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The concern of this work is the local stability and period-doubling bifurcations of the
response to a transverse harmonic excitation of a slender cantilever beam partially immersed
in a #uid and carrying an intermediate lumped mass. The unimodal form of the non-linear
dynamic model describing the beam}mass in-plane large-amplitude #exural vibration,
which accounts for axial inertia, non-linear curvature and inextensibility condition,
developed in Al-Qaisia et al. (2000 Shock and <ibration 7, 179}194), is analyzed and studied
for the resonance responses of the "rst three modes of vibration, using two-term harmonic
balance method. Then a consistent second order stability analysis of the associated
linearized variational equation is carried out using approximate methods to predict the
zones of symmetry breaking leading to period-doubling bifurcation and chaos on the
resonance response curves. The results of the present work are veri"ed for selected physical
system parameters by numerical simulations using methods of the qualitative theory, and
good agreement was obtained between the analytical and numerical results. Also, analytical
prediction of the period-doubling bifurcation and chaos boundaries obtained using
a period-doubling bifurcation criterion proposed in Al-Qaisia and Hamdan (2001 Journal of
Sound and <ibration 244, 453}479) are compared with those of computer simulations. In
addition, results of the e!ect of #uid density, #uid depth, mass ratio, mass position and
damping on the period-doubling bifurcation diagrams are studies and presented.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

O!shore structures such as piles, oil platform supports, oil-loading terminals and
towers surrounded by water are usually modelled as a beam or a column when studying
its static or dynamic behavior. Since these structures are relatively #exible due to their high
aspect ratio and because they are usually subjected to various excitation loads such as wind
loads and wave loads, the prediction of their steady state responses and their stabilities,
under various combinations of parameters, is greatly needed for design and analysis
purposes.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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An understanding of the dynamic characteristic of a structural system is essential for its
design and control. Many of the important characteristics can only be modelled by
non-linear governing equations. Non-linearities can have important in#uences even when
the amplitudes of the response are quite small, and certain responses may result, such as
period-doubling bifurcation and chaos [1].
The route to chaos from regular period motion (or from chaos to regular periodic

motion) through a sequence of period-doubling bifurcations in non-linear oscillators with
single equilibrium positions has been the subject of many analytical and numerical
investigations, see, e.g., references [2}11]. These studies and others have shown that this
route to (or from) chaos can be adequately described by making use of approximate
analytical methods to study various instabilities of approximate periodic solutions along
with a computer simulation using methods of the qualitative theory. By making use of
variational Hill-type equations to examine various instabilities of corresponding
approximate periodic solutions, these studies have shown that it is possible to determine
and describe with fair accuracy, if any, the zones of period-doubling bifurcations on the
resonance curves of individual harmonic solutions. Then methods of qualitative theory with
the aid of digital computer simulations were used in these studies to determine the locations
of chaotic motion zones, which are preceded by period-doubling bifurcations. A literature
review for di!erent types of oscillators, regarding the behavior, i.e. period-doubling
bifurcation, chaos and transition to chaos from regular periodic motion (or from chaos to
regular periodic motion) [2}19] is discussed in detail in reference [20].
In the present work, the main concern is the approximate analysis, aided with computer

simulations, of the stability, symmetry breaking and period-doubling bifurcation leading to
chaos of approximate harmonic solutions of the harmonically driven non-linear oscillator
having single equilibrium position and described by the general non-dimensional form [21]

uK#�uR #u#�
�
(u�uK#uuR �)#�

�
u�"P cos (�t). (1)

The non-linear oscillator in equation (1) describes the unimodal in-plane #exural vibration
response of a cantilever slender beam partially immersed in a #uid and carrying a point
mass at an intermediate position along its span (see Figure 1). The derivation of this
equation, described in detail in reference [21] and summarized in Appendix A for
convenience, ignores the rotary inertia and shear deformation, but takes into account axial
inertia and non-linear curvature.
The beam considered is assumed to be slender, i.e., similar to that considered by

Zavodney and Nayfeh [22], Crespo da Silva and Glynn [23], Hamdan and Shabaneh [24],
Al-Qaisia et al. [21] and Arafat et al. [25]. Such a slender beam system may undergo large
bending motion without a signi"cant axial deformation and therefore is assumed to be
extensible. In addition, the natural frequencies of the axial motion are much higher than
those of the bending motion. The beam}mass system is subjected to a transverse harmonic
excitation load at an intermediate point along its span. Furthermore, following reference
[26], the model in equation (1) assumes that the e!ect of the #uid}structure interaction can
be taken as an added inertia to the structure.
The present physical problem model, equation (1), belongs to the general class of

oscillators studied in reference [20] and presents a physical example of such oscillators. The
interest of the present study is to present the e!ect of various system physical parameters;
e!ect of #uid density, #uid depth, mass ratio, mass position and damping on the system
period-doubling bifurcation. In equation (1) u represents a dimensionless beam tip
displacement, � the damping of the system and the parameters �

�
, �

�
and P (see Appendix A)

are dimensionless constants which depend on the beam}mass system physical



Figure 1. A schematic of the immersed cantilever beam under consideration.

TABLE 1

<alues of the parameters in the temporal equation (1) of the beam system shown in Figure 1
with the physical characteristics; attached mass magnitude ratio �"0)25, relative position
�"0)75, relative position of the applied concentrated load �

�
"0)7 and relative depth ��"0)5

of the immersed part, calculated from equations (A17}A21, A25) for the ,rst four modes of
vibration

Mode

1 2 3 4

p 1)875104 4)694091 7)854757 10)99554
�
�

1)450759848 1)175825329 1)519188317 1)565111561
�
�

12)32839815 485)3450482 3806)040655 14616)18988
�
�

5)330115538 149)9670172 1027)160859 4123)530484
�
�

20)22032802 6709)048744 132182)7099 964052)2595
�
�

1)181752528 0)634103731 !1)314851876 0)794780663
�
�

1)044937644 5)788285351 10)95875813 21)79168359
�
�

0)932955265 1)254692582 1)125811592 1)091096770
�
�

0)179740211 0)006132834 !0)002713539 0)000597900
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characteristics, forcing magnitude and location and the considered mode; examples of the
calculated numerical values of these parameters for selected beam system physical
parameters are shown in Table 1. The objects of interest here are the cases where the
oscillator in equation (1) is not weakly non-linear, i.e., when the displacement u is of order
unity, �

�
and/or �

�
are not necessarily small compared to unity. In the above oscillator,

which has a single equilibrium position at u"0, the two non-linear terms inside the
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parentheses are of inertial type having a net softening e!ect, while the last non-linear term is
of the hardening type. Thus, depending on the relative values of �

�
and �

�
, these

characteristics of frequency resonance response curves of this oscillator may be of softening
or hardening type. These characteristics were studied in reference [27] using the harmonic
balance method (HB) and the second order perturbation multiple-time scale (MMS) with
reconstitution versions I and II. The results in references [21, 27] show that the two modes
harmonic balance method yields quantitatively fairly accurate and qualitatively accurate
solutions even when the oscillator is relatively strongly non-linear. Approximations to the
resonance response, symmetric and asymmetric and their stabilities and analytical
prediction of period-doubling bifurcation and chaos boundaries using the period-doubling
bifurcation criterion proposed in reference [20] and compared with the computer
simulations, of the non-linear oscillator, described in equation (1), are presented and
discussed in the following sections, for the "rst, second and third natural frequencies, which
may take place when the forcing frequency is arbitrarily varied to be close to one of these
system natural frequencies.

