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The initial-boundary-value problem for the equations describing motion of a thin,
medium-length, non-circular cylindrical shell is examined. The shell edges are not
necessarily plane curves, with the conditions of a joint support, a rigid clamp or a free edge
being considered as the boundary conditions. The shell is supposed to experience normal
internal (or external) dynamic pressure which may be non-uniform in the circumferential
direction. It is assumed that the initial displacements and velocities of the points at the shell
middle surface are functions decreasing rapidly away from some generatrix. Using the
complexWKBmethod the asymptotic solution of the governing equations is constructed by
superimposing localized families (wave packets) of bending waves running in the
circumferential direction. The dependence of frequencies, group velocities, amplitudes and
other dynamic characteristics upon variable pressure and geometrical parameters of the
shell are studied. As an example, the wave forms of motion of a circular cylindrical shell with
sloping edges under growing dynamic pressure are considered. The e!ect of localization of
bending vibrations near the longest generator as well as the e!ects of re#ection, focusing and
increasing amplitude in the running wave packets are revealed.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Thin cylindrical shells or panels are used as elements of high-speed airborne/spaceborne
vehicles, underwater objects and many other engineering structures experiencing dynamic
loading. Non-stationary vibrations running in the circumferential direction in thin
medium-length cylinders caused by the transient dynamic forces and/or the initial
conditions (displacements and velocities) on the shell surface are especially complicated for
an analysis, being at the same time of great practical interest [1}7]. In a number of cases,
numerous numerical methods do not reveal any mechanical e!ects which are inherent to the
transitional wave processes in thin shells, and known analytical approaches are found
productive only after introducing some simplifying suppositions. For example, replacing
a medium-length cylindrical shell by an in"nitely long one and assuming the independence
of loading on the axial co-ordinate were made in references [1}5]. In such a statement the
initial two-dimensional problem (with respect to curvilinear co-ordinates) is reduced to
a one-dimensional problem, a shell being actually replaced by a ring. The method of
investigation of the simpli"ed problem depends upon both the character of loading and the
initial conditions. So, to examine non-stationary vibrations of a thin elastic in"nitely long
cylindrical shell (i.e., a ring) to an arbitrary distribution of the initial radial velocities, McIvor
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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[2] has utilized the method of an expansion of the desired displacements into a series of ring
eigenmodes. And in reference [5], the dynamic response of an in"nite cylindrical shell
subjected to the action of a plane shock wave has been analyzed only in a small initial
segment of time.
Constructions of explicit non-stationary solutions for a medium-length cylindrical shell

taking into account the boundary conditions have been carried out in references [6, 7]. In
particular, in reference [7], based on the FluK gge shell theory (including the e!ects of shear
deformation and rotatory inertia), an exact formal solution has been presented for the
dynamic response of a freely supported circular cylindrical shell of "nite length subjected to
time-dependent, arbitrarily distributed surface loading, the solution has being found by
means of an expansion of the shell displacement into a series in eigenfunctions of the
corresponding boundary-value problems. However, these and many other papers deal with
cylindrical shells having constant geometrical parameters, whereas non-stationary
vibrations of thin, non-circular cylinders and panels with arbitrary (not plane or oblique)
edges are still insu$ciently investigated.
The peculiarity of the shells with variable geometrical characteristics lies in the possible

localization of vibrations in the so-called &&weakest'' spots on the shell surface. For instance,
the presence of an oblique edge in a circular cylindrical shell may be the cause of the
localization of free low-frequency bending vibrations in a vicinity of the longest generator
which will be the weakest one [8]. It is evident that the nature of the transient bending
forms of vibrations of a cylindrical shell having the weakest line may in essence di!er
from the non-stationary motion of a shell with constant parameters. An attempt to
study the in#uence of the oblique edge on transient bending vibrations of a thin
medium-length cylinder has been undertaken in reference [9], where by using the new
asymptotic approach [10], solutions of the governing equations have been found in
the form of packets of short bending waves running in the circumferential direction.
A thorough analysis of the constructed solutions has allowed one to detect a series of
new mechanical e!ects such as the re#ection of some packets from a su$ciently short
generator of a shell, and focusing of the travelling packets being accompanied by increasing
wave amplitudes. Afterwards, this method has been applied to studying the packets of
bending, longitudinal and torsional waves running in the axial direction in an in"nitely
long cylindrical shell including the e!ect of initial tensions due to non-uniform static
internal pressure [11].
In this paper, the approach developed in references [9}11] is applied to examine

non-stationary localized bending vibrations of a thin, medium-length, non-circular
cylindrical shell with arbitrary edges under time-dependent, arbitrarily distributed over the
circumferential co-ordinate, normal pressure. The shell is supposed to have local
perturbations which are treated as the initial conditions in its surface. Signi"cant attention
in this investigation is paid to localized wave processes in a neighborhood of the weakest
generator. As a special case, the solution constructed in the paper permits one to describe
low-frequency free vibrations near the weakest line [8].

2. SETTING THE PROBLEM

Consider an elastic thin non-circular medium length cylindrical shell of thickness h. Let
� be the density, E be Young's modulus, and � be Poisson ratio of the material.
A co-ordinate system as illustrated in Figure 1 is chosen in such a way that
d��"R� (ds�#d�� ) is the "rst quadratic form of the middle shell surface. The radius of
curvature is R

�
"R/k (�). Here R is the characteristic dimension of the shell which may be



Figure 1. The neutral surface of the thin cylindrical shell with non-plane edges and the co-ordinate system.
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introduced as the maximum value of R
�
. Suppose that the shell is bounded by the two not

necessarily plane edges

s
�
(�))s)s

�
(�) (2.1)

and may be non-closed in the direction of � (the case of a non-circular cylindrical panel),
with !�(�

�
)�)�

�
)�. Let the shell be under the non-uniform, dynamic load

Q*"(Q*
�
, Q*

�
, Q*

�
), where Q*

�
, Q*

�
and Q*

�
are the tangential and normal components of the

force Q* applied to the shell surface. It is assumed that Q*
�
( j"1, 2, 3) are slowly varying

functions with respect to both space co-ordinates and time so that the dynamic stress
state of the shell due to the load Q* may be speci"ed only by the axial, hoop and shear
stresses.

¹*
�
"!Eh��¹

�
(s, �, t), ¹*

�
"!Eh��¹

�
(s, �, t), ¹*

�
"!Eh��¹

�
(s, �, t), (2.2)

respectively, which are easily found from the equations of the membrane shell theory [12].
In equations (2.2), ��"h�/[12R�(1!�� )] is a natural small parameter characterizing the
shell thinness, ¹

�
are the dimensionless stresses, t"t*/t*

�
is dimensionless time, and

t*
�
"�R��/(E�� ) is the characteristic time. The case when the hoop stress ¹

�
(�, t ) does not

depend on s is considered here (although this requirement is not obligatory, it simpli"es
only the following asymptotic constructions). In addition, it is assumed that all the functions
k(�), s

�
(�), ¹

�
(s, �, t), ¹

�
(�, t), ¹

�
(s, �, t) are in"nitely di!erentiable ones with respect to �,

and ¹
�
(s, �, t ), ¹

�
(s, �, t ) are twice di!erentiable with respect to s and t so that

k, s
�
, ��k/���, ��s

�
/���"O(1), (2.3a)

