which is especially convenient for dealing with non-
resonantly HF-excited systems, the so-called Method of Direct Separation of Motions [1].
By this, a set of generally non-linear differential equations is transformed into two exact
subsets, that may each be approximately solved: one describing the fast components of
motion, and the other describing slow components, the latter typically being those of
primary interest. Originating from Kapitza’s heuristic approach for a specific problem [5],
this method was generalized and applied to a wide variety of physical systems and
phenomena by Blekhman (e.g., references [1, 51], see references [14, 20, 22, 26, 39] for
recent applications).

3.2. THE SYSTEM

We consider dynamical systems that can be modelled by a finite number of second order
ordinary differential equations, generally non-linear, and with time-explicit HF excitation:

Mðu; tÞ
d2u

dt2
þ s u;

du

dt
; t

� �
þ
Xm

j¼1

hjðu;
du

dt
; tÞ þ Of jðu; tÞ

� �
@2

@ðOtÞ2
xjðt;OtÞ ¼ 0;

u ¼ uðtÞ; uð0Þ ¼ u0; ðdu=dtÞt¼0 ¼ ’uu0; Oc1; ð31Þ

where u is an n-vector describing the positional state of the system at time t; M is a positive
definite (n� n)-matrix describing inertia forces, s is an n-vector of ‘‘slow’’ forces, O is a
large number representing a fundamental excitation frequency, hj and f j are n-vectors that,
jointly with the scalar time functions xj ; describe ‘‘fast’’ or rapidly oscillating excitations,
and the functions xj and their first and second derivatives with respect to Ot are 2p-
periodic in Ot with zero average (i.e., possible non-zero averages should be extracted and
moved to the s functions). Thus, the three main terms of the matrix equation describe a
balance between inertia forces (M), slowly changing internal and external forces (s), and
rapidly oscillating forces (hj ; f j ; xj). The class of systems described by equation (31) is
sufficiently broad to cover many applications involving finite-degree-of-freedom or
discretized continuous mechanical systems, including those described in section 2 and
Figure 6.

The above notions of ‘‘slow’’ and ‘‘fast’’ refer to two distinct characteristic time scales or
frequencies characterizing motions of the system: There is a time scale t and a
characteristic frequency o describing motions of the system when all xj ¼ 0; for example,
one can take as o the largest natural frequency of the linearized unloaded system, i.e., the
largest real root of the characteristic polynomial |J(0,0,t)�o2M(0,t)|=0, where J � @s=@u:
Then there is another time scale Ot; much faster than t; which describes fluctuations
imposed by external excitations of characteristic frequency Oco; with time variations
specified by xj : It is further assumed that all functions in equation (31) are generally non-
linear functions of their arguments, that they are of magnitude order unity or lower (i.e.,
OðjjMjjÞ ¼ OðjjsjjÞ ¼ Oðjjhj jjÞ ¼ Oðjjf j jjÞ ¼ OðjjMjjÞ ¼ OðxjÞ41; where O is the order sym-
bol), that xj are bounded on [0; 2p], and that f j and M are bounded with continuous first
derivatives with respect to u (whereas, hj and s are not necessarily continuous). The
assumptions on magnitude order and boundedness are not required to hold, in general
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(this would preclude even linear functions such as s=u), but only for the type of solutions
under consideration; typically any kind of unstable or strongly resonant solution causes
the assumptions to be violated.

Next, we mention example functions of the above type, and then attempt to
approximate equation (31) by a simpler system, in which time variations of u on the
fast scale Ot is accounted for only by their integrated influence on the slow}or
average}behavior of the system.

3.3. EXAMPLE FUNCTIONS

For the example systems of section 2 one has, for the pendulum with a vibrating support
(section 2.1): u=y, M=1, s ¼ 2b’yyþ sin y; h=0, f ¼ �qO sin y; x ¼ �sinOt; for the mass
on a vibrating plane (section 2.2): u=u, M=1, s ¼ o2u þ %mm sgnð ’uuÞ þ mD; h=0, f ¼ �qO;
x ¼ �sinOt; and for Brumberg’s pipe (section 2.3): u=x, M=1, s=1, h1=0, f1 ¼ �axO;
x1 ¼ sinð2OtÞ; h2=�mayO

2 sgn( ’xx), f2=0, x2 ¼ jsinðOtÞj � 2=p:

3.4. THE AVERAGED SYSTEMGOVERNING ‘‘SLOW’’MOTIONS

To analyze the general system (31) a fast time is introduced as a new independent
variable:

t ¼ Ot ð32Þ

and it is assumed that solutions can be separated into slow and fast components as
follows:

u ¼ uðt; tÞ ¼ zðtÞ þ O�1uðt; tÞ; ð33Þ

where zðtÞ holds the ‘‘slow’’ or average motions, and O�1u is a rapidly oscillating overlay
which has small amplitude, is 2p-periodic in the fast time t; and has zero fast-time average:

huðt; tÞi �
1

2p

Z 2p

0

uðt; tÞ dt ¼ 0 ð34Þ

where h i defines the fast-time averaging operator. Note that h i is a linear operator, and
that for any function hðtÞ or hðt; tÞ it holds that: hhðtÞi ¼ hðtÞ; h@hðt; tÞ=@ti ¼ @hhðt; tÞi=@t;
and, if h is 2p–periodic in t; h@hðt; tÞ=@ti ¼ h@2hðt; tÞ=@t2i ¼ 0: By these definitions and
formulas one has

hui ¼ zðtÞ ð35Þ

so that zðtÞ describes the fast-time average of the total motion u. Also, time derivatives of u
transform into partial derivatives with respect to the two times scales t and t as follows:

du

dt
¼ ’zzþ u0 þ O�1 ’uu;

d2u

dt2
¼ Ou00 þ .zzþ 2 ’uu0 þ O�1 .uu; ð36Þ

where ð �Þ � @=@t and ð Þ0 � @=@t: Inserting this and equation (33) into equation (31) one
obtains

