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1. INTRODUCTION

The general problem considered is the stability analysis of systems exhibiting internal
resonance such as those with a bifurcation point representing a Hopf bifurcation or
a generalized Hopf bifurcation with non-semisimple double (or more) imaginary
eigenvalues (case of 1 : 1 internal resonance). In the case of linear systems, the plant is
characterized by multiple eigenvlaues on the imaginary axis and as rightly pointed out by
Gajic and Lelic [1], by application of the Jordan canonical form, no de"nitive statement
can be made about the stability of the system without further analysis. In fact, it is not really
necessary to reduce it to the Jordan form to predict stability. In the case of non-linear
systems, when there is the problem of internal resonances, it is well nigh impossible to
calculate the individual modal transformations of modes that are in internal resonance with
other modes. In such circumstances, all the modes that are in internal resonance must be
dealt with jointly or it may be bene"cial to avoid modal transformations altogether and
reduce the equations to appropriate canonical forms and normal forms. The internal
resonance case is important in a number of applications such as wind-induced oscillations
of bundled conductors and aircraft longitudinal dynamics when the eigenvalues
corresponding to a pair of elastic modes approach each other and the imaginary axis.
Again, in the linear situation, the stability may be assessed by the application of Floquet
theory and calculating the Floquet exponents. But the applications of Floquet exponents go
beyond stability analysis. One approach to control system synthesis for a class of systems is
based on the placement of the Floquet exponents or at least their magnitudes at appropriate
locations in the (!1, 1) domain. In fact, a popular approach to control law synthesis is to
let the closed-loop exponents to be equal to zero. This controller, often referred to as the
dead beat controller, then drives the response in the corresponding modes to their
equilibrium points in a minimum number of time steps.

In these systems, a bifurcation-type analysis based on normal form reduction or other
extended techniques based on Liapunov}Schmidt reduction or intrinsic harmonic balance
can yield the dominant motion in the vicinity of the bifurcation point. It does not provide
a solution which is uniformly valid over the entire phase space. Some of these systems are
often characterized by a sequence of bifurcations leading to chaos and in addition to
generating a local bifurcation diagram it is also essential to provide a complete response
and ensure the local topological equivalence of solutions obtained by other methods. Direct
numerical simulation is an invaluable tool in understanding some aspects of the response
but is quite incapable of separating the woods from the trees. What is essential is
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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a technique that would bridge the gap between local bifurcation analysis and direct
numerical simulation.

The approach advocated in this paper shares some common ground with certain classical
methods in vibrations such as the method of variation of parameters and the method of
averaging. In the Krylov}Bogoliubovmethod of averaging, the governing equations for the
amplitude dynamics are analytically averaged over a cycle to study the stability of
vibration. In contrast to this method, the strategy adopted here is akin to a demodulation
process whereby the amplitude dynamics is isolated but not averaged and then numerically
integrated to evaluate the amplitude transition matrix over each step. Any apparent
similarities to the Liapunov}Schmidt reduction of a typical bifurcation equation to a lower
dimensional bifurcation equation is only incidental. However following a bifurcation-type
analysis, the underlying behaviour of the vibration amplitude dynamics is "rst extracted.
This is then employed in constructing a transformation of the equations so as to focus on
the amplitude dynamics of the full non-linear (unabridged) system.

The objective of this study is to present a reasonably simple method of

(1) assessing the large amplitude stability of these systems;
(2) developing a numerical technique to predict the complete response of such systems as

well as generate an amplitude parameter diagram and reveal features associated with
instability and chaos.

An apparently abstract approach is adopted as the application spectrum includes stability
analysis and postcritical bifurcation in non-linear structural dynamics, aeroelastic #utter,
bifurcation in aircraft dynamics, helicopter dynamics and control and orbit and attitude
control problems in space dynamics. The example selected, however, is an excellent
benchmark problem and pertains to the phenomenon of galloping observed in conductor
bundles and suspension cables in cable-stayed bridges. It can be identi"ed, in the linear case,
with the phenomenon of aeroelastic #utter characterized by the coalescence of two natural
frequencies of the system. Thus, this results in an equal pair of imaginary eigenvalues which
is also characteristic of the Hopf bifurcation and a 1 : 1 resonance.