2. APPROXIMATE SYMMETRIC HARMONIC BALANCE SOLUTIONS

An approximate solution to the oscillator in equation (1) may be obtained by using the
harmonic balance method which does not place a restriction on the order of magnitude of
non-linear terms relative to linear ones, i.e., �

�
and �

�
need not be small compared to 1 [21,

27]. For convenience, equation (1) is rewritten in terms of a new time scale ¹"�t, so that it
becomes

��uK#��uR #u#�
�
��u�uK#�

�
��uuR �#�

�
u�"P cos (¹#�), (2)

where dots now denote derivatives with respect to the new time ¹, and the unknown
constant phase � has been added to the harmonic excitation so that one can obtain
a harmonic balance solution in which the fundamental has a cosine term only. A two-term
approximate symmetric solution to equation (2) can be obtained by substituting

u (¹)"A
�
cos¹#A

�
cos 3¹#B

�
sin 3¹ (3)

into equation (2), where A
�
, A

�
, B

�
and � can be determined by the harmonic balance

method (HB), and solving the set of non-linear algebraic equations for A
�
, A

�
, B

�
and �.

Results for the steady state response using the two-term harmonic balance method (2THB)
were presented in references [21, 27] for di!erent values of the parameters �, �

�
, �

�
and P,

which are the physical parameters of the "rst three modes of vibration of the immersed
cantilever beam system shown in Figure 1. For convenience, the relations de"ning steady
state resonance response of equation (2) obtained by applying the harmonic balance
method using single term (SHB) and two terms (2THB) are, for convenience, presented in
Appendix B.

3. STABILITY ANALYSIS OF SYMMETRIC HARMONIC BALANCE SOLUTIONS

The stability analysis of the approximate harmonic balance solution in equation (3) may
be carried out by introducing a small perturbation v (¹ ) to the assumed solution (3), i.e., by
substituting

u(¹)"A
�
cos¹#A

�
cos 3¹#B

�
sin 3¹#v(¹) (4)
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into equation (2). This leads to the following linearized variational equation:

vK �� �1#

�
�
2
(A�

�
#A�

�
#B�

�
#(A�

�
#2A

�
A

�
) cos 2¹#2A

�
A

�
cos 4¹

#(A�
�
#B�

�
) cos (6¹#2A

�
B
�
(sin 2¹#sin 4¹)#2A

�
B
�
sin 6¹ )�

#vR ���#�
�
�� (2A

�
B
�
cos 2¹#4A

�
B
�
cos 4¹#6A

�
B
�
cos 6¹

!(A�
�
#2A

�
A

�
) sin 2¹!4A

�
A

�
sin 4¹#3 (B�

�
!A�

�
) sin 6¹ )�

#v�1#

3

2
�
�
(A�

�
#A�

�
#B�

�
)!

�
�
2

�� (A�
�
#9A�

�
#9B�

�
)

#(�
�
�
�
A�

�
#3�

�
A

�
A

�
!�

�
�
�
��A�

�
!7�

�
��A

�
A

�
) cos 2¹

#(3�
�
A

�
A

�
!13�

�
��A

�
A

�
) cos 4¹

#(�
�
(3�

�
(A�

�
!B�

�
)!27�

�
�� (A�

�
#B�

�
))) cos 6¹

#(3�
�
A

�
B

�
!7�

�
��A

�
B
�
) sin 2¹#(3�

�
A

�
B
�
!13�

�
��A

�
B

�
) sin 4¹

#(3�
�
A

�
B

�
!27�

�
��A

�
B
�
) sin 6¹�"0. (5)

Then by virtue of the Floquet theory, a particular solution of the linearized variational
equation (LVE), is sought in the form [2]

v (¹)"e	¹ � (¹), (6)

where 	 is de"ned as the characteristic exponent and �(¹) is a periodic function with periods
¹ and ¹/2. The solution of v (¹) is stable (respectively, unstable) if the real part of 	 is
negative (positive); and the real part of 	 is zero on the boundary between stable and
unstable regions [11].
The approximate theory of the Hill-type equations allows one to assume functions �

�
(¹)

and �
��
(¹) as truncated Fourier series, so that at the stability boundaries, i.e., 	"0, the

disturbances are sought as

�
�
(¹)"v (¹)���

"

	
�
�

b
�
cos(m¹#


�
)"b

��
cos(m¹)#b

��
sin(m¹), m"1, 3, 52R,

(7)

�
��
(¹)"v(¹)���

"b
�
#

	
�
�

b
�
cos(m¹#


�
)"b

�
#b

��
cos(m¹)#b

��
sin(m¹), m"2, 4, 62R.

(8)

The instabilities of type I ("rst order stability) ,are those which bring odd harmonic
components to the system response, while type II (second order stability) gives a build-up of
the even harmonic component [2, 20], which is the interest of the present work, i.e., stability
boundaries at which the possibility of period-doubling bifurcation (PDB) and chaos may
occur.
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The "rst and second order unstable regions can be predicted by substituting equations (7)
and (8) into the linearized variational equation (LVE) (5) and using the harmonic balance
method. This leads to an in"nite set of linear homogeneous equations (b

��
and b

��
, m"1, 3,

52R for analysis I or b
�
, b

��
and b

��
, m"2, 4, 62R for analysis II). These equations

can be expressed in the matrix from as Mb"0, where b is one of the two column vectors
(2 , b

��
, b

��
,2)
, and (b

�
,2, b

��
, b

��
,2)
; M is the characteristic matrix. Non-trivial

solutions for b
�
exist only when the determinant (�) of the characteristic matrix vanishes.