Mðzþ O�1u; tÞðOu00 þ .zzþ 2 ’uu0 þ O�1 .uuÞ þ sðzþ O�1u; ’zzþ u0 þ O�1 ’uu; tÞ

þ
X

j

ðhjðzþ O�1u; ’zzþ u0 þ O�1 ’uu; tÞ þ Of jðzþ O�1u; tÞÞx00j ðt; tÞ ¼ 0 ð37Þ
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or Taylor-expanding for small O�1 and rearranging

j00 ¼ �M�1ðz; tÞ
X

j

f jðz; tÞx
00
j ðt; tÞ � O�1ð.zzþ 2 ’uu0Þ � O�1M�1ðz; tÞsðz; ’zzþ u0; tÞ

� O�1M�1ðz; tÞ
X

j

ðhjðz; ’zzþ u0; tÞ þ rf jðz; tÞuÞx
00
j ðt; tÞ þ rmðz; t;uÞ

( )
þOðO�2Þ;

ð38Þ

where r is used to indicate derivatives with respect to position variables as follows:

rf jðu; tÞ �
@f j

@u
¼

@f j

@uð1Þ
� � �

@f j

@uðnÞ

� �
;

rmðiÞðu; t;uÞ � ðu00ÞTrMðiÞu;

rMðiÞðu; tÞ �
@MðiÞ

@u
¼

@MðiÞ

@uð1Þ
� � �

@MðiÞ

@uðnÞ

� �
;

ð39Þ

where a subscript in parenthesis denotes a particular vector element or matrix column, and
T denotes vector or matrix transpose. Solving equation (38) for u one finds that

uðt; tÞ ¼ #uuðt; tÞ þOðO�1Þ; ð40Þ

where #uu is the zero order approximate solution that will be used in place of u; satisfying
h #uui ¼ 0 and j #uuj ¼ Oð1Þ;

#uuðt; tÞ ¼ �M�1ðz; tÞ
X

j

f jðz; tÞxjðt; tÞ: ð41Þ

To obtain an equation governing the slow motions zðtÞ we employ the averaging
operator h i to equation (38), recalling that hxji ¼ hx0ji ¼ hx00j i ¼ 0 by assumption, and
then insert solution (40) for u; multiply by OM; neglect terms of order O�1 and lower,
rearrange, and obtain

Mðz; tÞ.zzþ sðz; ’zz; tÞ þ vðz; ’zz; tÞ ¼ 0; ð42Þ

where v(z, ’zz; t) defines an example of what reference [1] calls vibrational force:

vðz; ’zz; tÞ ¼ hsðz; ’zzþ #uu0; tÞ � sðz; ’zz; tÞi

þ
X

j

hhjðz; ’zzþ #uu0; tÞx00j ðt; tÞi

þ
X

j

rf jðz; tÞh #uux
00
j ðt; tÞi þ hrmðz; t; #uuÞi ð43Þ

with #uu given by equation (41).
It appears that equation (42) for the slow motions z is similar in form to the original

equation of motion (31) for the full motions u, though, with the integrated influence of fast

forces ðhj þ Of jÞx
00
j accounted for by the vibrational forces v, which depends only on the

slowly changing variables z and t: Any explicit dependence on the fast time variable t ¼ Ot

has been averaged out, which makes the equation for z easier to solve than the original
equation for u. This holds for analytical solutions, not least because there are powerful
mathematical tools that applies only to autonomous systems. And it holds for numerical
solutions, where much larger time steps can be used because there is no need to keep track
of the rapid oscillations at frequency O; and the numerical ill-posedness or ‘‘stiffness’’ is



J. J. THOMSEN820
reduced that is associated with solving systems of differential equations on vastly different
time scales.

The initial conditions needed to solve equation (42) for z is obtained from the original
initial conditions in equation (31), which transforms under equations (33), (36), and
(40)–(41) into

zð0Þ ¼ u0 � O�1 #uuð0; 0Þ; ’zzð0Þ ¼ ’uu0 � #uu0ð0; 0Þ � O�1 #’uu’uuð0; 0Þ: ð44Þ

This completes the separation of the full motions u into slow and fast components z and u;
as given by equations (33) and (41), and equations (42)–(43).

3.5. INTERPRETATION OFAVERAGED FORCING TERMS

In equation (42) for the slow motions z, the vibrational forces v describe average effects.
They correspond to real physical forces having the same effect as the HF excitation, on the
average. To an observer or measuring instrument that is filtering out small vibrations at
high frequencies, the response u from equation (31) is similar to the response z from
equation (42). It should be recalled that the average of the HF excitation itself is assumed
to be zero, hxji ¼ 0: In many cases its average effect is also zero, v=0. So, it is instructive
to consider each of the terms making up v, to see when non-zero average effects can appear:

The first term in equation (43) expresses the average of the non-linear velocity-
dependent terms of the slow forces s. This term vanishes if s is independent of velocity, or
is linear in velocity. However, it may be non-zero when s is non-linear in velocity terms,
such as for systems with dry friction (cf., the examples in sections 2.2, 2.3, and Figure
6(h,i)) or non-linear damping.