There are indeed a number of analytical and numerical techniques, valid close to Hopf
bifurcations or more complex mode interactions based on the methods of centre manifolds
and normal forms. The bifurcations occurring as the linear stability is lost may be
determined by the construction of a centre manifold. In particular, the nature of Hopf and
more degenerate, higher codimensional bifurcations may be explicitly determined. There
are also techniques for detecting Hopf bifurcations based on classical algebraic
constructions to reduce the governing equations to normal form. They are known to be
particularly well suited for solution by computer algebra techniques for vector "elds of
small or moderate dimension. Some of these methods also produce formulae on the
asymptotic amplitude and stability of the limit cycle that are valid for any system
of any arbitrary dimension (see for example references [2, 3] as well as a number of tutorials
on the web). Unfortunately, they either rely on the existence of exact Jacobians for the
construction of bialternate matrix products and on exact multivariate Taylor's series
expansions. There are a number of examples in engineering when it is not possible to
construct exact Jacobians or expand in a multivariate Taylor's series, i.e., either the region
of convergence of the series is outside the domain of interest or the vector "elds cannot be
completely expressed in terms of analytic functions. It is such applications that are of
primary interest in this paper. There are also a whole family of numerical continuation
methods, which are very e!ective in determining the dependence of the solution, once it has
been computed, on a particular parameter. In fact, continuation methods are particularly
useful in determining limit cycles via the associated Floquet exponents. Such continuation
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methods are in fact applicable to the Floquet exponents obtained in this paper but are not
discussed here.

2. THEORETICAL BACKGROUND

The governing equations of motion about a bifurcation point, x (t)"0, are assumed to be
non-linear of the form

xR (t)"A(x; t, �)x (t), x (0)"x
�
, (2.1)

where A(x; t, �) is either independent of the time, t, or is periodic with period ¹, i.e.,
A(c; t, �)"A(c; t#¹, �) when x (t)"c, a time-independent vector.

The matrix A(0; t, �) determines the linearized motion about the bifurcation point, and is
given by the state-transition matrix

x
�
(t)"�(t, 0; �)x(0), (2.2)

satisfying the linear equations

�� (t, 0; �)"A(0; t, �)�(t, 0; �), �(0, 0; �)"I. (2.3)

The matrix �(t, 0; �) is usually derived by numerical integration. Following the Floquet
theory, �(t, 0; �) can be expressed as

� (t, 0; �)"Z(t) exp(Jt)Z��(0), (2.4)

where, in general, exp(J¹) has diagonal real entries, as well as diagonal blocks of complex
eigenvalues of the monodromy matrix �(¹, 0; �). When a pair of complex eigenvalues are
equal it has the form

exp(J¹)"

�
�

2 0 0 0 0 2

� � � � � �

0 2 Re(�
�
) Im(�

�
) 1 0 2

0 2 !Im(�
�
) Re(�

�
) 0 1 2

0 2 0 0 Re(�
�
) Im(�

�
) 2

0 2 0 0 !Im(�
�
) Re(�

�
) 2

0 2 0 0 0 0 2

(2.5)

and the matrix Z is the matrix of associated eigenvectors. From equation (2.4) it follows that
�� (¹, 0; �) satis"es the equations

�� (t, 0; �)"Z� (t) exp(Jt)Z�� (0)#Z(t) J exp(Jt)Z��(0)

"(Z� (t)#Z(t)J) exp(Jt)J��(0)

and since �� (¹, 0; �) also satis"es

�� (t, 0; �)"A (0; t, �)�(t, 0; �)"A(0; t, �)Z(t) exp(Jt)Z��(0),
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it follows that Z(t) satis"es the equation

Z� (t)#Z(t)J"A (0; t, �)Z(t). (2.6)

Moreover, by di!erentiating the identity, Z(t)Z��(t)"I one also has

Z� ��(t)"JZ��(t)!Z�� (t)A (0; t, �). (2.7)