This determinant depends on 	, thus �(	)"0 provides the characteristic equation for 	.
The stability conditions become �(	"0) is positive (respectively, negative) is a stable
(unstable) region, and �(	"0)"0 at the boundary between the stable and unstable regions
[11].
To determine the boundaries of the second unstable region &&i.e., analysis II'' according to

the above procedure, one may substitute as a "rst approximation

v (¹)"b
�
#b

��
cos 2¹#b

��
sin 2¹#b

��
cos 4¹#b

��
sin 4¹ (9)

into the LVE (5), and upon applying the harmonic balance this leads to a set of linear
homogeneous equations for b

�
, b

��
, b

��
, b

��
and b

��
, that can be written in a matrix form as

Mb"0 (10)

where b is the column vector (b
�
, b

��
, b

��
, b

��
, b

��
)
 and M is the characteristic matrix. The

elements of the coe$cient matrix M are

M
��

"1#�
�

�
�
(A�

�
#A�

�
#B�

�
)!�

�
�
�
�� (A�

�
#9A�

�
#9B�

�
),

M
��

"�
�
A

�
B
�
(3�

�
!7�

�
��),

M
��

"�
�

�
�
(A�

�
#6A

�
A

�
)!�

�
�
�
�� (3A�

�
#17A

�
A

�
),

M
��

"�
�
A

�
B
�
(3�

�
!13�

�
��), M

��
"�

�
A

�
A

�
(3�

�
!13�

�
��),

M
��

"

�
�
2
(3A�

�
#6A

�
A

�
)!�

�
�
�
��(3A�

�
#14A

�
A

�
),

M
��

"2��#�
�
A

�
B
�
(3�

�
!9�

�
��),

M
��

"1!4��#�
�
�
�
(A�

�
#A

�
A

�
#A�

�
#B�

�
)!�

�
�
�
�� (5A�

�
#9A

�
A

�
#13A�

�
#13B�

�
),

M
��

"�
�
B
�
(3�

�
(A

�
#A

�
)!�

�
�� (15A

�
#19A

�
)),

M
��

"�
�
�
�
(3A�

�
#6A

�
A

�
#3A�

�
!3B�

�
)!�

�
�
�
�� (11A�

�
#30A

�
A

�
#19A�

�
#19B�

�
),

M
��

"A
�
B
�
(3�

�
!7�

�
��),

M
��

"1!4��#�
�
�
�
(A�

�
!A

�
A

�
#A�

�
#B�

�
)!�

�
�
�
�� (5A�

�
!9A

�
A

�
#13A�

�
#13B�

�
),
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M
��

"�
�
A

�
B
�
(3�

�
!9�

�
��)!2��,

M
��

"�
�
�
�
(3A�

�
#6A

�
A

�
!3A�

�
#3B�

�
)!�

�
�
�
�� (11A�

�
#15A

�
A

�
!19A�

�
#19B�

�
),

M
��

"�
�
B
�
(3�

�
(A

�
!A

�
)#�

�
��(15A

�
!19A

�
)),

M
��

"A
�
A

�
(3�

�
!13�

�
��),

M
��

"�
�
B
�
(3�

�
(A

�
!A

�
)#�

�
�� (15A

�
!19A

�
)),

M
��

"�
�
�
�
(3A�

�
#6A

�
A

�
#3A�

�
!3B�

�
)!�

�
�
�
�� (11A�

�
#15A

�
A

�
#19A�

�
!19B�

�
),

M
��

"4��,

M
��

"1!16��#�
�
�
�
(A�

�
#A�

�
#B�

�
)!�

�
�
�
�� (17A�

�
#25A�

�
#25B�

�
),

M
��

"A
�
B
�
(3�

�
!13�

�
��),

M
��

"�
�
�
�
(3A�

�
#6A

�
A

�
!3A�

�
#3B�

�
)!�

�
�
�
�� (11A�

�
#15A

�
A

�
!19A�

�
#19B�

�
),

M
��

"�
�
B

�
(3�

�
(A

�
#A

�
)!�

�
�� (15A

�
#19A

�
)),

M
��

"1!16��#�
�
�
�
(A�

�
#A�

�
#B�

�
)!�

�
�
�
�� (17A�

�
#25A�

�
#25B�

�
),

M
��

"!4��.

Non-trivial solutions for b
�
, b

��
, b

��
, b

��
and b

��
exist only when the determinant of the

coe$cient matrix M in equation (10) vanishes, which gives the second order stability
boundaries that intersect with the steady state response curves of the nonlinear oscillator
described in equation (2) obtained by using the two-term harmonic balance solution (3).

4. APPROXIMATE ASYMMETRIC SOLUTIONS AND THEIR STABILITIES

By using the harmonic balance method, an asymmetric periodic solution to equation (2)
in the "rst approximation takes the form

u (¹)"A
�
#A

�
cos¹, (11)

where A
�
is a constant bias and A

�
is the amplitude. Substituting equation (11) and its

derivatives into equation (2), one obtains

A
��A�

�
(3�

�
!�

�
��)#

A�
�
4

(3�
�
!2�

�
��)#1!���"P cos�, (12)

A
�
��"P sin �, A

� �A�
�
�
�
#

A�
�
2

(3�
�
!�

�
��)#1�"0. (13, 14)
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For A
�
O0, it follows from equation (14) that

A�
�
"

1

�
�
�
A�

�
2

(�
�
��!3�

�
)!1�. (15)

Equations (12), (13) and (15) yield (in terms of A
�
only) the frequency response equation of

the system, using the biased solution (11):

(���
��

��
�
!��

�
�
�
��
�
��#10��

�
��
�
��!�

�
��
�
�
�
��#�

�
��
�
�
)A�

�

#(15��
�
!��

�
�
�
��
�
��#��

�
��
�
��#7��

�
�
�
��!5�

�
��
�
��!��

�
��#��

�
�
�
��)A�

�

#(4��
�
#����!4�

�
�
�
��#4��

�
��#��

�
��!2�

�
�
�
��#��

�
��) A�

�
"P�. (16)

Steady state resonance curves A
�
and A

�
can be determined from equations (15) and (16)

respectively.
The stability of the assumed solution (11), can be examined by using the same procedure

followed in the previous section: i.e., by substituting u(¹)"A
�
#A

�
cos¹#v (¹) into

equation (2). This yields the following linearized version of the variational equation:

vK ���1#

A�
�
2

�
�
(1#cos 2¹)#�

�
(A�

�
#2A

�
A

�
cos 2¹)�

#vR [��!�
�
�� (A�

�
sin 2¹#2A

�
A

�
sin¹)]

#v�1#
A�

�
2
(3�

�
(1#cos 2¹)!�

�
��(1#3 cos 2¹))#3�

�
A�

�
#2A

�
A

�
cos¹ (3�

�
!�

�
��)�"0.

(17)

It is clear that equation (17) has two parametric excitations with periods ¹ and ¹/2. To
examine the period-doubling bifurcation in the "rst approximation of the biased solution,
one may seek a particular solution at the stability limit as

v(¹)"b
���

cos�
¹

2
#


����"b
�����

cos�
¹

2�#b
�����

sin�
¹

2�. (18)

Then, by substituting equation (18) and its derivatives into equation (17), and applying the
harmonic balance method, writing the set of linear homogeneous equations for b

�����
and

b
�����

in a matrix form Mb"0 and putting the condition of non-trival solution for b
�����

and b
�����

. The elements of the coe$cient matrix are

M
��

"1!

��

4
#3�

� �A�
�
!A

�
A

�
#

A�
�
2 �!