The second term expresses the average effect of the velocity-dependent parts hj of the
fast forces. This term disappears when the fast forces are independent of velocity, but
generally does not disappear even if the velocity dependence is linear. The example systems
of sections 2.3 and Figure 6(a,f(right)) display non-zero average terms of this type.

The third and fourth terms describe the average effect of strong, velocity-independent
parametrical excitation terms. These terms disappear if f j and M are independent on
u. Non-zero averages of this kind of terms are quite common where non-trivial effects of HF
excitation appear, e.g., they occur with the example systems of section 2.1 and Figure 6(a–g).

It is important to note that the vibrational force is generally a non-linear function of xj ;
since #uu depends on xj (cf., equation (41)). Consequently, if v1 is the vibrational force
corresponding to a specific time variation of the excitation x1ðt;OtÞ; and v2 is the force
corresponding to another excitation x2ðt;OtÞ; then the force v corresponding to the
simultaneous action of both excitations does not, in general, equal v1+v2. Thus one cannot
readily predict the effects of combined excitations based on the knowledge of isolated
effects. However, consideration to equation (43) shows that when M and f j are
independent of u, and hj is independent of du/dt, and s is linear or independent of
du=dt}then one can indeed calculate the vibrational force for a sum of excitations by
summing the vibrational forces for each excitation. None of the examples in section 2 or
Figure 6 fulfills this necessary condition for the validity of superposition.

4. THE EFFECTS

Next, we make general predictions for the stiffening, biasing, and smoothening effects,
based on the averaged equations (42) with vibrational forces as given by equation (43). It
should be noted that the result (42) is valid on the quite general assumptions stated below
the original system (31), whereas various additional assumptions may be stated during the
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following analysis. However, it will not be explicitly stated whether in each case the system
functions M, s, h, and f are allowed to depend on the slow time t; since it will be obvious
from the context; thus the t in e.g., fðu; tÞ will be kept even when f is actually not allowed to
vary with t:

We shall base several results on a linearization of the averaged general system (42)–(43)
near a possible static equilibrium ðz; ’zzÞ ¼ ð*zz; 0Þ; where *zz is defined by

sð*zz; 0; tÞ þ vð*zz; 0; tÞ ¼ 0: ð45Þ

The linearization is

Mð*zz; tÞ.zzþ ðCð*zzÞ þ DCð*zzÞÞ’zzþ ðKð*zzÞ þ DKð*zzÞÞðz� *zzÞ ¼ 0; ð46Þ

where, with derivative operators rgðu; ’uuÞ � @g=@u and ’rrgðu; ’uuÞ � @g=@’uu;

Kð*zzÞ ¼ rsð*zz; 0; tÞ; DKð*zzÞ ¼ rvð*zz; 0; tÞ;

Cð*zzÞ ¼ ’rrsð*zz; 0; tÞ; DCð*zzÞ ¼ ’rrvð*zz; 0; tÞ:
ð47Þ

4.1. STIFFENING

By stiffness we refer to the change in resistive static force per unit deformation near a
static equilibrium. Examples of stiffening appear in section 2.1 and Figure 6(b,e,f,g). For
convenience it is assumed that in the absence of HF excitation the general system (31) has
a static equilibrium at u=0, so that s (0,0,t)=0 (other equilibriums u ¼ *uu=0 are treated by
a transform of co-ordinates, u ! u� *uu), and that s has continuous derivatives with respect
to u at that equilibrium. It is also assumed that this equilibrium remains an equilibrium in
the presence of HF excitation, i.e., v(0,0,0)=0 (the case v(0,0,0)=0 is treated in section 4.2
on biasing). We then define the stiffening effect of HF excitation as the additional
infinitesimal change in effective (generalized) force, be it positive or negative, which
appears in response to an infinitesimal change in position near the equilibrium. Using
equations (46)–(47) with *zz ¼ 0 we find that the stiffness changes from K(0) to K(0)+DK(0),

Kð0Þ ¼ rsð0; 0; tÞ; DKð0Þ ¼ rvð0; 0; tÞ ð48Þ

Only in rare cases will the slow forces s contribute to the stiffening effect DK(0). First,
conferring with equation (43) one finds that only those components of s that are non-linear
in velocity and linear in position can contribute to DK(0). For the examples in this paper,
only the one in Figure 6(i) has such a component, and in that case the relevant average
vanishes at the equilibrium. Similarly, the velocity-dependent part hj of the fast forces may
theoretically contribute to the stiffening effect, but it does not occur for the examples in
this paper.

So, the main responsible terms for the stiffening effects are the two last ones of equation
(43); we denote their contribution by DKf;mð0Þ; so that by equations (48) and (43):

DKf;mð0Þ ¼
@

@z

����
z¼0

X
j

rf jðz; tÞh #uux
00
j ðt; tÞi þ hrmðz; t; #uuÞi

 !
: ð49Þ

Inserting equation (41) for #uu; we find that the first averaging term becomes

h #jjx00j ðt; tÞi ¼ �M�1ðz; tÞ
X

k

hxkx
00
j ifkðz; tÞ ¼ M�1ðz; tÞ

X
k

hx0kx
0
jifkðz; tÞ; ð50Þ

where the last equality follows from the fact that hxkx
00
j i ¼ �hx0kx

0
ji when xk is 2p-periodic

in t and has zero average (this can be verified by representing xk by its Fourier series and
calculating the average of xkx