At this stage the equations of motion are transformed, so as to focus on the governing
amplitude dynamics. Although the use of a co-ordinate transformation based on the Jordan
canonical form is a distinct possibility, the generation of the co-ordinate transformation is
fraught with several computational di$culties. Thus, alternate approaches for constructing
transformations of the response were explored. The transformation sought is a bounded
time periodic function and is motivated by the interest being focused on the magnitude of
the exponent of the motion rather than the exponent itself. In particular, it is necessary to
isolate the dynamics of the amplitudes of periodic motion from the complete dynamics of
the motion itself. Hence, as a "rst step, the following transformation based on the transition
matrix is introduced as

x (t)"�(t, 0; �)y(t). (2.8)

Di!erentiating equation (2.8), it follows that

x� (t)"�� (t, 0; �)y (t)#�(t, 0; �)y� (t)

"A(0; t, �)�(t, 0; �)y(t)#� (t, 0; �)y� (t).

But from equations (2.1) and (2.8)

x� (t)"A(x; t, �)x (t)"A(x; t, �)� (t, 0; �)y(t),

hence

y� (t)"���(t, 0; �) (A(x; t, �)!A(0;t, �))� (t, 0; �)y (t). (2.9)

By letting,

F (y; t, �)"���(t, 0; �)(A (x; t, �)!A(0; t, �))� (t, 0; �) (2.10)

it follows that

y� (t)"F (y; t, �)y (t), y(0)"x
�
, (2.11)

where F (y; t, �) is not necessarily periodic. However, one may eliminate the modes that are
not in resonance by applying an appropriate modal transformation of the type discussed by
Shaw and Pierre [4] although this is not an essential requirement. One thus assumes that
the matrix exp(J¹) has no real eigenvalues and the complex eigenvalues are equal and in
block Jordan form. Thus

exp(J¹)"

Re(�
�
) Im(�

�
) 1 0

!Im(�
�
) Re(�

�
) 0 1

0 0 Re(�
�
) Im(�

�
)

0 0 !Im(�
�
) Re(�

�
)

. (2.12)
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When the characteristic exponents of the transition matrix, � (¹, 0;�) lie on the unit circle,
the matrix function F (y; t, �) is periodic in t, i.e., F(a; t, �)"F(a; t#¹

�
, �) for some "xed a,

a time-independent vector. Moreover, the stability of the systemmay be determined entirely
from the properties of F (y; t, �). It now follows that, F(a; t, �) is periodic in t with period ¹

�
for some "xed a, whenever �

�
P1!0�, where �

�
"�

�
exp(i�

�
). When �

�
"1, for some

critical value of the parameter, �"�
�
, the characteristic exponents of the associated Jordan

form lie on the unit circle and yet F(a; t, �) need not be periodic in t for some "xed a. This is
due to the presence of the so-called &&secular11 terms in the transition matrix, � (¹, 0; �),
which are not really a problem for stability analysis unless the largest characteristic
exponent associated with the solution y (t) is also exactly equal to unity. In these cases
further analysis of the problem is essential.

Further, the matrix exp(J¹) is not in block Jordan form, but �
�
"�

�
"1 and

exp(J¹)"

Re(�
�
) Im(�

�
) 0 0

!Im(�
�
) Re(�

�
) 0 0

0 0 Re(�
�
) Im(�

�
)

0 0 !Im(�
�
) Re(�

�
)

, (2.13)

where either �
�
O�

�
with �

�
+�

�
or �

�
"�

�
exactly, for some �(�

�
, F (a; t, �) is periodic in

t with period ¹
�
for some "xed a and again the stability of the system may be determined

entirely from the properties of F(y; t, �). Thus, in all the above cases the solution y (t)
determines stability of the system.