��¹
�
/���, ��¹

�
/�s�, ��¹

�
/�t�, ��¹

�
/�s�, ��¹

�
/�t�"O(1) (2.3b)
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where m"1, 2,2, i, n"1, 2 j"1, 2, 3. The de"nition of the symbol O is given in
Appendix A (see also references [13}15]). Further restrictions to the functions ¹

�
will be

introduced below.
The asymptotic correlations (2.3b) emphasize the slow variability of the stresses ¹

�
over s,

� and t. Then, for analysis of the short waves running in the circumferential direction the
following system of equations [16], including the e!ect of the initial stresses caused by the
load Q*, and written in dimensionless form, may be used:

����=#k (�)���/��s#���
�
=#����=/�t�"0,

�����!k(�)��=/�s�"0. (2.4)

Here

�"

��

�s�
#

��

���
, �

�
="

�
�� �¹�

�=
�� �#

�
�s �¹�

�=
�� �#

�
�� �¹�

�=
�s �#

�
�s �¹

�

�=
�s �

(2.5)

and the dimensionless magnitudes are introduced as follows:

="=*/R, �" �*/(��R�hE),

where=* is the normal de#ection, �* is the stress function. Equations (2.4) represent the
dynamic stress state of the shell perturbed from its membrane stress state, and they were
used by many researchers for studying dynamic instability of thin cylindrical shells under
stresses ¹

�
being periodic functions of time (see, e.g., references [17, 18]).

Consider that on each of the shell edges s"s
�
(�), s"s

�
(�) there are one of the three

groups of the boundary conditions, namely, the joint support group, the rigid clamp group
and the group of a free edge. Each of the "rst two groups includes six versions of the
boundary conditions, and the last group for a free edge contains two versions. All the
mentioned boundary condition variants are listed in a book [19]. The dynamic stress state
of the shell consists of the basic dynamic stress state and the dynamic edge-e!ect integrals
describing the shell behavior in some small neighborhood of each edge [12, 20]. To study
the basic state on each edge, one only needs to satisfy two basic conditions [12]. Apart from
terms of the order �� these conditions have the form [8, 19]

="��=/�s�"0 at s"s
�
(�), (2.6a)

="�=/�s"0 at s"s
�
(�), (2.6b)

�"��/�s"0 at s"s
�
(�), (2.6c)

for the joint supported, rigid clamped and free edges respectively. Combinations of
conditions (2.6a)} (2.6c) on the edges s"s

�
(�), s

�
(�) may be considered as well.

The wave forms of motion caused by the initial displacements and velocities are

= �
���

"=� (s, �, �) exp[i�	�S�(�)],

=Q �
���

"i�	�<�(s, �, �) exp[i�	�S�(�)], (2.7)
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where

i"�!1, S�(�)"a��#�
�
b���, a�'0, Im b�'0, (2.8)

a�, �b� � , �=� � , �<� � , ��=�/�s� , ��<�/�s �"O(1) when �P0 (2.9)

will be studied below. In equations (2.7), (2.8), a�, b� are real and complex constants,
respectively, and =�, <� are complex-valued functions satisfying one version of the
boundary conditions (2.6).
The real and imaginary parts of functions (2.7), with account taken of the last inequality

in equations (2.8), de"ne the two initial wave packets localized near the line �"0.
Functions (2.7) approximate perturbations which may be generated in the shell by some
transient forces applied along the line �"0. The wave packets like those (2.7) may also
appear [21, 22] as a result of the parametric excitation of the cylindrical shell having
variable geometric parameters (e.g., a curvature, a thickness or a generatrix length) in the
circumferential direction, or experiencing non-uniform load. It is known that the
non-homogeneity of the geometric parameters mentioned above may cause the localization
of modes of low-frequency free vibrations of a shell in a vicinity of the so-called weakest
generatrix on the shell surface [8]. It is this circumstance that can lead to the localization of
parametric vibrations near the weakest line as well. So, local free vibrations and parametric
instability of non-circular cylindrical shells under static and additional periodic axial loads
that are not uniform in the circumferential direction have been analyzed in references
[21, 22], where solutions of the governing equations have been constructed in the form of
functions analogous to equations (2.7).

3. THE APPROACH

In the case when the stresses ¹
�
are absent, the initial-boundary-value problem (2.4), (2.6),

(2.7) has already been considered [9, 23]. If the shell edges lie in planes perpendicular to the
generatrix, i.e., s

�
, s

�
, are constants, the solution of this problem is easily found [23] as an

expansion in beam functions along the generatrix, with the expansion permitting the
original initial-boundary-value problem (2.4), (2.6), (2.7) to be reduced to an initial problem,
the solution of which can be constructed byMaslov's method [24]. However, this method is
ineligible for shells with sloping edges. Quite a di!erent approach has been undertaken in
reference [9] for studying the packets of bending waves running in the circumferential
direction in a medium-length cylindrical shell with slanting edges. The basic concepts of this
newmethod lies in introducing the center of the wave packet and a local co-ordinate system
connected with this center [10]. It is this approach that is to be used now to construct the
asymptotic solution of problem (2.4), (2.6), (2.7). Observing incidentally, this method has
been used earlier to analyze the packets of bending, longitudinal and torsional waves
travelling in the axial direction in an in"nite shell of revolution [25], and in an in"nite
cylindrical shell under non-uniform internal pressure as well [11].
Let y

�
(s, �), y

�
(s, �),2 , y

�
(s, �),2 be an in"nite orthonormalized system of eigen-

functions of the equation

d�y/ds�!�y"0 (3.1)

with one of the three variants of the boundary conditions

y"d�y/ds�"0 for s"s
�
(�), s

�
(�), (3.2a)



838 G. I. MIKHASEV
y"dy/ds"0 for s"s
�
(�), s

�
(�), (3.2b)

d�y/ds�"d�y/ds�"0 for s"s
�
(�), s

�
(�) (3.2c)

and �
�
(�), �

�
(�),2 , �

�
(�),2 be a corresponding sequence of eigenvalues. For instance,

equation (3.1), with conditions (3.2a) in mind, describes free bending vibrations of a joint
supported beam of the length l(�)"s

�
(�)!s

�
(�). For de"niteness, the case of a joint

support (3.2a) on the both edges will be examined here, with

y
�
(s, �)"sin	�n[s!s

�
(�)]/l(�)
, �

�
(�)"[�n/l(�)]� (3.3)

although all further calculations will also be valid for other boundary conditions.
Suppose that the functions =�(s, �, �), <�(s, �, �) appearing in initial conditions (2.7)

satisfy equations (2.6a). Then for any �3[�
�
, �

�
], the functions=�, <� can be expanded

[26] in terms of the eigenfunctions y
�
(s, �) into uniformly convergent series in the section

[�
�
, �

�
]

=�"


�
���

w�
�
(�, �)y

�
(s, �), w�

�
"�

�����

�����

=�(s, �, �)y
�
(s, �) ds,

<�"


�
���

v�
�
(�, �)y

�
(s, �), v�

�
"�

�����

�����

<�(s, �, �)y
�
(s, �) ds, (3.4)

Let w�
�
, v�

�
be polynomials of �	�
�� whose coe$cients are regular functions of �. This

assumption involves the presence of a "nite number of oscillations in the amplitude of the
initial wave packet. Then the functions w�

�
, v�

�
may be represented by the series

w�
�
"



�

���

��
�w�
��
(�), w�

��
"

	��

�

��

c�
��


�
,

v�
�
"



�

���

��
�v�
��
(�), v�

��
"

	��

�

��

d�
��


�
, (3.5)

where �"�	�
��, and w�
��
, v�

��
are polynomials of degree M

��
with complex coe$cients

c�
��


, d�
��


such that �c�
��


� , �d�
��


�"O(1).
Upon taking into account the linearity of equations (2.4) as well as expansions (3.4),

the solutions of the boundary-value problem (2.4), (2.6a), (2.7) may be presented in the
form [9]:

=(s, �, t, �)"


�
���

=I
�
(s, �, t, �), �(s, �, t, �)"



�
���

�I
�
(s, �, t, �), (3.6)

where =I
�
, �I

�
(n"1, 2,2) are the required functions localized in a neighborhood of

a generatrix �"q
�
(t). Here q

�
(t) is a twice di!erentiable function such that

q
�
(0)"0. (3.7)

The pair=I
�
, �I

�
will be called the nth wave packet with the center at �"q

�
(t).
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Now hold the number n "xed and study the behavior of the nth wave packet. In view of
the local character of the functions=I

�
, �I

�
, it is convenient to go over to a local co-ordinate

system [10]:
�"q

�
(t)#��
��

�
. (3.8)

Here parameters �
�
, s de"ne the position of a point on the shell surface with respect to the

moving center q
�
(t). In the new co-ordinate system equations (2.4) can be rewritten as

��
��=I

�
���

�

#2��
��=I

�
���

�
�s�

#��
��=I

�
�s�

#k
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�
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�
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�
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�
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�
�#��
�

�
�s �¹

�
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�#��
�

�
��

�
�¹

�

�=I
�

�s �#��
�
�s �¹

�

�=I
�

�s �
#��

��=I
�

�t�
!��
�qR

�

��=I
�

��
�
�t

#�qR �
�

��=I
�

���
�

!��
�qK
�

�=I
�

��
�

"0,

��
���I

�
���

�

#2��
���I

�
���

�
�s�

#��
���I

�
�s�

!k
��=I

�
�s�

"0, (3.9)

where the dots ( ) ) denote di!erentiation with respect to t.
Upon taking into account expansions (3.4), the initial conditions for the nth wave packet

take the form
=I

�
�
���

"w�
�
(�, �)y

�
(s, �)exp[i�	�S�(�)],

=IQ
�
�
���

"i�	�v�
�
(�, �)y

�
(s, �)exp[i�	�S�(�)] (3.10)

and the boundary conditions are

=I
�
"��=I

�
/�s�"0 (3.11)

for the joint supported shell.
To avoid inconvenience the subscript n is omitted in what follows. For example, the

notations w�
��
, M

��
, c�

��

, =I

�
, q

�
, �

�
, y

�
, �

�
are replaced by w�

�
, M

�
, c�

�

, =I , q, �, y,

� respectively.
The functions k(�), s

�
(�), ¹

�
(�, t), y (s, �) are expanded into a series in a neighborhood of

the center q (t). In particular,

¹
�
(�, t)"¹

�
[q(t), t]#��
�¹


�
[q (t), t]�#�

�
�¹�

�
[q (t), t]��#2

where the prime ( 
 ) means di!erentiation with respect to �.
Following references [9, 10] the formal asymptotic solution of the initial-boundary-value

problem (3.9)}(3.11) is assumed to be of the form

=I :



�

���

m�
�w
�
(s, �, t)exp[i �	�S(�, t, �)],

�I :


�

���

m�
� f
�
(s, �, t)exp[i �	�S(�, t, �)], (3.12a)
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S"�
�

�

�(�) d�#��
�p(t)�#

1

2
�b(t)��, (3.12b)

Im b(t)'0 for any t*0, (3.13)

where the symbol:means that the series is an asymptotic expansion of the function=I or
�I in the PoincareH sense (see the de"nition in Appendix A), w

�
(s, �, t), f

�
(s, �, t) are

polynomials in � with complex coe$cients being functions of t and s, ��(t) � is the
momentary frequency of vibrations of the shell in a neighborhood of the center �"q (t),
p(t) is the wave number determining the variability of waves in the circumferential direction,
and the function b

�
(t) characterizes the width of the nth wave packet, inequality (3.13)

guaranteeing attenuation of wave amplitudes within the packet.
It should be emphasized that solutions in the form (3.12), when q"0, and �, p, b are

constants, have been constructed earlier in the problems on the local buckling and
vibration of thin medium-length cylindrical shells near the &&weakest'' generator [8, 19].
Solutions of this type are called the WKB approximations. This name comes from the "rst
letters of the author's names: Wentzel, Kramers and Brillouin, who "rst proposed
such asymptotic construction in problems of quantum mechanics. The history and
underlying concepts of the WKB method and its non-stationary variants are brie#y
presented in reference [11].
Substituting expansions (3.12) into equations (3.9), equating the coe$cients of like powers

of ��
� to zero, and eliminating f
�
, one obtains the sequence of di!erential equations

�
�
���

¸
�
w
�	�

"0, m"0, 1, 2,2 , (3.14)

where

¸
�
"

k� (q(t)]

p�(t)

��

�s�
#p�(t)!¹

�
[q(t), t]p�(t)![� (t)!qR (t)p(t)]�,

¸
�
"(b¸

�
#¸

�
#pR ¸� )�!i¸

�
�/��,

¸
�
"(b�¸

��
#2b¸

��
#¸

��
#pR �¸��#2pR ¸��

#2pR b¸��
#bR ¸� )��

!

1

2
¸
��

��

���
!i (b¸

��
#¸

��
#pR ¸��

)�
�
��

!i¸�
�
�t

!i�
1

2
b¸

��
#

1

2
�R ¸��#pR ¸��

#qK p#N� ,2 ,

N"!

4k[q(t)]k
[q(t)]
p� (t)

��

�s�
!2p(t)�¹�

[s, q(t), t]
�
�s

!

�¹
�

�s
[s, q (t), t]� . (3.15)

The subscripts p, q, � in equations (3.15) denote di!erentiation with respect to the
corresponding variables p, q �. Operators ¸

�
for m*3 are not written out here in the

explicit form because of its awkwardness. Note only that the axial stress ¹
�
is contained in

the operator ¸
�
.
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The functions f
�
are found one after another from the inhomogeneous equations and can

be expressed in terms of w
�
, w

�
,2 , w

�
. In particular,

f
�
"

k (q)

p�

��w
�

�s�
, f

�
"

k (q)

p�

��w
�

�s�
#

4ik (q)

p�

��w
�

�s���

!

4k (q)b

p�
�

��w
�

�s�
#

k
 (q)
p�

�
��w

�
�s�

.

Substituting equations (3.12) into equations (3.11) produces the sequence of boundary
conditions for w

�
:

w
�
"0,

��w
�

�s�
"0, (3.16a)

w
�
#� s


�

�w
�

�s
"0,

��w
�

�s�
#�s


�

��w
�

�s�
"0, (3.16b)

w
�
#�s


�

�w
�

�s
#

1

2
���s�

�

�w
�

�s
#s
�

�

��w
�

�s� �"0,

��w
�

�s�
#�s


�

��w
�

�s�
#

1

2
���s��

��w
�

�s�
#s
�

�

��w
�

�s� �!
4is


�
p

��w
�

�s�
"0,2 (3.16c)

at s"s
�
[q(t)], i"1, 2.