00
j ). In particular �hxkx

00
ki ¼ ðx0kÞ

2; which is the squared r.m.s.
value of the velocity of the excitation.
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Similarly, for the ith component of the second averaging term in equation (49) one finds

hrmðiÞðz; t; #uuÞi ¼ hð #uu00ÞTrMðiÞ #uui

¼ hðM�1ðz; tÞ
X

j

f jðz; tÞx
00
j Þ

TrMðiÞðz; tÞMðz; tÞ�1
X

k

fkðz; tÞxki

¼
X
j;k

hx0jx
0
kiðM

�1ðz; tÞf jðz; tÞÞ
TrMðiÞðz; tÞM�1ðz; tÞfkðz; tÞ: ð51Þ

Inserting these results into equation (49) and rearranging, the result becomes

DKf;mð0Þ ¼
X
j;k

hx0jx
0
ki

@

@u

����
u¼z¼0

rf jM
�1fk þ

ðM�1f jÞ
TrMð1ÞM

�1fk

..

.

ðM�1f jÞ
TrMðnÞM

�1fk

8>><
>>:

9>>=
>>;

0
BBB@

1
CCCA: ð52Þ

To examine the meaning of this, we first note that the second term vanishes if M is
constant, since thenrMðiÞ ¼ 0: But this is just what can always be achieved by multiplying
equation (31) by M–1 (since |M|>0 is assumed), whereby an equivalent system is obtained
with a new mass matrix M=I, the unit diagonal matrix. Hence this second term carries no
essential information which cannot be inferred from the first term. We term the
contribution to stiffness from this important first term (with M=I) parametrically induced

stiness, and denote it by DKf(0):

DKfð0Þ ¼
X
j;k

hx0jx
0
ki
@ððrf jÞfkÞ

@u

����
u¼z¼0

¼
X
j;k

hx0jx
0
kiðrf jrfk þ fTk �r2f jÞ

��
u¼z¼0

; ð53Þ

where the last term is an (n� n) matrix whose ith column is given by

ðfTk �r2f jÞðiÞ � fTk ðr
2f jÞðiÞ ð54Þ

and ðr2f jÞðiÞ is the Hessian matrix corresponding to f jðiÞ:

ðr2f jÞðiÞ �

@2f jðiÞ

@u2ð1Þ
� � �

@2f jðiÞ

@uð1Þ@uðnÞ

..

. . .
. ..

.

@2f jðiÞ

@uðnÞ@uð1Þ
� � �

@2f jðiÞ

@u2ðnÞ

2
66666664

3
77777775
: ð55Þ

Expression (53) allows some general statements to be made about the parametrically
induced stiffening effects induced by fk (or M�1fk) and x:

(1) At least one of the functions fk (or M) must depend on u in order for the effective
stiffness to change. This is equivalent to saying that the equations of motion written
in standard second-order form (i.e., multiplying equation (31) by M�1) must have
HF excitation terms that are parametrical in character, whereas pure external

excitation will not produce such effects.
(2) The first contributive term in equation (53) exists only if fk is linearizable with a non-

zero gradient at zero. It disappears for even functions, fkð�u; tÞ ¼ fkðu; tÞ; and for
functions that are essentially non-linear. We may thus term its contribution linearly

induced parametrical stiffness. If hx0jx
0
ki ¼ 0 for j=k, as is often the case in
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applications, then the contribution will always be positive definite, since
|rf jrfk j ¼ jrfk jjrfk j > 0 for j ¼ k:

(3) The second term in equation (53) exists only when fk; has both a constant and a
quadratic part when Taylor-expanded near the equilibrium; we may term it non-

linearly induced parametrical stiffness, since only non-linear functions fk can
contribute to it. The change in stiffness can be positive or negative, and it disappears
for odd functions, fkð�u; tÞ ¼ �fkðu; tÞ:

(4) Terms of order three and higher of the Taylor-expansion of fk; do not contribute to
stiffness (to the level of approximation employed), since their gradients vanish at the
equilibrium.

(5) The stiffening effect is linear, by the definition employed above. But this does not
imply that approximately correct results are always obtained by using linearized
equations of motions. For example, if n ¼ 1 and f ¼ f ðuÞ ¼ sin u; then the sum of the
two terms in the parenthesis of equation (53) becomes ðf 0Þ2 þ ff 00 � pðuÞ ¼ cos2 u �
sin2 u; so that pð0Þ ¼ 1; which is the same as when starting with the linearization
f ðuÞ � u: However, if instead f ðuÞ ¼ cos u � 2; then one again finds pð0Þ ¼ 1; while
using the linearization f ðuÞ � �1 one finds pð0Þ ¼ 0; so that, by an otherwise
appropriate linearization, the linear stiffening effect is in this case totally overlooked.
In general, referring to items (2)–(4) above, if f contain constant terms, then
quadratic non-linearities in u (when Taylor-expanded) should be retained, or
stiffening effects could be inadvertently overlooked.

(6) The magnitude or ‘‘strength’’ of the stiffening effect increases linearly with the
squared r.m.s. velocity of the excitation velocity, i.e., with the input level of energy.
Hence the particular details of the excitation time signals are unimportant for the
effect, as long as the signals are periodic and have high frequency and small
amplitude. Table 1 provides cross-averages hx0jx

0
ki for some typical input signal

forms for reference.