Thus, the amplitude dynamics is governed by equations (2.10) and (2.11), and the vector
y(t) may be referred to as the amplitude state vector. It is convenient to integrate these
equations over a "nite number (four or "ve in practice) of successive periods of the vibration
using a Runge}Kutta}Fehlberg type of numerical integration method to construct an
n cycle transition matrix. For convenience, in the rest of the paper the time period of
vibration is assumed to remain constant and equal to ¹"¹

�
. It is important to distinguish

between the amplitude state vector at a time instant, t
�
, within a time period, y (t

�
#n¹) and

the same vector at the end of the time period, y (¹#n¹). Local stability is governed by the
transition from y(t

�
#n¹) to y (t

�
#�t

���
#n¹), while the stability of the solution over

a period is governed by the transition from y (n¹) to y (¹#n¹).
The solution, y (t

�
#�t

���
#n¹), during the (n#1)th period and in the time interval

t
�
(t(t

�
#�t

���
may be determined by numerical integration and expressed in the form

of a state transition solution as

y (t
�
#�t

���
#n¹)"�

���
(y(t

�
#n¹), t

�
#�t

���
#n¹, t

�
#n¹; �)y (t

�
#n¹ ), (2.14)

where t
�
"��

���
�t

�
.

As far as possible, the time steps, �t
�
, are all taken to be equal in practice although this is

strictly not required. However, deciding on the best time step may require several iterations
and is selected as the largest value for which Fehlberg error estimates are within acceptable
bounds over the entire integration time frame.

Thus, the solution at the end of the kth time step may be written as

y(t
�
#n¹)"�

���
�
���

�
���

(y(t
�
#n¹), t

�
P�t

���
#n¹, t

�
#n¹; �)�y(n¹). (2.15)
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Thus, the solution at the end of the (n#1)th period may be written as

y (¹#n¹)"�
���
�
���

�
���

(y(t
�
#n¹), t

�
#�t

���
#n¹, t

�
#n¹; �)�y (n¹), (2.16)

where t
�
"¹.

The above equations may be expressed as

y (t
�
#n¹)"�(t

�
; �)y (n¹), y (¹#n¹)"� (¹; �)y (n¹) (2.17, 2.18)

respectively.

3. COMPUTING THE STABILITY BOUNDARIES

Given a matrix eigenvalue problem in the form

(I#A)x"�x, (3.1)

where x is an eigenvector of the matrix A and � the corresponding eigenvalue, one may
interpret the magnitude of the eigenvalue � as the expansion or contraction rate of the
eigenvector. Thus, the magnitude of the eigenvalue of the matrix

A
���

"�
���

(y (t
�
#n¹

�
), t

�
#�t

���
#n¹

�
, t

�
#n¹

�
; �)!I (3.2)

represents the local expansion/contraction rate of the corresponding eigenvector. Thus, one
may de"ne aggregate local incremental expansion/contraction exponents as the magnitudes
of the eigenvalues of the weighted mean

A
	
��

"

���
�
���

�t
��	����

�t
���

A
���

Q
���

A�
����

���
�
���

Q
���

A�
���

. (3.3)

In particular, if the weighting matrices Q
���

are chosen such that

Q��
���

"A�
���

, (3.4)

it follows that for this particular choice of Q
���

the resulting expression for A
	
��

is

A
	
��

"

1

¸

���
�
���

A
���

�t
��	����

�t
���

"

1

¸

���
�
���

(�
���

(y (t
�
#n¹

�
), t

�
#�t

���
#n¹

�
, t

�
#n¹

�
;�)!I)

�t
��	����

�t
���

. (3.5)

Thus, the aggregate local expension/contraction exponents over the entire time period, ¹
�
, are

given by the magnitudes of the eignevalues of the matrix

F"(I#A
	
��

)��

�, (3.6)

where index"¹
�
/�t

��	����
.

In the case of a linear system integrated by an exact method the two matrices F and
�(¹

�
; �) are identical, but this is not so in the non-linear case. Thus, one may de"ne two sets

of exponents as the magnitude of the eigenvalues of the two matrices F and �(¹
�
; �) and
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these are referred to as the aggregate matrix exponents and the monodromy matrix
exponents. They are calculated in the next section for a typical example and compared with
each other. Stability is guaranteed if the two sets of exponents are less than or utmost equal
to unity.

It is worthwhile to note that if one were dealing with a linear time periodic problem, there
would be no reason to distinguish between the exponents of the aggregate and monodromy
matrices; they would be the same provided the integration time steps are assumed to be
su$ciently small. In the non-linear case, there would be no reason to assume that they
would be the same even when the integration time step is su$ciently small, as the system
responses are basically amplitude dependent and the principle of superposition is not
generally valid. Thus, there is the possibility of exploring both approaches for calculating
the exponents.