Note that equations (3.16) guarantee a realization of the boundary conditions (3.11)
merely in some small vicinity of the center �"q (t). However, there is no sense to satisfy
conditions (3.11) on the whole segment �

�
)�)�

�
because of the exponential decay of the

wave amplitude far from the line �"q(t).
The sequence of one-dimensional boundary-value problems (3.14), (3.16) is used for the

determination of unknown functions q (t), �(t), p (t), b(t), w
�
(t), f

�
(t). Consider these

problems step-by-step for m"0, 1, 2,2

3.1. ZEROTH ORDER APPROXIMATION

In the zeroth order approximation (m"0), one has the homogeneous ordinary
di!erential equation

¸
�
w
�
"0 (3.17)

with the boundary conditions (3.16a). The solution of the boundary-value problem (3.17),
(3.16a) may be presented in the form

w
�
"P

�
(�, t)y[s, q (t)], (3.18)

where P
�
(�, t) is an unknown polynomial in � with coe$cients being smooth functions of

time t. Substituting equation (3.18) into equation (3.17) yields the relation

�(t)"qR (t)p(t)!H$[p (t), q (t)], (3.19)
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where

H$(p, q, t)"$�p�#

�(q)k� (q)

p�
!¹

�
(q, t)p� (3.20)

are Hamilton functions. The signs ($) in equations (3.19) indicate the availability of two
branches (positive and negative) of the solutions corresponding to the functions H$. These
signs are omitted in what follows, and all further constructions will be ful"lled for the
function H
. In equation (3.19), the "rst term de"nes the frequency of passage of the wave
crests with respect to an &&immovable observer'' on the shell surface, and the Hamiltonian
H is the instantaneous frequency of vibrations of the middle surface points within the
running packets in relation to the distorted shell surface.
The polynomial P

�
(�, t) remains unknown here.

3.2. FIRST ORDER APPROXIMATION

In the "rst order approximation (m"1), one has the non-homogeneous di!erential
equation

¸
�
w

�
"!¸

�
w
�

(3.21)

with the non-homogeneous boundary conditions (3.16b). Solution of the boundary-value
problem (3.21), (3.16b) is presented in the form

w
�
"P

�
(�, t)y[s, q(t)]#w���

�
(s, �, t), (3.22)

where P
�
(�, t) is a new unknown polynomial in �, and w���

�
(s, �, t) is some partial solution of

equation (3.21). Upon taking into account the self-conjugacy of the boundary-value
problem (3.17), (3.16a), the equality

�
��������

��������

y(¸
�
w

�
#¸

�
P
�
y) ds"0 (3.23)

serves as the condition for the existence of w
��

in form (3.22). To calculate the second
integrand term in equation (3.23) it is necessary to de"ne the operators ¸

�
, ¸

�
(see equations

(3.15)). To do this, the homogeneous boundary-value problem (3.17), (3.16a) should be
di!erentiated over the parameters p and q:

¸
�
w

�
#¸

�
w

�
#2H(qR !H

�
)w

�
"0,

w
�
"0,

��w
�

�s�
"0 for s"s

�
[q(t)],

¸
�
w
�
#¸

�
w
�
!2HH

�
w
�
"0,

w
�
#s


�

�w
�

�s
"0,

��w
�

�s�
#s


�

��w
�

�s�
"0 for s"s

�
[q (t)]. (3.24)
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Equations (3.24), together with equation (3.18) imply

¸
�
w
�
"!2H(qR !H

�
)P

�
y, (3.25a)

¸
�
w
�
"2HH

�
P
�
y!¸

�
P
�
y
�
. (3.25b)

By using the last equations and also the boundary conditions (3.24) for w
�
(here w

�
,0),

equation (3.23) can be rewritten as the di!erential one

b (qR !H
�
)�P

�
#(pR #H

�
)�P

�
!i (qR !H

�
)
�P

�
��

"0 (3.26)

with respect to P
��
. In this equation, the expressions given in the parentheses are real, and

by the assumption made above, Im b
�
(t)'0 for any t'0. Hence, P

��
is the polynomial in

�
�
, if the functions p

�
, q

�
satisfy the Hamiltonian system

qR "�H/�p, pR "!�H/�q. (3.27)

Comparison of equations (2.8), (3.10) and (3.12), with equation (3.7) in mind, gives the
initial conditions

p(0)"a3, q(0)"0 (3.28)

for system (3.27). Let p (t), q(t) be a solution of system (3.27) with initial conditions (3.28).
Then equation (3.25a) implies ¸

�
w
�
"0, and the operator ¸

��
is simpli"ed:

¸
�
"(¸

�
#pR ¸�)�. (3.29)

Hence, the partial solution of the non-homogeneous di!erential equation (3.21) has the
form

w���
�

"�P
�
�y/�q. (3.30)

In this approximation, the polynomials P
�
, P

�
remain unde"ned.

3.3. SECOND ORDER APPROXIMATION

In the second order approximation (m"2), the non-homogeneous boundary-value
problem (3.14), (3.16c) arises again. The compatibility condition for this problem may be
deduced from the equation

�
��������

��������

y[¸
�
w
�
#¸

�
(P

�
y#�P

�
y
�
)#¸

�
P
�
y] ds"0. (3.31)

To de"ne operators ¸
��
, ¸

��
, ¸

��
being the part of ¸

�
, it is necessary to di!erentiate the

boundary-value problem (3.24) with respect to the parameters p and q once more. For
instance,

¸
�
w

��
#2¸

�
w
�
!2¸�H

�
w
�
#¸

��
w

�
!2¸��

H
�
w

�
#¸��H�

�
w
�
!¸�H

��
w

�
"0,

w
��

#2s

�

�w
�

�s
#s�

�

�w
�

�s
#s
�

�

��w
�

�s�
"0 for s"s

�
[q(t)],

��w
��

�s�
#2s


�

��w
�

�s�
#s�

�

��w
�

�s�
#s
�

�

��w
�

�s�
"0 for s"s

�
[q (t)]. (3.32)
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Inserting ¸
��

w
�
, ¸

��
w
�
, ¸

��
w
�
into equation (3.31), taking into account the boundary

conditions (3.32) for w
��
and the identities ¸

�
"0, w

�
"0, w

��
"0, w

��
"0, one obtains the

di!erential equation

(��D
�
!2D�� )P�

"0 (3.33)

with respect to P
�
. Here

D
�
"bR #H

��
b�#2H

��
b#H

��
,

D��"h
�

��

���
#h

�
�

�
��

#h
�

�
�t

#h
�
,

h
�
(t)"

1

2
H

��
, h

�
(t)"i (bH

��
#H

��
), h

�
"i,

h
�
(t)"

i

2H�bHH
��

!�R !2H
�
H

�
#qK p#

1

� �
��������

��������

¸�yR yds#�� ,

� (t)"!