�
�
��

8
(2A�

�
!6A

�
A

�
#5A�

�
),

M
��

"!

��
2
, M

��
"

��
2
,

M
��

"1!

��

4
#3�

� �A�
�
#A

�
A

�
#

A�
�
2 �!

�
�
��

8
(2A�

�
#6A

�
A

�
#5A�

�
). (19)
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A non-trivial solution for b
�����

, b
�����

exists only when the determinant of the coe$cient
matrix M vanishes, which gives the unstable portions of the asymmetric solution of the
non-linear oscillator obtained by using equations (15) and (16). A relation between the
amplitudes (A

�
and A

�
) and the frequency � to be satis"ed at the stability boundary can be

obtained from the determinant of the coe$cient matrix M, such that

�� �
1

16
#

�
�
16

(2A�
�
#5A�

�
)#

��
�
64

(4A�
�
!16A�

�
A�

�
#25A�

�
)�

#�� �
��

4
!

1

2
!

3�
�
4

(2A�
�
#A�

�
)!

�
�
�
�

8
(12A�

�
#15A�

�
)!

�
�
4
(2A�

�
#5A�

�
)�

#�1#3�
�
(2A�

�
#A�

�
)#9��

� �A�
�
#

A�
�
4 ��"0. (20)

5. CRITERION FOR PERIOD-DOUBLING BIFURCATIONS

Period-doubling bifurcations in many non-linear systems occur just before the onset of
chaos. Therefore, PDBs may be considered often the lower threshold of chaos [16].
A criterion that might predict the necessary physical system parameters combination for
this type of non-linear oscillators which models the immersed beam}mass system shown in
Figure 1, is presented and discussed in reference [20]. However, once the second unstable
region intersects with the steady state response curve, i.e., equation (C10) is satis"ed, one can
use this equation which gives the critical bifurcation value of the amplitude as a function of
the frequency and the system physical parameters, A

��
,A

��
(�, �

�
, �

�
, �). Upon substituting

the value of A
��
into the frequency response equation (B4), one can obtain the critical value

of the forcing parameter [20], such that

( �
��

(9��
�
!12�

�
�
�
��#4��

�
��))A�

��
#(�

�
�
�
(1!��)#�

�
(��!��))A�

��

#(1#�� (��!2)#��)A�
��
"P�

��
. (21)

The results of computer simulations presented in reference [20] show that the above
criterion gives a reasonable prediction of the minimum value of the forcing parameter
required for period-doubling bifurcation and may be used as a threshold criterion for PDB.

6. ANALYTICAL RESULTS

The stability analysis of the non-linear oscillator, single mode, temporal equation of
motion (1) of the immersed cantilever beam carrying an intermediate lumped mass &Figure
1' was calculated and veri"ed near the resonance response zone, for the "rst three modes of
vibration and for selected values of system parameters P, � and the corresponding �

�
and �

�
for each mode, by assuming that the forcing frequency � is arbitrarily varied to be close to
one of the system natural frequencies, i.e., the "rst three natural frequencies of the
beam}mass system. As an example, if the beam in Figure 1 is taken to be an aluminum
beam, with density �"2800 kg/m�, modulus of elasticity E"70GPa, cross-sectional area
5 cm�5 cm and length l"2m. The #uid is taken to be water ��"1000 kg/m�, so that
K

�
"1/2)8. The added inertia coe$cient was taken as in reference [26], C

�
"1)0, and the
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non-dimensional gravity parameter g
�
is calculated to be 0)015. The selected values of the

attached mass magnitude ratio �, relative position �, relative position of the applied
concentrated load �

�
and relative depth �

�
of the immersed part used in this work were

�"0)25, �"0)75, �
�
"0)7, and �

�
"0)5 respectively. By using these values and evaluating

the integrals in equations (A18}A21), the calculated values of �
�
and �

�
for the "rst, second

and third modes were calculated to be (�
�
"1)0449, �

�
"0)9329), (�

�
"5)7882, �

�
"1)2546)

and (�
�
"10)9587, �

�
"1)1258), respectively, which are the same values considered and

studied in detail in reference [21] to obtain results for the resonance response and "rst order
stability of the beam}mass system shown in Figure 1.
The response of the non-linear oscillator is controlled by two competing softening
&&�

�
(u�uK#uuR �)'' and hardening &&�

�
u�'' non-linearities, which exhibit fundamentally two

di!erent response characteristics [21, 27], depending on the relative value of �
�
and �

�
.

From the calculated values of �
�
and �

�
for the beam}mass system considered, the "rst mode

resonance response exhibits, as expected, a hardening behavior, due to the fact that
(�
�
/�

�
:1)12)(1)6, while the response of the second and the higher modes exhibit

a softening behavior as the ratio (�
�
/�

�
)'1)6: i.e., the response is dominated by the inertia

non-linearities [21, 24, 27].
In Figure 2, the resonance response curve of the "rst mode was obtained by using the HB

method; "rst and second order unstable regions are obtained by using a single term only
and the values of parameters P and � were chosen to be 10 and 0)02 respectively. The same
"gure shows also the biased solution given in equation (11). From the results in Figure 2, the
second unstable region intersects with the response curve in two regions: 0)645(�(0)695
and at �*2)45, while the asymmetric solution intersects with the response curve at
Figure 2. Steady state frequency response (SSFR), "rst order stability (1st Stab.), second order stability (2nd
Stab.), biased solution and its stability using single term only for the "rst mode, i.e. P"10, �

�
"1)0449, �

�
"0)9329

and �"0)02:***, SSFR; } ) } )} ), 1st Stab.;* ) )*, 2nd Stab.; .......... A
�
; } } } }} , A

�
. ######, unstable

A
�
and A

�
; ***, A

���
&&positive value of A in the symmetric solution at which A

�
in the biased solution has

non-zero real value, calculated from equation (15)''.
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�'1)81 and the unstable region for the asymmetric solution is between 2)19(�(2)55.
To improve the accuracy of the predicted resonance response and stability, results were
obtained and are shown in Figure 3 for the "rst mode, but with two terms used for the
steady state response, i.e., equation (3), and stability analysis, i.e., using two terms in the
assumed solution (4) of the linearized variational equation (5) to obtain results for the
second order stability. As one may expect the predicted unstable regions of the response
curve when using two terms are modi"ed and they become 0)683(�(0)719 and
2)2668(�(6)8965.
In Figures 4 and 5 are shown the resonance response, "rst and second order unstable

regions as obtained by using two terms for the second and third modes respectively. Also
shown in the same "gures are the biased solutions given by equation (11). From Figure 4,
i.e., results for the second mode P"2)5, �

�
"5)7882, �

�
"1)2546, �"0)02, one can see that

the predicted second unstable regions are 0)393(�(0)4046 and 1)5043 (� (3)4891
and the asymmetric solution intersects with the response curve at �*0)95 and the unstable
region for the asymmetric solution is 1.20(�(1)83. From Figure 5, i.e., results for the
third mode P"3)5, �

�
"10)9587, �

�
"1)1258, �"0)1, one can see that the predicted

second unstable regions are 0)275(�(0)29 and 1)16(�(5)845 and the asymmetric
solution intersects with the resonance response curve at �*0)63 and the unstable region
for the asymmetric solution is 0.79(�(1)14.
The e!ect of varying the physical parameters of the system, i.e., the attached mass

magnitude ratio �, relative position �, relative depth �
�
of the immersed part, #uid density

parameterK
�
and the damping �, on the proposed criterion for PDB has been studied and

is presented in Figures 6}10 for the second mode. It can be seen from Figures 6}8 that the
value of the lower threshold force for PDB, i.e., equation (21), increases as the values of �, �

�
and K

�
increase, and this is due to the fact that as long as the relative depth �

�
of the
Figure 3. Steady state frequency response (SSFR), "rst order stability (1st Stab.), second order stability (2nd
Stab.) as obtained by using two terms for the "rst mode. P"10, �

�
"1)0449, �

�
"0)9329 and �"0)02:****,

SSFR &&A
�
of equation (3)''; �, 2nd Stab.; �, 1st Stab. A

�
, A

�
, A

���
same as in Figure 2.



Figure 4. Same as in Figure 3, but for the second mode: i.e., P"2)5, �
�
"5)7882, �

�
"1)2546 and �"0)02.

Figure 5. Same as in Figure 3, but for the third mode: i.e., P"3)5, �
�
"10)9587, �

�
"1)1258 and �"0)1.
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immersed beam, the damping � and #uid density parameter K
�
increase, the force level

required to oscillate the system will increase and as a result the lower threshold force for
PDB will increase.



Figure 6. E!ect of damping � on the analytical PDB criterion of the second mode: ***, �"0)02; * ) -,
�"0)1; * ) )-, �"0)5; ........, �"0)75; } } } , �"1.

Figure 7. E!ect of #uid depth �
�
on the analytical PDB criterion of the second mode:***, �

�
"0)1;* ) ),

�
�
"0)3; * ) ) -, �

�
"0)5; ........, �

�
"0)7.
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On the contrary, in Figures 9 and 10, the threshold force required for PDB decreases as
the values of the attached mass magnitude ratio � and relative position � increase. Results
presented in Figure 9 show that increasing the mass ratio � will decrease the natural



Figure 8. E!ect of #uid density ratio K
�
on the analytical PDB criterion of the second mode:**, K

�
"0)6;

* ) }, K
�
"0)8; * ) ), K

�
"1)0; .........., K

�
"1)2; } } } , K

�
"1)5.

Figure 9. E!ect of mass position � on the analytical PDB criterion of the secondmode:***, �"0)55;* )*,
�"0)65; * ) ) -, �"0)75; ....., �"0)85; } } } , �"0)95.

872 A. A. AL-QAISIA AND M. N. HAMDAN



Figure 10. E!ect of mass ratio � on the analytical PDB criterion of the second mode:***, �"0)10;* )*,
�"0)25; * ) ) -, �"0)5; ....., �"1)0; }} }, �"1)5; *}, �"2)0.
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frequencies of the system and decrease the critical bifurcation value of the amplitude, and as
a result the critical force required for PDB will decrease. Results presented in Figure 10
show that moving the attached mass towards the free end of the immersed beam makes the
beam unstable and consequently the critical force required for PDB decreases.

7. COMPUTER SIMULATION, RESULTS AND DISCUSSION

To verify the results of the approximate theory for the stability analysis and the criterion
of PDB, equation (1) was simulated, i.e., integrated by using the Runge}Kutta method, and
the results presented in the previous section were veri"ed with the aid of time histories,
phase planes, PoincareH maps and Lyapunov fractal dimension.
It was found from computer simulation results for the "rst mode that by increasing the

frequency, the PDB is "rst observed in the range 0)705(�(0)708 followed by a 3¹

attractor at �"0)71 and chaotic behavior is "rst observed in the range 0)715(�(0)73.
These frequency bands are in good agreement with the predicted unstable regions of the
steady state response curves obtained by using two terms for the second unstable region,
Figure 3, at which the PDB and chaos may occur. Results are presented in Figure 11, i.e., the
time histories, phase planes and PoincareH maps for some selected values of � for the "rst
mode (P"10, �

�
"1)0449, �

�
"0)9329, �"0)02), namely �"0)707 and �"0)72 at which

PDB and chaos occur respectively.
Simulation results for the second mode have shown that, i.e., by increasing the frequency,

a higher period doubling 4¹ at �"0)39 and a chaotic behavior is observed at �"0)43;
these results con"rm the prediction of the unstable portions of the response curve at which
the PDB and chaos can occur. In addition, the PDB is observed in the ranges



Figure 11. Time history, phase plane and PoincareH map for the "rst mode.P"10, �
�
"1)0449, �

�
"0)9329 and

�"0)02, (a) �"0)707; (b) �"0)72. 

�
"0)0775, 


�
"0)0, 


�
"!0)0839 and d

�
"2)923.

874 A. A. AL-QAISIA AND M. N. HAMDAN
0)99(�(1)1 and 1)9(�(2)1, i.e., before entering the second unstable region and inside
the second unstable region. In Figure 12, the time histories, phase planes and PoincareH maps
are shown for two values of � selected from the predicted frequency bands of the second
mode and for the parameters P"2)5, �

�
"5.7882, �

�
"1)2546, �"0)02.

As for the third mode, computer simulation results have shown also that the PDB is "rst
observed at �"0)2 followed by a attractor 3¹ at �"0)21 and a chaotic behavior is
observed at �"0)29. The second PDB is observed in the range 0)69(�(0)76, followed
by a 3¹ attractor and ends with higher period doublings 4¹ at �"0)89. The "rst chaotic
zone observed is in the range 1.15(�(1)3 and then ends with a 9¹ attractor at �"1)35,
followed by a 3¹ attractor at �"1)40. The 3¹ attractor disappears and the chaos returns
in the ranges 1)80(�(2)0 and 2)15(�(2)3. Further investigations showed that the
third PDB zone is in the range 2)6(�(3)0 and at �'3)0 periodicity returns to the
system.
In Figure 13, the time histories, phase planes and PoincareH maps are shown for di!erent

values of �, for the third mode, i.e., P"3)5, �
�
"10)9587, �

�
"1)1258, �"0)1. Results

presented in Figure 5 and with the aid of computer simulations in Figure 13 show that, as
one may expect, the resonance curves of the asymmetric solution intersect those of the
symmetric solution near the region of chaotic motion, which lies in the zone where the
resonance curves of the symmetric solution may enter the second unstable region [20].
Chaotic behavior of the non-linear temporal unimodal equation of motion is veri"ed also

by another diagnostic tool which is used in dynamical systems, the calculation of Lyapunov
exponents. In the present work the Lyapunov exponents are calculated, by using the
algorithmpresented byWolf et al. [28], from the generated time histories, i.e., by integrating



Figure 12. Time history, phase plane and PoincareH map for the second mode. P"2)5, �
�
"5)7882, �

�
"1)2546

and �"0)02. (a) �"0)39; (b) �"2)0.