Although equation (3.5) may be directly employed to evaluate the aggregate stability
exponents, an alternate matrix is constructed to be consistent with the standard practice of
evaluating the eigenvalues of the monodromy matrix in the case of linear time-varying
systems.

4. ILLUSTRATIVE EXAMPLE

The example is the classic problem of wake-induced vibration of bundled overhead
transmission lines exposed to strong crosswinds. A twin horizontal bundle of overhead
transmission lines is considered. A mechanical model of this bundle consists of two rigid
smooth cylinders, one of which is mounted on springs in the wake of the other identical but
"xed neighbour. The two conductors lie in an almost horizontal plane, as shown in
Figure 1, separated by a distance of about 10}25 conductor diameters and under certain
conditions of wind velocity, the pair of conductors are dynamically unstable. These
instabilities are due to the leeward conductor lying in the aerodynamically shed wake of the
windward one. Apart from the conditions of instability, the post-critical behaviour in
general and any limit cycles in the response are of interest. As in this example the motion of
the conductors are known to diverge very slowly to a limit cycle oscillation, it is an
eminently suitable benchmark problem for numerically assessing the postcritical behaviour
of the class of systems exhibiting 1 : 1 internal resonance in the linear case.
Figure 1. Illustration of an almost horizontal twin bundle of conductors.
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The model of the twin conductor bundle assumes that the windward conductor is "xed
while the leeward conductor is suspended by springs. The springs essentially represent
a discretization of the elastic e!ects of the three-dimensional leeward conductor.

Referring to Simpson [5, 6], the governing equations of motion of the leeward conductor
are given by

mlxN G#(k
�
#k

�
)xN #(k

�
!k

�
)zN "F

�
mlzN G#(k

�
!k

�
)xN #(k

�
#k

�
)zN "F

�
, (4.1, 4.2)

where the springs are assumed to be symmetrically placed with respect to both the
horizontal and vertical axes and the aerodynamic forces and

F
�
"!�

�
�lcN <M

�
	CM

�
(<M #xNQ )!CM

�
zNQ 
, F

�
"!�

�
�lcN <M

�
	CM

�
(<M #xNQ )#CM

�
zNQ 
 (4.3)

with m being the mass of the conductor per unit length, l the conductor length, cN the
conductor diameter, �"1)225 kg/m�, xN , zN the horizontal and vertical displacements of
the leeward conductor,<M ,<M

�
the local and relative local wind speed, b"<M /< the ratio of the

local to the free stream velocity andCM
�
and CM

�
are the lift and drag coe$cients based on the

local wind speed. The xN , zN displacements are non-dimensionalized and the result is

x"xN /cN , z"zN /cN (4.4)

and the horizontal and vertical spacing between the conductors is de"ned in
non-dimensional co-ordinates.

The lift and drag models in equation (4.3) are based on standard representations of
aerodynamic lift and drag in terms of empirically de"ned and experimentally determined
coe$cients commonly referred to as the coe$cient of lift, CM

�
and the coe$cient of drag, CM

�
.

The parameters CM
�
and CM

�
are functions of the state space in general and not constants.

They are normally determined by experiment and are therefore only known at a "nite
number of discrete points in the state space. Based on potential #owmodels, it can be shown
that the fundamental solutions for the velocity potential are exponentially dispersive in the
downstream direction and essentially wave-like in the vicinity of the conductor bundle. On
this basis a set of appropriate functions are use to model the coe$cients of lift and drag
rather than the polynomials used in reference [7]. While a detailed discussion of the
accuracy of the modelling is not too relevant to the main thrust of the analysis, a qualitative
justi"cation for the approximate model may be provided based on the physics of potential
#ows. The physically meaningful modelling of these coe$cients is strictly a matter of
expediency as it permits the coe$cients to be easily expanded in a Taylor's series without
recourse to di!erentiation of numerical approximations to experimentally determined
values. Further, as the original data quoted by Kern and Maitz [7] were not available, the
approximation route was the only one open to the author.