4k[q (t)]k
[q(t)]�[q(t)]
p�(t)

!p(t)
�¹

�
��

[q (t), t]

!

p (t)

� (t)
¹
�
[s, q(t), t]y�[s, q (t)] �

��������

��������

, � (t)"�
��������

��������

y�ds. (3.34)

Equation (3.33) has a solution of polynomial form if and only if the function b (t) satis"es the
Riccati equation

bR #
��H

�p�
b�#2

��H

�p�q
b#

��H

�q�
"0. (3.35)

From the initial conditions (2.8) (3.10) and equation (3.12), it follows

b(0)"b�. (3.36)

Let b(t) be the solution of equation (3.35) with the initial conditions (3.36). It can be
proved [10] that if the functions k(�), s

�
(�), ¹

�
(�, t) are in"nitely di!erentiable with respect

to �, and the stress ¹
�
(�, t) is such that the radicand in the Hamiltonian function (3.20) is

positive for any t*0, then the inequality Im b�(t)'0 implies the inequality
0(Im b (t)(#R at any "nite interval 0(t(tL . So, the required condition (3.13) is
ful"lled here.
Reverting to equation (3.33), upon taking into consideration the Riccati equation (3.35),

one obtains the amplitude equation

D��P�
"0. (3.37)

The solution of this equation is the polynomial

P
�
(�, t; �

�
)"

	
�

��

A


(t)�
 (3.38)
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of the Mth degree with coe$cients

A
	
(t)"�

	
�

	
(t), A

		�
(t)"�

		�
�

		�
(t),

A
		�

(t)"�
		�

(t)��		�
!(M!r#2)(M!r#1) �

�

�

h
�
(t)A

		�
�
(t)

h
�
(t)�

		�
(t)

dt� ,

�
�
(t)"exp�!�

�

�

jh
�
(t)#h

�
(t)

h
�
(t)

dt� , r"2, 3,2 , M; j"0, 1,2 , M, (3.39)

where �
�
are arbitrary complex numbers, which can be determined from the initial

conditions (3.10).
A solution of equation (3.37) may be expressed by means of Hermite polynomials. Such

presentation will be suitable in one special case to compare expansion (3.12) with a solution
constructed by Tovstik [8] in the problem on free vibrations of an elastic cylindrical shell
near the weakest generator.
Let x"�(t)� be a new independent variable, where � (t) is an unknown function. As

a result, equation (3.37) is replaced by

��P
�

�x�
#

1

�� �
h
�

h
�

#

h
�

h
�

�Q
��x

�P
�

�x
#

h
�

h
�
��

�P
�

�t
#

h
�

h
�
��

P
�
"0. (3.40)

The function � (t) may be found from the non-linear equation

1

�� �
h
�

h
�

!

h
�

h
�

�Q
� �"!2. (3.41)

This equation has the following two branches of solutions:

� (t)"$

exp[!� (h
�
/h

�
) dt]

�cJ #4�(h
�
/h

�
)exp[!2� (h

�
/h

�
) dt] dt

, (3.42)

where cJ is an unknown constant. Picking out both a sign and a constant cJ is not essential
here. For de"niteness, in equation (3.42) the positive sign and cJ "0 are assumed. Using
equation (3.42), a solution of equation (3.40) may be sought in the form

P
�
"� (t)X(x). (3.43)

Inserting equation (3.43) into equation (3.40) gives

1

X�
d�X

dx�
!2x

dX

dx �"!

1

� �
h
�

h
�
��

d�
dt

#

h
�

h
�
��

�� . (3.44)

Hence,

d�X

dx�
!2x

dX

dx
!c*X"0, (3.45a)

h

h
�
��

d�
dt

#

h
�

h
�
��

�!c*�"0. (3.45b)
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where c* is an unknown constant. Equation (3.45a) has the solution in the form of Hermit
polynomial X"�

�
(x) of the jth degree, if c*"!2j. Then, solving equation (3.45b), one

obtains

�"�
�
(t)"

	4 � (h
�
/h

�
)exp[!2 � (h

�
/h

�
) dt] dt
�
�

exp[ � (h
�
/h

�
) dt]

. (3.46)

Thus, the function P
�
"�

�
(t)�

�
(x) satis"es equation (3.40). It is evident that the

polynomial

P
�
(�, t; �

�
)"

	
�
���

�
�
�
�
(t)�

�
[� (t)�] (3.47)

of the Mth degree is also the solution of the amplitude equation (3.37). Arbitrary constants
�
�
are found from the initial conditions (3.10).

3.4. HIGHER APPROXIMATIONS

To determine the correction ��
�w
�
in equation (3.12) for m*1, one must consider

responding boundary-value problem (3.14), (3.16) in the (m#2)nd approximation. The
existence of a solution of these problems leads to the non-homogeneous di!erential
equation D��P�

"P*
�

for the polynomial P
�
(�, t), where P*

�
(�,t) is some polynomial

depending on the polynomials P
�	�

,2, P
�
. However, it should be noted that the above

procedure for constructing the functions w
�
is no longer valid for m*4 because the

correction introduced by the boundary-value problem into the general solution (3.12) at the
sixth step is of the order �� at the shell edges, which is the same as the errors of the original
boundary conditions (2.6) and of the governing equations (2.4) as well.
The function w"[w

�
(s, �, t)#O(��
�)]exp[i�	�S(�, t, �)] found from the "rst three

approximations is the main term in the asymptotic expansion (3.12).

3.5. DETERMINATION OF THE CONSTANTS

Taking equation (3.19) into account, denote by p$, q$, �$, b$, P$

�
, w$

�
, f $

�
the positive

and negative branches of the functions found above, corresponding to the HamiltoniansH


and H	. Let �$

"�	�
�[�!q$(t)]. Consider the functions

=I "w
#w	, �I "f 
#f 	, (3.48)

w$

"[w$

�
#O(��
�)]exp(i�	�S$), f$

"[ f$

�
#O(��
�)]exp(i�	�S$),

w$

�
"P$

�
(�$, t; �$

�
)y[s, q$ (t)],

f$

�
"P$

�
(�$, t; �$

�
)
k[q$(t)]

[p$(t)]�

��y

�s�
[s, q$(t)],

S$

"�
�

�

�$(�) d�#��
�p$(t)�$

#�
�
�b$(t)�$�.
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By the above construction, the function =I , �I satisfy equation (3.9) in the "rst three
approximations. Solution (3.48) contains arbitrary constants �$

�
or �$

�
(if the polynomials

P$

�
are evaluated by equation (3.47)) which may be determined from the initial conditions.

The substitution of equations (3.48) into equations (3.10), where the eigenfunction y (s, �)
should be expanded into the series.

y (s,�)"y (s, 0)#��
��
�y

��
(s, 0)#

1

2
���

��y

���
(s, 0)#2

with regard to the equalities �$

,�, y (s, q$),y (s, 0) at t"0, yields the two equations

P$

�
(�, 0; �$

�
)"

1

2 �w�
�
(�)G

v�
�
(�)

H� 	 . (3.49)

Here w�
�
(�), v�

�
(�) are the polynomials evaluated by equations (3.5) (it should be remembered

that the subscript n has been omitted), and H�"H
(a�, 0, 0). The equality conditions of the
coe$cients in equations (3.49) for the same degree of � give

�$

�
"

1

2�c�
��

G

d�
��

H�� , j"0, 1,2 , M
�
. (3.50)

From equations (3.50), it follows that the polynomials P$

�
have the same degree M

�
that the

polynomials w�
�
(�), v�

�
(�).