Changes in effective linear stiffness may cause changes in derived linear quantities, such
as natural frequencies and stability. Using equations (46)–(47) with *zz ¼ 0; the linearized
dynamics of the system near the equilibrium is seen to be governed by

Mð0; tÞ.zzþ ðCð0Þ þ DCð0ÞÞ’zzþ ðKð0Þ þ DKð0ÞÞz ¼ 0: ð56Þ
Table 1

Example input signals xj and their corresponding accelerations x00j and cross-averages hx0jx
0
ki:

Here, djk is the Kronecker delta, dðtÞ is Dirac’s delta function, all x-functions have zero

average and are 2p-periodic in t ¼ Ot (modulo 2p), j and k are integers, and siv(t) is a

sawtooth function having the same zeroes and extremums as sinðtÞ

xj x00j hx0jx
0
ki

Sine sinð jtÞ 2j2sinð jtÞ 1
2

j2djk

Sawtooth sivð jtÞ 2j
p
P2j

p¼1ð�1Þpd t�
p
2j

ð2p � 1Þ
� �

1
2
8
p2 j2djk

Rectified sine jsinð jtÞj22=p �j2jsinð jtÞj þ 2j
P2j

p¼1 d t�
p
j

p

� �
1
2

j2djk

Phase-shifted sine sinðtþ cjÞ 2sinðtþ cjÞ
1
2
cosðcj � ckÞ
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Thus, the natural frequencies and stability associated with the equilibrium are
determined by the eigenvalues l ¼ lr; r ¼ 1; . . . ; 2n; which are roots of the characteristic
polynomial:

jl2Mð0; tÞ þ lðCð0Þ þ DCð0ÞÞ þ Kð0Þ þ DKð0Þj ¼ 0: ð57Þ

The natural frequencies are given by jImðlrÞj; while the equilibrium in question is stable
to small disturbances only if ReðlrÞ50 for all r: Both quantities are likely to differ from the
values obtained when there is no HF excitation, i.e., when DCð0Þ ¼ DKð0Þ ¼ 0 in equation
(57). For assessing stability in specific cases, it might be convenient to use Ziegler’s system
of classification [52], by which statements on stability are inferred from properties such as
symmetry and definiteness of the system matrices. Also, since effective structural
properties (stiffness, damping, stability, etc.) can be controlled by changing the structure
or the HF excitation or both, some interesting inverse problems could be posed on using
HF excitation as a design variable in designing structures with specific or optimal low-
frequency properties. Proper response sensitivity analysis would be essential for this;
however, for systems like equation (56) one could rely on well-proven methods and results
(e.g., reference [53]).

4.2. BIASING

We here define biasing as a change in (average) static equilibrium position as a
consequence of HF excitation. Two important kinds will be considered: positional bias and
velocity bias.

4.2.1. Positional bias

Positional bias refers to a fixed translation of a static equilibrium. Examples of
positional bias appear in sections 2.1–2.2, and Figure 6(b,d,e,h). Assuming, as in the
previous section, that the general system (31) has a static equilibrium at u=0 when
unexcited, then HF excitation may change this state of affairs, so that the equilibrium for
the slow components of motion changes from ðz; ’zzÞ ¼ ð0; 0Þ to ð*zz; 0Þ; where *zz=0 is constant
valued. We term *zz a quasi-equilibrium for the full motions u, because these will actually
oscillate at small amplitude and high frequency of about *zz (cf., equation (33)). To calculate
*zz we use equation (42), inserting ðz; ’zz; .zzÞ ¼ ð*zz; 0; 0Þ; and find that *zz is the solution of the
generally non-linear set of algebraic equations (45), i.e.,

sð*zz; 0; tÞ þ vð*zz; 0; tÞ ¼ 0 ð58Þ

with v given by equation (43). The equilibrium *zz is stable when the real parts of the roots l
of the following characteristic polynomial are all negative:

jl2Mð*zz; tÞ þ lðCð*zzÞ þ DCð*zzÞÞ þ Kð*zzÞ þ DKð*zzÞj ¼ 0; ð59Þ

where the matrices C and K are given by equation (47). More than one solution for *zz may
exist, since s and v are generally non-linear functions of position, or there may be no
solutions at all. Here, we consider the typical case of a relatively small bias, j*zzj51, for
which it makes sense to Taylor-expand (58) and solve for *zz; which yields, recalling that
s(0,0,t)=0:

*zz ¼ �ðKð0Þ þ DKð0ÞÞ�1vð0; 0; tÞ þOðj*zzj2Þ; ð60Þ

where the last term denotes small higher order contributions. Thus, to first order the
positional bias is proportional to the HF-induced vibrational force v at the original
equilibrium, and inversely proportional to the effective linear stiffness. Using equations
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(43) and (41) one finds

vð0; 0; tÞ ¼ hsð0; #uu0
0; tÞi þ

X
j

hhjð0; #uu
0
0; tÞx

00
j ðt; tÞi

þ
X

j

rf jð0; tÞh #uu0x
00
j ðt; tÞi þ hrmð0; t; #uu0Þi; ð61Þ

where

#uu0ðt; tÞ ¼ �M�1ð0; tÞ
X

j

f jð0; tÞxjðt; tÞ: ð62Þ

Thus, there are several sources to bring up positional bias, corresponding to each of the
four terms in equation (61) having a non-zero average. The contribution of the s term, to
be denoted by vs, can be partly examined by splitting s into components:

sðu; ’uu; tÞ ¼ s0 þ S11uþ S12 ’uuþ rðu; ’uu; tÞ; ð63Þ

where s0, and S11,12 are constant-valued vectors and matrices, and r is the remainder part,
which is essentially non-linear in u and ’uu and satisfies r(0,0,t)+s0=0. Then v

s becomes,
recalling that the fast motions #uu has zero average:

vs ¼ hsð0; #uu0
0; tÞi ¼ s0 þ hrð0; #uu0

0; tÞi ð64Þ

from which it appears that no bias occurs from this source if s is a linear function of u and
’uu; since then r=0 which implies s0=0. This also holds if s is (generally) non-linear in u, but
linear in ’uu: Thus, s should be non-linear in ’uu; e.g., as for systems with dry friction, for bias
to occur from this source.