Figure 13. Time history, phase plane and PoincareH map for the third mode. P"3)5, �
�
"10)9587, �

�
"1)1258

and �"0)1. (a) �"0)76; (b) �"2)3, 

�
"0)3497, 


�
"0)0, 


�
"!0)3783 and d

�
"2)924.

BIFURCATION AND CHAOS OF AN IMMERSED BEAM 875



876 A. A. AL-QAISIA AND M. N. HAMDAN
equation (1) using the Runge}Kutta method. The signs of the Lyapunov exponents provide
a qualitative picture of a system's dynamics. In a three-dimensional continuous dissipative
dynamical system the only possible values of the Lyapunov exponents for chaos are to be
positive, zero and negative [28]. To summarize, any chaotic attractor de"ned in a 3-D
phase space will have 


�
'0, 


�
"0 and 


�
(0 with �


�
(0 where 


�
, 


�
and 


�
are the

Lyapunov exponents [28}30].
The connection between the fractal dimension of a chaotic attractor and the Lyapunov

exponents that characterize the attractor is given by the relation [28}30]

d
�
"n#

�	
���



�

�

	��

�
, (22)

where the Lyapunov exponents are ordered from largest to smallest (

�
'


�
'2'


	
)

and n is the largest integer having the property that 

�
#


�
#2#


	
'0, i.e., �	

���


�
'0

or �	��
���



�
(0. In the case of a chaotic behavior in a 3-D phase space, which is the case for

the present work, equation (21) reduces to

d
�
"2#



�

�

�
�
, (23)

upon noting that 

�
'0, 


�
"0 and 


�
(0, so that d

�
'2.

On the presented PoincareH maps in Figures 11}13 that have chaotic behavior, the
calculated Lyapunov exponents and the fractal dimensions are shown to be used as
a diagnostic tool for chaos.
To compare the results obtained for the criterion of PDB, in Figures 14 and 15, the

proposed criterion is shown with the true boundaries of PDB and chaos for the second and
Figure 14. Analytical PDB criterion obtained by using equation (34) for the second mode, true PDB and true
chaotic boundaries. P"2)5, �

�
"5)7882, �

�
"1)2546 and �"0)02: ****, analytical PDB; �, true PDB; �,

true chaos.



Figure 15. Same as in Figure 14 but for the third mode.
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third modes respectively. The di!erence between the proposed criterion and the true
boundary of PDB is due to the fact that it is calculated by using a single term only in the
assumed solution. On the other hand, the boundaries of the true PDB and chaos have the
same qualitative characteristics and they give the minimum threshold values for both PDB
and chaos.
To verify the results presented in Figure 15 for the third mode, i.e., �

�
"10)9587,

�
�
"1)1258, �"0)1, for the true boundaries of PDB and chaos time histories, phase planes

and PoincareH maps are shown in Figure 16, for �"2)25 and for di!erent values of P. These
results show that the behavior is periodic at P"1)69, PDB at P"1)70, higher period
doublings (4¹) at P"1)85 and chaos appears at P"1)86. This con"rms that the PDBmay
be considered to be the lower threshold of chaos in some dynamical systems [20].

8. CONCLUSIONS

The present work studied the resonance response curves, second order stability analysis,
asymmetric solutions and their stabilities for an extensible immersed cantilever beam
system as shown in Figure 1, for the "rst three modes of vibration. The results presented
indicate that for the type of non-linear oscillators governed by equation (1), which belongs
to the general class of non-linear oscillators studied in reference [20], the two-term
harmonic solutions of the resonance response and second order stability analysis of the
associated linearized variational Hill-type equation may predict with good accuracy the
portions on the resonance response curves at which the period-doubling bifurcation (PDB)
may arise, for di!erent physical system parameters corresponding to the "rst three modes.
Also shown has been the e!ect of the physical parameters of the system, i.e., the attached

mass magnitude ratio �, relative position �, relative depth �
�
of the immersed part, #uid

density parameter K
�
and the damping �, on the bifurcation diagram of the beam}mass



Figure 16. Time history, phase plane and PoincareH map for the third mode, �
�
"10)9587, �

�
"1)1258, �"0)1

and �"2)25 but for di!erent values of the excitation amplitude P. (a) P"1)69; (c) P"1)70; (d) P"1)85; (e)
P"1)86, 


�
"0)2733, 


�
"0)0, 


�
"!0)3156 and d

�
"2)866.
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system and on the critical excitation amplitude P
��
: i.e., P

��
increases by increasing �, �

�
and

K
�
and P

��
decreases by increasing � and �.
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APPENDIX A: DERIVATION OF EQUATION OF MOTION

A.1. SYSTEM DESCRIPTION AND ASSUMPTIONS

A schematic of the beam under study is shown in Figure 1. The beam is considered to be
uniform of constant length l, cross-sectional area A, #exural rigidity EI and density �. The
beam is vertically mounted, clamped at the base and partially immersed in a #uid up to
depth l

�
and carries a lumped mass M at an arbitrary intermediate position d along the

beam span. The #uid is assumed to be non-viscous, incompressible with a constant density
��. The thickness of the beam is assumed to be small compared to the length of the beam, so
the e!ect of rotary inertia and shear deformation can be ignored.
The beam considered is assumed to be slender. Such slender beam systems may undergo

large bending motion without a signi"cant axial deformation and therefore are assumed to
be inextensible and the natural frequencies of the axial motion are much higher than those
of the bending motion. An obvious exception of the inextensibility condition is the
large-amplitude vibrations of beams mounted between two "xed points, since in such a case
the inextensibility condition is violated. This modelling approach is similar to that
considered by Zavodney and Nayfeh [22], Crespo da Silva and Glynn [23], Hamdan and
Shabaneh [24], Al-Qaisia et al. [21] and Arafat et al. [25].
Also, the beam is subjected to a concentrated transverse harmonic load at an arbitrary

point along its span. In addition, the e!ect of axial inertia and non-linear curvature were
taken into consideration and the #uid}structure interaction can be taken as an added
inertia to the structure [26].

A.2. EQUATION OF MOTION

Upon using the co-ordinate system shown in Figure 1 for the immersed beam, the elastic
potential energy <



of the beam due to bending is given by

<


"

EIl

2 �
�

�

R� (�) d�, (A1)
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where �"s/l is the dimensionless arc length and R(�) is the curvature of the beam neutral
axis. The exact curvature R(�) takes the form [22]

R"
��, (A2)

where sin�"
y�. Di!erentiating equation (A2) and noting that cos�"�1!sin�� and
substituting into equation (A2), one obtains the following expression for the curvature of the
beam [22]:

R"
�y�/�1!(
y�)�, (A3)

where 
"1/l and the prime denotes di!erentiation with respect to the non-dimensional arc
length �. The system potential energy must contain the gravitational potential energy
developed as a result of axial shortening due to transverse deformations. An expression for
the axial shortening based on the assumption of no axial de#ection [31] is

d�:!