The coe$cients, CM
�
"CM

�
(xL , zL ) and CM

�
"CM

�
(xL , zL ) in equations (4.3) are then

approximated, based on the plots of Kern and Maitz, as functions of xL "x
�
!x and

zL "z
�
!z, which are the relative distances of the leeward conductor from the windward

conductor. Thus

b�CM
�
(xL , zL )"�

�
�(1!�

�
cos(zL ) exp (!( �xL �!5)/50)), �"1)2, !
)z)
,

"�
�
� (1#�

�
exp(!( �x �!5)/50), 
'z'
, (4.5)

b�CM
�
(xL , zL )"!(�/4) sin(zL ) exp(!(�x �!5)/15)"0, !
)z)
. (4.6)
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When xL is less than zero, the roles of the leeward and windward conductors are reversed.
However, since only relative motion is considered and the windward conductor is assumed
"xed, forces acting on the windward conductor are assumed to be acting on the leeward
conductor with their directions reversed. E!ectively, this means that CM

�
(xL , zL ) reverses sign

when xL is less than zero.
For su$ciently small and positive values of xL and zL , the derivatives of the above

expressions are

b��CM
�
/�x"! �

���
� cos(zL ) exp (!(xL !5)/50),

b��CM
�
/�x"!(�/60)sin(zL ) exp (!(xL !5)/15),

b��CM
�
/�z"!�

�
� sin(zL ) exp (!(xL !5)/50),

b��CM
�
/�z"(�/4)cos(zL ) exp (!(xL !5)/15). (4.7)

Further,

<M
�
"�(<M #xNQ )�#zNQ � (4.8)

and the equations of motion may be expressed as

xK#(1/ml)(k
�
#k

�
)x#(1/ml)(k

�
!k

�
)z

"!�
�
(�<�b�/m) �(1#cN xR /b<)�#(cN zR /b<)� 	CM

�
(1#cN xR /b<)!CM

�
cN zR /b<
, (4.9)

zK#(1/ml)(k
�
!k

�
)x#(1/ml)(k

�
#k

�
)z

"!�
�
(�<�b�/m) �(1#cN xR /b<)�#(cN zR /b<)� 	CM

�
(1#cN xR /b<)#CM

�
cN zR /b<
. (4.10)

Given that ��
�
"2k

�
/ml and ��

�
"2k

�
/ml, the above equations of motion may be expressed

as

xK#((��
�
#��

�
)/2)x#((��

�
!��

�
)/2)z

"!�
�
(p<�b�/m) �(1#cN xR /b<)�#(cN zR /b<)� 	CM

�
(1#cN xR /b<)!CM

�
cN zR /b<
, (4.11)

zK#((��
�
!��

�
)/2)x#((��

�
#��

�
)/2)z

"!�
�
(p<�b�/m) �(1#cN xR /b<)�#(cN zR /b<)� 	CM

�
(1#cN xR /b<)#CM

�
cN zR /b<
. (4.12)

Expanding the equations in a Taylor's series and retaining terms up to "rst order results in

xK#((��
�
#��

�
)/2)x#((��

�
!��

�
)/2)z

"!�
�
(�<�b�/m) 	CM

�
(1#2cN xR /b<)!CM

�
cN zR /b<#(�CM

�
/�x)(x!x



)#(�CM

�
/�z)(z!z



)
,
(4.13)

zK#((��
�
!��

�
)/2)x#((��

�
#��

�
)/2)z

"!�
�
(�<�b�/m) 	CM

�
(1#2cN xR /b<)#CM

�
cN zR /b<#(�CM

�
/�x)(x!x



)#(�CM

�
/�z)(z!z



)
,
(4.14)
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where the coe$cients, CM
�
"CM

�
(xL



, zL



) and CM

�
"CM

�
(xL



, zL



) are evaluated at the equilibrium

position, (x


, z



), where xL



"x

�
!x



and zL



"z

�
!z



.

By letting u"x#z and v"x!z,

uK#��
�
u"!