If the polynomials P$

�
(�$, t; �$

�
) are calculated by equation (3.47), then

�$

�
"

1

2�
� j!���
�
(0) �





	


e	���
�
[�(0)�]�w�

�
(�)G

v�
�
(�)

H� 	d�. (3.51)

4. ANALYSIS AND EXAMPLES

Analysis of solution (3.48) shows that if q$(t)O0 identically at t'0 then the initial nth
wave packet (3.10) splits into the n
th and n	th packets moving in the opposite directions
with the group velocities v$

g "qR $(t), the width of the packets being of the order
��
�/Imb$(t).

Remark 1. Solution (3.48) is correct in the asymptotic sense at some segment 0)t)t
,
where

Im b$(t)'0, (4.1)

�$, p$, b$, �R $, pR $, bR $, qR $, w$

�
, f $

�
, �w$

�
/�xJ , � f$

�
/�xJ "O(1) at �P0, (4.2)

p$(t)&1, (4.3)

where xJ denotes any of the variables s, �, t.
As it was mentioned above, inequality (4.1) holds if Im b�'0, relations (4.2) are necessary

for series (3.12) to be asymptotic ones, and estimation (4.3), being more strong then the
corresponding estimation (4.2) for p$, is introduced to satisfy relations (4.2) for the
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frequencies �$ (see equations (3.19) and (3.20)). Here the symbol & means that two
quantities are of the same order (see the de"nition in the Appendix A).

Remark 2. It may be noticed that in the case when the shell is closed in the circumferential
direction, solution (3.48) is not periodic with respect to �; and in the case of a cylindrical
panel, it does not take into account the in#uence of the edges �"�

�
, �

�
. Hence, functions

(3.48) may be used for a computation as long as the wave packet centers �"q$ (t) are far
from the lines �"�

�
, �

�
.

Remark 3. From equation (3.20) it follows that solution (3.48) should be considered at some
segment 0)t)t

�
)t
, where the inequality

(p$)�#

� (q$)k�(q$)

(p$)�
!¹

�
(q$, t)(p$)�'0 (4.4)

holds. If the hoop stress ¹
�
(�, t) is negative (i.e., expanding stress), then condition (4.4) is

valid for any t. Otherwise, the function ¹
�
(�, t) should satisfy some additional restriction.

Consider the special case

¹
�
(�, t)"�(t)�(�), (4.5)

where �(t)'0 and � (�)'0 if only on some part of the shell surface. The function �(t) may
be interpreted here as a parameter of the shell loading. Let

F (p, �)"
p�

�(�)
#

�(�)k�(�)
p��(�)

, �
�
"min

���
F(p, �)"F (p

�
, �

�
), (4.6)

where p
�
"[3�(�

�
)k�(�

�
)]�
� and �

�
are found from the equation

!

3�k��

��

#�
�k�

� �


"0. (4.7)

One can prove that the inequality �(t)(�
�
is the su$cient condition for the realization of

condition (4.4). It should be noticed that if k, s
�
, � are constants, then ¹

�
"�

�
is the classical

buckling hoop stress [7, 8].

Example 1. Analyze solution (3.48) for the circular cylindrical shell, with a constant length
generatrix, subjected to the internal or external pressure Q*

�
"���R	�Eh. Here k"1,

s
�
"0, s

�
"l, ¹

�
"� are constant magnitudes. In this simplest case

p$

"a�, q$(t)"$H
�
t, �$

"$H
�
a�GH�, b$(t)"

b�

C$(t)
, (4.8)

where

H�"�(a�)�#�(a�)	�!�(a�)�, H
�
"

2(a�)�!2�!� (a� )�

(a�)�H�
,

H
��

"

2[(a�)��#12� (a�)�#3��]

(a�)�� (H�)�
!

3(a�)�[(a�)�#5�]�
(a� )��(H�)�

, C$(t)"1$b�H
��

t.
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For example, let M
�
"2. Then, by using equations (3.39), one obtains the polynomials

P$

�
(�$, t; �$

�
)"

�$

�
(�$)�

[C$(t)]�
�
#

�$

�
�$

[C$(t)]�
�
#

�$

�
[C$(t)]�
�

$

i�$

�
H

��
t

[C$(t)]�
�
(4.9)

with the constants �$

�
estimated by formulas (3.50). It may be seen that in this case, the wave

numbers p$, the group velocities v$

g , and the frequencies ��$(t) � are constants for any
t*0, with the packet width growing and the amplitude decreasing in both packets. In other
words, in the shell having constant geometric parameters and experiencing constant
pressure, the n$th packets become dissolved.
Study the properties of solution (3.48) when k, s

�
, ¹

�
are functions.

4.1. FREE VIBRATIONS NEAR THE WEAKEST LINE

At "rst, let ¹
�
"0, and G"�(�)k�(�), moreover,

G
(0)"0, G�(0)'0. (4.10)

This particular case is the most interesting and important one, since the line �"0 is the
weakest one here. For instance, in the circular cylinder with a variable generator, the longest
generator will be the weakest one. In its vicinity the eigenmodes [8]

=I "[�
�
(�	�
��

�
�)y (s, 0)#O(��
�)] exp 	i�	�(�

�
t#p

�
�#�

�
b
�
�� )
 (4.11)

of low-frequency vibrations are localized. Here �
�
"(H

��
/H

��
)�
�, and

�
�
"��

�
#��� ��

�
#O(��) (4.12)

is the fundamental frequency, where

��
�
"H (p

�
, q

�
, 0), ����

�
"( j#�

�
)��

�
, j"0, 1, 2,2 (4.13)

and the numbers p
�
"g�
�(0), q

�
"0, and b

�
"i�H

��
/H

��
are the solutions of the system

H
�
"0, H

�
"0 (4.14)

and of the equation

H
��

b�#2H
��

b#H
��

"0 (4.15)

respectively (here H
��

"0 at p"p
�
, q"0, t"0). Equations (4.14) and (4.15) are the

degenerate stationary analogies of the Hamiltonian system (3.27) and the Riccati equation
(3.35) respectively.
Now, let a�"p

�
, b�"b

�
, where a�, b� are the parameters from the initial conditions (2.7),

(2.8). It is apparent that in this case the solutions of the Hamiltonian system (3.27) and the
Riccati equation (3.35) are

p$(t),p
�
, q$(t),0, b$(t),b

�
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for any t*0. The polynomials P$

�
may be de"ned in accordance with equation (3.47) as

follows

P$

�
(�, t; �$

�
)"

	
�
���

�$

�
�
�
(t)�

�
[� (t)�]. (4.16)

Here

�"�
�
, �

�
(t)"�	� exp[!i ( j#�

�
)�H

��
H

��
t], (4.17)

where the functions H
��
, H

��
are calculated at p"p

�
, q"0, t"0, and the coe$cients

�$

�
are expressed by equation (3.51). The substitution of equations (4.16) and (4.17) into

solution (3.48) gives the function

=I "�
	�

�
���

(�$

�
#�	

�
) (H

��
/H

��
) �
��

�
[�	�
�(H

��
/H

��
)�
��]y (s, 0)#O(��
� )�

�exp 	i�	�[�
�

t#p
�
�#�

�
b
�
��]
, (4.18)

which is the superposition of the M
�
#1 number of eigenmodes (4.11), where M

�
is the

degree of the polynomials w�
�
(�), v�

�
(�) in equations (3.5).