The second term of equation (61) may, or may not, contribute to positional bias effect,
dependent on the details of the functions hj ; though it does not occur for the examples in
this paper.

Considering the two last terms of equation (61), denoting their contribution by vf;m; we
use equations (50) and (51) to substitute the average terms and find that

vf;m ¼
X
k;j

hx0kx
0
ji rf jM

�1fk þ

ðM�1fkÞ
TrMð1ÞM

�1f l

..

.

ðM�1fkÞ
TrMðnÞM

�1f l

8>><
>>:

9>>=
>>;

0
BBB@

1
CCCA

u¼z¼0

: ð65Þ

Then, by the same arguments as used below equation (52), we note that the essential
information is carried by the first term, which we denote vf when M=I, i.e.,

vfð0; 0; tÞ ¼
X
j;k

hx0jx
0
kirf jð0; tÞfkð0; tÞ: ð66Þ

Inspecting this expression, it appears that vf=0 requires that at least one of the
functions fk depends on u, i.e., for bias to occur from this source, the HF excitation should
be parametric in character. Furthermore, at least one fk should be linearizable with a non-
zero gradient at zero, while essentially non-linear functions fk does not contribute to vf.
Likewise, functions fk that possesses symmetry}be it odd, fkð�u; tÞ ¼ �fkðu; tÞ; or even,
fkð�u; tÞ ¼ fkðu; tÞ}does not contribute to v

f. The latter requirement on asymmetry is
essential, and can be illustrated by the simple function f ¼ f ðuÞ ¼ 1þ u; where the first
term is evenly and the other one is oddly symmetrical, while their sum is asymmetric. For
this case the contribution to vf is proportional to rfð0Þfð0Þ ¼ f 0ð0Þf ð0Þ ¼ 1; whereas this
value is zero if calculated for each of the terms 1 or u separately. In physical terms, the
function 1þ u is representative, e.g., of structures subjected to a combination of external
and parametrical HF excitation (cf., Figure 6(b)). Then bias may occur, even though the
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time average of the excitation is zero, whereas it disappears if either of the two excitations
are switched off.

As special cases of positional bias we mention those where, in the absence of HF
excitation, the system has (1) no static equilibriums at all, i.e., s(u,0,t)=0 has no real-
valued solutions, or (2) has a continuous range of equilibriums, i.e., s(u,0,t)=0 has
infinitely many solutions. Even in these cases the HF excitation may create well-defined
equilibriums, as given by possible solutions *zz to equation (45), though equation (60) only
holds when these happens to be close to zero. Examples are here the horizontal pendulum
(last part of sections 2.1), and the mass with no spring on a vibrating plane (last part of
section 2.2).

4.2.2. Velocity bias

By velocity bias we refer to the possible emergence of states of steady drifting with
constant velocity, i.e., with slow motions of the form ðz; ’zzÞ ¼ ð*’zz’zzt; *’zz’zzÞ; where *’zz’zz is the drift
velocity. Examples of velocity bias appear in the last part of section 2.2 (mass with no
spring on vibrating plane), section 2.3, and Figure 6(a,c). Using equation (42), we find that
*’zz’zz should be a solution of

sð*’zz’zzt; *’zz’zz; tÞ þ vð*’zz’zzt; *’zz’zz; tÞ ¼ 0: ð67Þ

If such a solution exist, one can easily show, the condition for its stability is that the real
parts of the roots l of the following characteristic polynomial are all negative:

jlMð*’zz’zzt; tÞ þ rsð*’zz’zzt; *’zz’zz; tÞ þ ’rrvð*’zz’zzt; *’zz’zz; tÞj ¼ 0: ð68Þ

A necessary condition for velocity bias to exist is that M and the expression in equation
(67) are independent of t; that is s and v or their sum, and M, should be independent of u
and of t:

For typical cases where the velocity bias is relatively small, we may solve equation (67)
approximately by Taylor-expanding near *’zz’zz ¼ 0 and solving for the drift velocity *’zz’zz; the
result becoming

*’zz’zz ¼ �ð ’rrsð*’zz’zzt; 0; tÞ þ ’rrvð*’zz’zzt; 0; tÞÞ�1ðsð*’zz’zzt; 0; tÞ þ vð*’zz’zzt; 0; tÞÞ ð69Þ

which again is only a proper solution if independent of t (in typical cases the terms
with *’zz’zzt; cancel each other, so that *’zz’zz need not to be known in order to compute the
right-hand side).