1

2 �
�y
�s�

�
. (A4)

The gravitational potential energy of the system, upon using equation (A4), can be written
as

<
�
"!�Alg �

�

�
��

�

�


�
y��
2

d�� d�!Mg �
�

�


�

2
y��d�, (A5)

whereM is the lumped mass located at the position �"d/l. The resulting potential energy
of the system can be obtained by adding equation (A5) to (A1): i.e.

<"

EI 
�

2 �
�

�

(y� (1!(
y�)�)����)�d�!�Alg �
�

�
��

�

�


�
y��
2

d��d�!Mg �
�

�


�

2
y��d�.

(A6)

Upon expanding the term (1!
����)�� into a power series and noting that (
�y��)(1,
equation (A6) becomes when the non-linear terms are retained up to fourth order

<"

EI 
�

2 �
�

�

[y��# (
y�y�)�] d�!

�Alg
2 ��

�

�
�

�

�

(
y��) d�d�!� �
�

�

(
y��) d��, (A7)

where �"M/�Al.
Next, the kinetic energy ¹ of the system is given by

¹"

�A
2

(1#C
�
K

�
) �

l
�

�

(xR �#yR �) ds#
�A
2 �

�

l
�

(xR �#yR �) ds#�
�
M(xR �#yR �)

���
, (A8)

where C
�
is the inertia coe$cient of the additional mass of the #uid and K

�
"��/� as

imposed by Chang and Liu [26]. Note that the system kinetic energy in equation (A8) is
a function of the velocity variables xR and yR . The axial velocity xR can be eliminated from this
equation by noting that for the present inextensible planar beam motion, i.e., no extension
of the beam's neutral axis, the inextensibility condition can be derived as follows [25].
Before deformation the position of a point on the elastic axis is given by r

�
"se



. After

deformation, its position is given by r"(s#x)e

�

#ye
��
, where e



, e


�
and e

��
are the unit
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vectors before and after deformation. Hence, the strain along the elastic axis of a di!erential
element is de"ned by

e"�
�r

�s
)
�r

�s�
���

!�
�r

�
�s

)
�r

�
�s �

���
"�(1#
x�)�#(
y�)�!1. (A9)

For inextensional beams, the elongation e is assumed to be zero, resulting in the condition
[22, 23, 25]

(1#
x�)�#(
y�)�"1. (A10)

The inextensibility condition (A10) allows one to relate, through consistent geometric
consideration, the axial and the lateral displacement and thus remove the axial motion from
the system kinetic energy (A8).
Equation (A10) may be written as 1#
x�"[1!(
y�)�]���, where a prime denotes

a derivative with respect to the dimensionless arc length �. Then, noting that (
�y��)(1,
expanding the right-hand side into a power series, retaining non-linear terms up to the
desired (i.e., fourth) order, and integrating the result from 0 to an arbitrary value of � leads
to the following expression for the axial displacement (shortening) x due to the #exural
bending y:

x"!

1

2 �
�

�

(
y��#�
�

�y��) d�. (A11)

Di!erentiating with respect to time t, squaring and retaining the non-linear terms up to
fourth order leads to

xR �"

1

4 ���
�

�

(
y��#�
�

�y��) d��

)

�
�
. (A12)

Upon substituting equation (A11) into equation (A8), the system kinetic energy ¹ of the
beam system considered becomes

¹"

�Al
2 ���

�

�
�yR �#�

� ����
�

�


y��d��
)

�
�

��d���#
�Al
2
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�
K

��
�
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�
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����
�
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y��d��
)

�
�

�d�

#

�Al
2

��yR �#�
� ���

�

�


y��d��
)

�
�

���"�
, (A13)

where �
�
"l

�
/l. Using equations (A7) and (A12) one obtains, after factoring out �Al/2, the

system Lagrangian ¸"¹!<, as

¸"

�Al
2 ��

�

�
�yR �#�

�����
�
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y��d��
)

�
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�� d�#C
�
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����
�

�


y��d��
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�
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#��yR �#�
� ���
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y��d��
)

�
�

���"��!	��
�

�

(y��#(
y�y�)�) d�

#g
���

�

�
�

�

�

(
y��) d�d�#� �
�

�

(
y�) d��, (A14)
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where 	�"EI
�/�Al is the linear frequency parameter and g
�
"�Al�g/EI is the

dimensionless gravity parameter.
The continuous system in equation (A14) does not admit a closed-form solution.

However, the interest here is in the case where the immersed beam motion is dominated by
a single active mode and it is assumed that the modal subspaces are invariant and
individually active [32]. Therefore, an approximate solution will be sought that satis"es
both the equation and the boundary conditions. Since the boundary conditions are spatial
and independent of time, an assumed single-mode approach may be used to discretize the
continuous Lagrangian, by any of the variational methods such as Rayleigh}Ritz.When the
assumed function is the eigenfunction in particular, the procedure is known as Galerkin's
method [22]. Accordingly, one assumes

y (�, �)"�(�)q (�), (A15)

where q(�) is an unknown time modulation of the assumed mode shape and �(�) is the
normalized mode shape function of the linear cantilever beam, i.e., ��

�
�� (�) d�"1, which is

assumed to remain self-similar (i.e., independent of motion amplitude) during the motion. In
this work Galerkin's method is used, whereby �(�) is the eigenfunction of the nth mode of
the cantilever beam, given in many vibration text books as

�(�)"(cosh p�!cos p�)#
cos p#cosh p

sin p#sinh p
(sin p�!sinh p�), (A16)

where p is the nth root of the frequency equation 1#cos p cosh p"0. The "rst four roots of
this equation are 1)875104, 4)694091, 7)854757 and 10)99554.
Substituting equation (A15) into equation (A14), one obtains the discrete beam

Lagrangian, which can be expressed as

¸"

�Al
2

[�
�
qR �!�

�
	�q�#�

�

�qR �q�!�

�
	�
�q�], (A17)

where

�
�
"�

�

�

��d�#C
�
k
� �

�
�

�

�� d�#���, (A18)
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���d�!g
��
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�
��

�

�

���d��d�!g
�
��

�

�

���d�, (A19)
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�
d�#C

�
k
� �

�
�

�
��

�

�

���d��
�
d�#���

�

�

���d�����
, (A20)

�
�
"�

�

�

������ d�. (A21)

To study the forced planar response of the beam system a concentrated load F
�
cos(�� �)

acting at an arbitrary �
�
along the span of the beam is assumed to act only in the y direction:

i.e., the beam transverse direction. Upon the application of the Euler}Lagrange equation

Q"

�
�t �

�¸

�qR �!