Now, let G not depend on � (i.e., all the geometrical parameters of the shell are constant)
and ¹

�
"��(�), where � is constant and �
(0)"0, ��(0)(0. In this case, the generatrix

�"0, on which the hoop stresses ¹
�
(�) are maximum, will be the weakest [19]. Similarly,

one can show here that at a�"p
�
, b�"b

�
solution (3.48) is reduced to the stationary one

(4.18).
Thus, if a�"p

�
, b�"b

�
, then the initial nth wave packet (3.10) with the center on the

weakest generatrix �"0 is not splitted into the n
 and n	 wave packets. In this particular
case, solution (3.48) de"nes free vibrations localized near the weakest, i.e., the stationary
wave packet.

4.2. TRAVELLING WAVE PACKETS

Analysis of the Hamiltonian system (3.27) shows that in the common case, when a�Op
�
,

solution (3.48) represents the n
th and n	th wave packets moving in the opposite
directions. Its properties depend strongly on k (�), s

�
(�), ¹

�
(�, t) and the initial conditions.

In some cases, it is possible to describe the behavior of the travelling wave packets.
Consider the circular cylinder with the constant generatrix length l (k"1, s

�
"0, s

�
"l)

subjected to non-uniform stationary pressure, so that the hoop stresses ¹
�
are evaluated by

equation (4.5), where � is constant, and the function �(�) satis"es the conditions

�
(�)'0 at �
�
(�(0, �
(0)"0, �
(�)(0 at 0(�(�

�
. (4.19)

The center of the initial nth wave packet (3.10) is supposed to be situated on the weakest line
�"0, where the stresses ¹

�
is maximum. Introduce the additional notations

v�g"2(a�)�!��(0)(a� )�!2�, p
�
"���(H�)�#12�!(H�)�

2
, �

�
" inf

�����
�

� (�),
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where inf
�����

�
� (�) denotes the greatest lower bound of the function � (�) in the interval

0(�(�
�
, and study the behavior of the nth wave packets running in the direction of

increasing a co-ordinate �.
There are the two essentially di!erent variants:

v�gO0, �'2(p�
�
!�p	�

�
)�
�
	�, (4.20a)

v�gO0, �)2(p�
�
!�p	�

�
)�
�
	�, (4.20b)

The case v�g"0 is not considered here because that is equivalent to the condition a�"p
�
for

free vibrations near the weakest line (see above).
If inequalities (4.20a) are valid, then the analysis of the Hamiltonian system (3.27) gives

pR 
(0, v
g "qR 
'0, vR 
g (0 at v�g'0,

pR 	(0, v	g "qR 	'0, vR 	g (0 at v�g(0.

These inequalities show that in this case the wave packets run in the direction of the hoop
stress diminution with decreasing group velocities.
Now, let conditions (4.20b) hold. Then at v�g'0, there exist such t


�
'0 and t


�
't


�
that

pR 
(0, v
g '0, vR 
g (0 for 0(t(t

�
,

pR 
 (t

�
)(0, v
g (t


�
)"0, vR 
g (t


�
)(0,

pR 
(0, v
g (0, vR 
g (0 for t

�

(t(t

�

and if v�g(0, then there are t	
�

'0 and t	
�

't	
�
such that

pR 	'0, v	g '0, vR 	g (0 for 0(t(t	
�
,

pR 	 (t	
�
)'0, v	g (t	

�
)"0, vR 	g (t	

�
)(0,

pR 	'0, v	g (0, vR 	g (0 for t	
�

(t(t	
�
,

where q$ (t$
�
)"0. In other words, if conditions (4.20b) are satis"ed, then the n$th packets

are re#ected at t"t$

�
from the generators �"q$

�
, which can be determined from the

equation H (p
�
, q, 0)"H�. At time t"t$

�
, the centers of the n$th packets reset �"0.

Further dynamics of the n$th packets depends upon the properties of the function �(�) at
the interval �

�
(�(0. In particular, if the function �(�) is even in the domain

!�
�
(�(�

�
, then one can prove that the functions p$(t), q$(t), v$

g (t), �$(t) will be
periodic with the period 2t$

�
. This means that the n$th packets will make reciprocating

motion near the weakest generator, being re#ected from the generators �"q$

�
.

The Riccati equation (3.35) as well as the amplitude equation (3.37) do not allow to "nd
out the properties of the functions b$(t), P$

�
(�$, t, �$

�
) characterizing the width and

amplitude of the running packets, respectively, under any assumptions with respect to the
functions � (�) and G(�). To analyze in detail the in#uence of both the geometrical
parameters k(�), s

�
(�) and the hoop stresses ¹

�
(�, t), it is necessary to apply to the

numerical calculations.



Figure 2. (a) Parameters p
 and (b) centers q
 of wave packets versus dimensionless time t in the circular
cylindrical shell under the external &&wind'' pressure Q*

�
, for l"1, n"1, a�"2, �"2 and various �. 1, �"0; 2,

�"0)05; 3, �"0)5; 4, �"1.

Figure 3. (a) Dimensionless frequencies �
 and (b) group velocities v
g versus t in the circular cylindrical shell
under the external &&wind'' pressure Q*

�
, for l"1, n"1, a�"2, b�"i, �"2 and various �. Key as Figure 2.
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Example 2. Consider the joint-supported circular cylindrical shell, for which k"1, s
�
"0,

s
�
"l, �"(�n/l)�, being under the non-uniform hoop stresses (4.5), where �"1#� cos�,

0(�(1, �'0. Such stresses are caused by the external &&wind'' normal pressure
Q*

�
"��R	�Eh��(�). Here the generator �"0 will be the weakest one. Calculations

performed in reference [19] indicate that at �"�
�
"4�3	�
�/[l(1#�)] the shell buckles

near the weakest generator. It is assumed that the center of the initial wave packet (3.10)
coincides with this line.
Numerical computations for l"1, n"1, a�"2, b�"i, w�

�
"1, v�

�
"0, �"2 and for

various values of a parameter � were performed (it is assumed here that �"2(�
�
for any

�). Figure 2 shows the solutions of the Hamiltonian system. It may be seen that, in the cases
of uniform and non-uniform pressure with the low non-homogeneity (�"0; 0)05), the 1
st
packet runs in the direction of pressure diminution without obstacles, whereas for �"0)5;
1 there are the e!ects of re#ection of the 1
st packet from the generators�"q


�
"0)16 and

�"q

�

"0)48 respectively. Figure 3 demonstrates the manner in which the dimensionless
momentary frequency �
 and the group velocity v
g of the travelling packets of bending
waves vary with the course of time, for the uniform pressure (�"0) these magnitudes
staying constant. In Figure 4, the parameter Im b
 and the maximum amplitude w


���
of



Figure 4. (a) Parameters Im b
 and (b) maximum amplitudes w

���

versus t in the circular cylindrical shell under
the external &&wind'' pressure Q*

�
, for l"1, n"1, a�"2, b�"i, w�

�
"1, v�

�
"0, �"2 and various �. Key as

Figure 2.