4.3. SMOOTHENING

Sometimes HF excitation has the effect of apparently removing discontinuities of a
system; we refer to this as the smoothening effect. A classical example is systems modelled
with Coulomb friction, where HF excitation may cause the discontinuity at zero velocity
to seemingly disappear, and the damping appears viscous in character (cf., Sections 2.2–
2.3, and Figure 6(a,h,i)). To study this effect we assume that the slow forces s of the system
(31) have a single discontinuity at zero velocity when there is no HF excitation, i.e.,

sþðu; tÞ=s�ðu; tÞ; sþðu; tÞ � lim
’uu!0þ

sðu; ’uu; tÞ; s�ðu; tÞ � lim
’uu!0�

sðu; ’uu; tÞ: ð70Þ

As appears from equation (42), the slow forces for the averaged system is s+v, and by
equation (43):

sðz; ’zz; tÞ þ vðz; ’zz; tÞ ¼ hsðz; ’zzþ #uu0; tÞi þ
X

j

hhjðz; ’zzþ #uu0; tÞx00j ðt; tÞi þ %rrðz; ’zz; tÞ; ð71Þ
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where the fast motions #uu are given by equation (41), while %rr is a remainder term holding
continuous functions that are unrelated to s. It seems intuitively plausible that s+v can
be continuous at ’zz ¼ 0; even though s (and perhaps hj) is discontinuous: The right-hand
side is calculated by averaging s (and hj) while the velocity argument ’zzþ #uu is racing
back and forth across the discontinuity, and this average may not change much in the
vicinity of ’zz ¼ 0:

To set up conditions for smoothening to occur, we first note that the vector character of
the functions and their dependence on u and t is inessential for this, since the averaging
process is performed elementwise, and with u and t considered constant. It therefore
suffices to consider a general scalar function s(’zz), bounded on R, and having a single
discontinuity at ’zz ¼ 0; and then consider the smoothed image *ss of s:

*ssð’zzÞ � hsð’zz þ j0ðtÞÞi; ð72Þ

where the fast motions jðtÞ are 2p-periodic in t with zero average. Using definition (34) of
fast-time averaging one finds, splitting up the period of integration, that

*ssð’zzÞ ¼
1

2p

Z
t�

sð’zz þ j0ðtÞÞ dtþ
Z
t0

sð’zz þ j0ðtÞÞ dtþ
Z
tþ

sð’zz þ j0ðtÞÞ dt
� �

; ð73Þ

where t�; t0; and tþ are the intervals of time where ’zz þ j0ðtÞ50;¼ 0; and >0, respectively,
and t� [ t0 [ tþ ¼ ½0; 2p�: The limits of these intervals are solutions to the algebraic
equation ’zz þ j0ðtÞ ¼ 0; we assume there are nt ¼ ntð’zzÞ solutions and denote them tj ¼
tjð’zzÞ; j ¼ 1; 2; . . . ; nt: By these definitions the first and the third integrands are assured to
be continuous in ’zz; while continuity of the corresponding integrals requires continuity also
of the limits of the integration intervals. The following observations regarding the
continuity of *ssð’zzÞ can then be made, noting that for every value of ’zz; the number of
solutions nt is either zero, finite, or infinite:

(1) If nt ¼ 0 (for some range of ’zz) then *ss is continuous (in that range). Namely, when
’zz þ j0ðtÞ newer sweeps the discontinuity at zero, then *ss is given by either the first or
the third integral in equation (73), which is a continuous function of ’zz because the
integrand s is continuous during t� or tþ; and the interval of integration [0; 2p] is
independent of ’zz:

(2) If nt is infinite, the discontinuity of s at zero is still present in *ss: Namely, nt ! 1
means that ’zz þ j0 ¼ 0 over finite sub-intervals of [0; 2p], i.e., t0 is not a point set.
Then the second integral in equation (73) is to be performed over finite intervals of
time where ’zz þ j0ðtÞ ¼ 0; i.e., at values where s is discontinuous (undefined); this
integral therefore is discontinuous, and so is *ss:

(3) If nt is finite, and the zeroes tj of ’zz þ j0ðtÞ are all simple, then *ss is continuous for the
corresponding values of ’zz: This is because a finite value of nt means that ’zz þ j0ðtÞ
sweeps the discontinuity a finite number of times during a period, i.e., t0 is a point
set. Then the second integral in equation (73) vanishes, because s is bounded and the
integration intervals are infinitely short. Consequently, continuity is assured if the
two other integrals are continuous. Their integrands are continuous, because they
are to be evaluated for the intervals t� and tþ; where ’zz þ j0ðtÞ has constant sign and
thus only sweeps the continuous part of s: But the boundaries of the integration
intervals should be continuous as well, that is, tj should be continuous functions of ’zz:
By the implicit function theorem this is true when j00ðtjÞ=0; that is, if tj are simple
zeroes of ’zz þ j0ðtÞ:

(4) In particular, it follows from the above results that *ss is continuous at ’zz ¼ 0 if j0ðtÞ
has a finite number of simple zeroes.
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As described, the smoothening effect on the discontinuity at zero occurs only if the fast
motions actually sweeps the discontinuity, and does not ‘‘rest’’ there. One example
function that fails to satisfy these requirements is j0 ¼ �sinð2tÞ for t 2 ½0; p�; j0 ¼ 0 for
t 2 ½p; 2p�; which has simple zeroes at t ¼ 0;p=2; but infinitely many non-simple zeroes for
t 2 ½p; 2p�; hence this function does not smoothen discontinuities.

An example function that does satisfy the requirements is a simple harmonic, e.g.,
j0 ¼ �a cosðtÞ; which has simple zeroes at p=2 and 3p=2 and is thus smoothening. Its effect
on the discontinuous signum function appears in Table 2(a); it could represent the
smoothening of the dry friction characteristic for a physical system subjected to HF
excitation (see also Example 2.2 and Figure 4).

Table 2(b) shows how the same fast motions smoothen the discontinuity of a
function that may more realistically model friction. Here, s has negative slope at the origin
and thus may cause unstable oscillations of a corresponding physical system, whereas the
smoothed image has positive slope everywhere (see reference [20] for an application of this
effect).