�¸

�q
, (A22)
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whereQ is the generalized force, which can be determined from the principle of virtual work
method, �="Q�y, one obtains the discrete beam non-linear equation as

�
�
qK#	��

�
q#�

�

�q�qK#�

�

�qqR �#2	�
��

�
q�"�

�

F
�

�Al
cos (�� �), (A23)

where �
�
"�(�

�
). It is to be noted that some of the coe$cients �

�
in equations (A18}A21)

increase sharply and attain relatively large values at the higher modes of the beam.
Therefore, for convenience, equation (A22) is scaled and converted to the dimensionless
form

uK#u#�
�
u�uK#�

�
uuR �#�

�
u�"�

�
FM cos(�t), (A24)

where

�
�
"�

�
/p��

�
, �

�
"2�

�
/p��

�
, �

�
"p�

�
/�

�
and FM "

F
�

�Al�	�
. (A25)

Dots now denote derivatives with respect to the dimensionless time t"	 (�
�
/�

�
)����,

�"�M /	 (�
�
/�

�
)���, u"pq/l is the dimensionless displacement amplitude at the point of

maximumde#ection, and p�"�/	 is the dimensionless frequency, and � is the frequency of
the assumed mode of the associated linear cantilever beam.
For some stability analysis, structure and water e!ective damping are assumed to be

viscous, with damping coe$cient �, which can be added to the equation of motion to take
the form

uK#�uR #u#�
�
u�uK#�

�
uuR �#�

�
u�"P cos (�t), (A26)

where P"�
�
FM . Equation (A26) belongs to the same class of nonlinear oscillators studied

recently by Al-Qaisia and Hamdan [20].

APPENDIX B: HARMONIC BALANCE SOLUTION

B.1. SINGLE-TERM HARMONIC SOLUTION (SHB)

According to the HB method, an approximate solution of equation (2) takes the form

u (¹)"A cos¹, (B1)

whereA is the steady state response amplitude. Substituting equation (B1) into equation (2),
neglecting third harmonics that arise, and equating coe$cients of "rst harmonics, one
obtains the following equations:

�
3

4
�
�
!

�
�
2

��� A�#(1!��)A"P cos�, (B2)

��A"P sin�. (B3)
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The steady state frequency response is obtained by squaring and adding equations (B2) and
(B3) and solving for �� as a function of A; this yields the steady state frequency response:

�� (4��
�
A�#�

�
A�#A�)#�� ((��!2)A�!(�

�
�
�
#�

�
)A�!��

��
�
�
�
�
A�)

#(A�#�
�
�
�
A�# �

��
��
�
A�)"P�. (B4)

Equation (B4) can be written in the form

��"R
�
$�R�

�
!R

�
, (B5)

where

R
�
"!(��!�

�
�
�
A�!�

�
�
�
�
�
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�
A�)	�2#2�

�
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��
�
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2 �, (B6)
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�
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�
A�

4 �. (B7)

Equation (B5) yields two real solutions for � provided that the radical term is real and less
than R

�
; a single real solution is obtained when the radical term is zero or greater than R

�
,

and no real solution exists when R�
�
!R

�
(0.

B.2. TWO-TERM HARMONIC SOLUTION (2THB)

In order to improve the accuracy of the SHB approximation one includes higher
harmonics in the assumed solution in equation (B1). In this work, only one more term is
added to this equation, whereby the two-term approximation, having the same period as the
excitation, to the steady state solution of the system in equation (2) with odd non-linearities
takes the form

u (¹)"A
�
cos¹#A

�
cos 3¹#B

�
sin 3¹. (B8)

Substituting equation (B8) and its derivatives into equation (2) and using the same
procedure followed previously and neglecting the higher order harmonics, one obtains the
following coupled non-linear algebraic equations for A

�
, A

�
, B

�
and the phase �:
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These equations may be expressed in a more convenient form as follows. First, squaring and
adding equations (B9) and (B10) and solving for �� leads to

a��#b��#c"0, (B13)
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Next, equations (B11) and (B12) are solved implicitly for A
�
and B

�
respectively:
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Equation (B13) can be written in the form

��"R
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�
, (B17)

where R
�
and R

�
can be calculated from equation (B14) so that R

�
"(!b/2a) and

R
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"(c/a). Equation (B17) has two real solutions provided that R�
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�
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�
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�
,

and no real solution exists when R�
�
(R

�
. Equations (B17), (B15) and (B16) were solved

iteratively with an accuracy of 10�
 to de"ne the steady state solution [21, 27].

APPENDIX C: STABILITY ANALYSIS USING SINGLE TERM ONLY

The stability analysis of the approximate harmonic balance solution in equation (B1) can
be carried out by introducing a small perturbation v (¹) to the assumed solution (B1): i.e., by
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substituting

u (¹)"A cos¹#v(¹) (C1)

into equation (B1). This leads to the following non-linear variational equation:
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The stability is governed by the linearized version of equation (C2). In addition, the
excitation term on the right-handside is deleted, because it has no in#uence on the stability;
this leads to the following Hill-type equation;
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Then by virtue of the Floquet theory, a particular solution of the linearized variational
equation LVE (C3) is sought in the form [2]

v(¹)"e�� � (¹), (C4)

where 	 is de"ned as the characteristic exponent and �(¹) is a periodic function with periods
¹ and ¹/2. The solution of v (¹) is stable (respectively, unstable) if the real part of 	 is
negative (positive), and the real part of 	 is zero on the boundary between stable and stable
regions [11].
To determine the boundaries of the "rst unstable region &&i.e., analysis I'' according to the

above procedure described in section 3, one may substitute as a "rst approximation

�
�
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"b
��
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��
sin(¹) (C5)

into equation (C3) and apply the harmonic balance method to obtain a set of the following
algebraic equations for (b

��
, b

��
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Non-trivial solutions for b
��
, b

��
exist only when the determinant of the coe$cient matrix in

equation (C9) vanishes, which gives the relation
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(C7)

Solving this last equation for �� gives the boundaries of the "rst order unstable region. The
boundaries of the second unstable region &&i.e., analysis II'', which may give rise to the
period-doubling bifurcation (PDB), can be obtained by substituting the following equation
as a "rst approximation

�
��
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�
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��
cos(2¹)#b

��
sin (2¹) (C8)

into equation (C3) and applying the harmonic balance method to obtain the set of algebraic
equations
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Non-trival solutions for b
�
, b

��
, b

��
exist only when the determinant of the coe$cient matrix

in equation (C9) vanishes, which gives the following relation between A and �, for certain
system parameters �, �

�
, �

�
:
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which is to be satis"ed at the stability boundary. Equation (C10) can be solved forA� to give
the boundaries of the second unstable region and the critical bifurcation value of the
amplitude.
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