Figure 5. The circular cylindrical shell with the sloping edge.
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bending waves in the 1
st packet are plotted as functions of t. When comparing Figures
3 and 4, it may be concluded, that for small parameters � characterizing the pressure
non-homogeneity, the running packets become dissolved, but for large parameters � the
e!ects of re#ecting packets are accompanied by focusing and growing amplitudes as well.
Moreover, the larger the parameter � is, the higher the power of focusing is and greater the
magnitude of maximum amplitude becomes.

Example 3. Now, consider the joint-supported circular cylindrical shell with the sloping
edge as shown in Figure 5. Here

k"1, s
�
"0, s

�
(�)"l

�
#(cos�!1) tan �

and the eigenvalue � (�) and the eigenfunction y (s, �) of the boundary-value problem (3.1),
(3.2a) are evaluated by equations (3.3). The case when the shell experiences the normal



Figure 6. (a) Parameters p$ and (b) centers q$ versus dimensionless time t in the circular cylindrical shell with
the oblique edge under the normal dynamic pressure Q*

�
, for l

�
"2, n"1, �"303 and various c

�
. 1, c

�
"!3 ; 2,

c
�
"!2 ; 3, c

�
"0 ; 4, c

�
"1)5 ; 5, c

�
"2)5.

Figure 7. (a) Dimensionless frequencies �$ and (b) group velocities v$

g versus t in the joint-supported circular
cylindrical shell with the oblique edge under the normal dynamic pressure Q*

�
, for l

�
"2, n"1, �"303 and

various c
�
. Key as Figure 6.
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dynamic pressure Q*
�
"��R	�Ehc*

�
t* is studied here, where c*

�
"c

�
/t*
�

c
�
&1 and t*

�
is the

characteristic time introduced earlier. Then ¹
�
"�(t)"c

�
t.

As mentioned above, the eigenmodes of low-frequency free vibrations of the shell under
consideration (at c

�
"0) have form (4.11) and represent the stationary wave packet with the

center on the weakest generator �"0 being the longest one. Let the initial wave packet
(3.10) coincide with one of eigenmodes (4.11), where it is assumed

a�"p
�
"��n/l

�
, b�"b

�
"i�H

��
/H

��
, w�

�
"�

�
"1, v�

�
"0.

The problem is to analyze the in#uence of slowly growing external or internal pressure on
eigenmode (4.11).
Graphs of the functions p$(t), q$(t), �$(t), v$

g (t), Im b$(t), w$

���
(t) are shown in Figures

6} 8. Calculations were performed at l
�
"2, �"30�, n"1 and for various values of

a parameter c
�
. In the case of external pressure (c

�
'0) computations were being conducted

over the "nite segment 0(t(t
�
, where � (t)(�

�
. Here t

�
+1)833, 1)020 for c

�
"1)5, 2)5

respectively. The "gures show that growing pressure (both internal and external ones) splits



Figure 8. (a) Parameters Im b$ and (b) maximum amplitudes w$

���
versus t in the circular cylindrical shell with

the oblique edge under the normal dynamic pressure Q*
�
, for l

�
"2, n"1, �"303, w�

�
"1, v�

�
"0 and various c

�
.

Key as Figure 6.
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the initial wave packet coinciding with the eigenmode into the pair of the non-stationary
wave packets moving in the opposite direction. However, the character of wave processes
under the internal and external pressures are di!erent. Under internal increasing pressure,
one observes the multiple re#ections of the packets from certain generators, these re#ections
being accompanied by focusing and slight growing wave amplitudes. When the pressure is
external, the re#ections of the wave packets are also possible, but the further behavior of the
shell is distinguished by the very quick increase of the functions ��$(t) � , �v$

g (t) � , �w$

���
(t) � at

tPt
�
. It should be noted however that the unlimited growth of the foregoing functions

contradicts conditions (4.2). Therefore, solution (3.48) should be considered in some interval
0(t(t

�
as long as the asymptotic correlations (4.2) are valid. Nevertheless, increasing

amplitudes at tPt
�
allows one to make an interesting assumption about the possibility of

dynamic buckling of the shell under �(t)(�
�
. But this is a non-linear problem which

requires other approaches to solve.

5. CONCLUSIONS

By using the complex WKB method, the asymptotic solution of the
initial-boundary-value problem for the equations, describing motion of a non-circular
cylindrical shell with arbitrary edges, was constructed in the form of the superposition of
packets of bending waves running in the circumferential direction. The properties of the
obtained solution depend strongly on the geometrical parameters of the shell, the character
of loading, and the initial conditions as well. In particular, if the shell has a weakest
generator due to variable generator length or curvature, or pressure non-homogeneity, then
the constructed solution permits one to investigate low-frequency free vibrations in
a neighborhood of the weakest line. The qualitative analysis of the Hamiltonian system and
the examples have revealed two interesting mechanical e!ects:

(1) The presence of the weakest generator on the shell surface may result in strong
localization of the running packets of destructive bending waves, the packet
re#ections being accompanied by strong focusing and growing amplitudes.

(2) The initial local perturbations of the cylindrical shell having the weakest line and
being under action of increasing external pressure may lead to very quick growing
amplitudes of the running localized vibrations and, as a result, to dynamic buckling at
the value of pressure which is less than the critical static pressure.
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APPENDIX

In this appendix the de"nition of the symbols O, o, &, and the asymptotic expansions
used in the paper are given.
Let the functions f (z) and g (z) be de"ned on a set � of the complex numbers,�, or the real

numbers, �, and let a be a point of accumulation of points of �.

Notation 1. We write f (z)"O (g(z)) as zPa if there exist a constant C and
a neighborhood ; of a such that � f (z) �)C �g (z) � for any z3;.

Notation 2. One write f (z)"O(g (z)) if there exists a constant C such that the inequality
� f (z) �)C �g (z) � holds for all z3�.

Notation 3. One writes f (z)"o(g(z)) as zPa if lim
���

f (z)/g(z)"0.

Notation f (z)"O(g (z)) means that the order of the function f is not larger than the
order of the function g, and f (z)"o (g (z)) means that the order of f is less than the order of
g as zPa.

Notation 4. If f (z)"O (g (z)) and g (z)"O( f (z)) hold simultaneously as zPa, we write
f (z)&g(z) as zPa.

Operations on the symbols O and o and a large number of examples may be found, for
example, in references [14, 15].
Consider a sequence of functions u

�
(z), m"0, 1, 2,2, de"ned on � and let a be a point

of accumulation of �.

De5nition 1. The sequence u
�
(z) is said to be asymptotic as zPa, if for any integer m*0,

u
�
�

(z)"o (u
�
(z)), as zPa.

For example, the sequence u
�
(z)"Z(z)(z!a)� as zPa, where Z(z) is an arbitrary

function in �, is the asymptotic one. Similar sequence appears in equation (3.12a). Indeed,
the sequence u

�
(�)"��
� exp[i�	�S (�, t, �)] is the asymptotic as �P0 for any "xed �, t.

De5nition 2. Let the function f (z) be de"ned on � and the sequence u
�
(z) be asymptotic as

zPa, then the series

f (z):


�

���

a
�

u
�
(z) as zPa

is called an asymptotic expansion of f (z) in the PoincareH sense by means of the asymptotic
sequence u

�
(z) if there are constants a

�
such that for any integer M*0

f (z)!
	
�

���

a
�

u
�
(z)"o (u

	
(z)) as zPa

Note that an asymptotic series may diverge. Basic properties of asymptotic series and
operations on them are discussed in books [14, 15].
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