Discontinuities in derivatives may also be smoothened, as is easily realized when
changing s and *ss with ds=d’zz and d*ss=d’zz (or higher order derivatives) in the above
expressions and arguments. Table 2(c,d) shows two such examples, which might represent
Table 2

Examples of slow functions s( ’uu) and their corresponding smoothed images *ssð’zzÞ for jðtÞ ¼
�asinðtÞ: Lengthy expressions for *ssc1 and *ssc2 in (c) and (d) are omitted; they are both

smooth functions with smooth transitions at the boundaries of their intervals of definition

sð ’uuÞ *ssð’zzÞ � hsð’zz þ j0ðtÞÞi; j0 ¼ �a cos t s (}}), *ss(- - -)

(a) sgnð ’uuÞ 1�
2

p
arccosð’zz=aÞ; j’zzj4a

sgnð’zzÞ; j’zzj > a

8<
:

(b) sgnð ’uuÞ � ’uu þ 1
3
’uu3

1�
2

p
arccosð’zz=aÞ þ ð1

2
a2 � 1Þ’zz þ 1

3
’zz3 for j’zzj4a

sgnð’zzÞ þ ð1
2
a2 � 1Þ’zz þ 1

3
’zz3 for j’zzj > a

8<
:

(c)
’uu;
sgnð ’uuÞ;

&
j ’uuj41
j ’uuj > 1

’zz;
*ssc1ð’zzÞ;
sgnð’zzÞ;

j’zzj41� a

j’zzj 2 ½1� a; 1þ a�
j’zzj > 1þ a

8<
:

(d)
0;
’uu � sgnð ’uuÞ;

&
j ’uuj41
j ’uuj > 1

0;
*ssc2ð’zzÞ;
’zz � sgnð’zzÞ;

j’zzj41� a

j’zzj 2 ½1� a; 1þ a�
j’zzj > 1þ a

8<
:

(e) ’uu ’zz

(f) ’uu2 ’zz2 þ 1
2
a2

(g) ’uu3 ’zz3 þ 3
2a

2 ’zz

(h) j ’uuj ’uu ð1�
2

p
arccosð’zz=aÞÞð’zz2 þ 1

2
a2Þ þ 3

pa’zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð’zz=aÞ2

q
; j’zzj4a

j’zzj’zz þ 1
2
a2sgnð’zzÞ; j’zzj > a

8<
:
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idealized physical processes involving saturation and ‘‘barrier’’ behavior respectively. For
both cases the discontinuous changes in slope are smoothed by the HF excitation.

Even if s has no discontinuity, the smoothed image *ss may still differ from s. Table 2(e–h)
shows smoothed images of functions that are typically encountered in applications. The
essential properties of such functions are captured by a third order polynomial with zero
constant term and coefficients s1;2;3:

sð’zzÞ ¼ s1 ’zz þ s2 ’zz
2 þ s3 ’zz

3 ð74Þ

whose smoothed image is, by equation (72), and recalling that hj0i ¼ 0:

*ssð’zzÞ ¼ ðs2hðj0Þ2i þ s3hðj0Þ3iÞ þ ðs1 þ 3s3hðj0Þ2iÞ’zz þ s2 ’zz
2 þ s3 ’zz

3: ð75Þ

Interestingly, the non-linear parts of s change the linear properties of *ss; whereas the non-
linear properties themselves are unaffected. For example, the slope of *ss at ’zz ¼ 0 is seen to
increase, as compared with s; if the cubic non-linearity of s is progressive (s3 > 0), and
decrease if it is recessive (s350). Thus, the effective linear damping of a physical system
might be partially controlled by using HF excitation (or be created out of nothing, as when
s1 ¼ 0; s3=0). Also, a constant drifting term is seen to appear, so that *ssð0Þ=0 when there
are non-linearities in s:

Finally, we recall that the above results for s and j hold as well for the corresponding
vector functions s and #jj of the general system (31).

5. SUMMARY AND CONCLUSIONS

Three common effects of HF excitation (stiffening, biasing, and smoothening) have been
analyzed for a general class of mechanical systems that can be modelled by equation (31),
i.e., by a finite set of second order ordinary differential equations, generally non-linear,
with periodically oscillating excitation terms of high frequency and small amplitude. The
analysis was accomplished by analytically splitting the unknown solutions to these
equations into slowly changing and rapidly oscillating components, respectively, and then
extracting equations (42) that describes the slow components. The latter equations are
similar to the original ones, except that the influence of the rapidly oscillating terms occurs
only by their average effect.

This enables predictions to be made on the effects of concern, without actually solving
the equations of motion, and without recoursing to numerical simulation. Such results are
given in sections 4.1, 4.2 and 4.3, respectively, for the stiffening, the biasing, and the
smoothening effect. They can be used for understanding the effects in question in a
broader perspective than is possible with specific systems, and for calculating effects for
specific systems using well-defined formulas.

Possible future work might include using the general expressions as an aid to design
specific systems that have prescribed characteristics in the presence of HF excitation,
deriving optimal locations and wave forms of HF excitations, or calculating how the
strength of the effects changes when the HF excitation is quasi-periodic, chaotic, or
random (results of the present study indicate that the details of the excitation waveform is
unimportant, what counts is the average kinetic input energy). Also, there are other effects
of HF excitation that occurs across a range of systems, and might deserve a more general
treatment, e.g., apparent changes in bifurcation type and non-linear frequency response
(see e.g., references [7, 17, 22, 54] for examples).
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