1
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and the derivatives are evaluated at the equilibrium points.
Under steady state conditions at the equilibrium point
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Hence, the equations for u and v may be written as
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and the characteristic equation for the system takes the form
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and the coe$cients c
��
are the elements of the matrix C de"ned by
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Applying the Routh}Hurwitz criterion leads to the criterion for the stability of the
equilibrium solution and is
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The approach in the following is somewhat similar to the strategy adopted in Hopf
bifurcation analysis where damping is initially neglected to isolate the underlying behaviour
in the vicinity of a bifurcation point. In practice, however, damping is not neglected in
solving the full non-linear problem.

Thus, if one assumes that a
�
and a

�
are both negligible and hence equal to zero, the

condition for a 1 : 1 resonance is
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As this stage, it is initially assumed that the contribution of the damping terms, i.e., �c
��
� is

negligible. This permits one to generate the time periodic transformation which is then used
to exact the amplitude dynamics from the full non-linear equations of motion without
ignoring the contribution of aerodynamic or any other damping.

Ignoring �c
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�, the equation reduces to
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After estimating an initial starting value of the critical velocity, the corresponding
equilibrium solutions are then determined by minimizing the absolute value of the error,
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At the critical velocity the linear undamped equations may be reduced to the standard
Jordon canonical form exhibiting a 1 : 1 internal resonance.



LETTERS TO THE EDITOR 937
4.1. MOTION ABOUT THE EQUILIBRIUM POINT UNDER CRITICAL CONDITIONS

Consider "rst the linearized motion about the equilibrium point under critical conditions.
The governing linear equations assuming all damping is negligible are
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(4.27)

where the derivatives are evaluated at the equilibrium position. The linearized equations of
motion govern the small amplitude motions relative to the spacing between the conductors
when the circulatory aerodynamic sti!ness e!ects are predominantly greater than the
aerodynamic damping e!ects. Under the circumstances of a high freestream velocity relative
to the velocities of the conductor the aerodynamic damping e!ects may be ignored.

The complete non-linear equations are
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where the coe$cients,CM
�
"CM

�
(xL , zL ) and CM

�
"CM

�
(xL , zL ) are evaluated in terms of xL "x

�
!x

and zL "z
�
!z. One may then express the two sets of equations in terms of the state vector
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zR ]�

integrate the state equations, and compute the stability boundaries by the methods
presented above.

4.2. NUMERICAL EXAMPLE

The numerical example considered was similar to the one considered by Kern and Maitz
[7]. However, not only a di!erent value had to be selected for velocity ratio, b, the
aerodynamic lift and drag coe$cients data presented graphically by Kern and Maitz were
approximated using di!erent basis functions. It was felt that these basis functions were more
appropriate from the standpoint of the physics problem. However, the qualitative results
obtained for the undamped linear case were not di!erent from those of Kern and Maitz.

One of the problems faced was de"ning the so-called critical velocity when both the
eigenvalues are equal. Unfortunately, this can never be exactly obtained and lower and



TABLE 1

Parameter values for numerical example

Parameter Value Parameter Value

c (conductor dia.) 0)03048 m Critical frequency 7)997 rad/s
�

�
(Highest nat. freq.) 8)34 rads/s b (reference value) 1)0

�
�
/�

�
(ratio of natural

frequencies)
0)91 x

�
(leeward conductor

x-position reference to
windward conductor)

12 (in units of
conductor diameter)

� (air density) 1)225 kg/m� z
�
(leeward conductor

z-position reference to
windward conductor)

!1)4

m (mass per unit length) 1)596 kg/m x


(leeward conductor

equilibrium x-displacement
!0)2081

Critical wind velocity (v
�
) 6)8226 m/s z



(leeward conductor

equilibrium z-displacement)
!0)07019

Wind velocity used for
computing the response

v�
�

+v
�

!1)0E!17 m/s
Number of integration

time steps 300/cycle
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upper bounds must be estimated in practice. The issue here is not the precision of the
computation but to ensure that one is su$ciently close to the 1 : 1 internal resonance case.
The values of the critical velocity bounds and the critical frequency are listed in Table 1.
However, it must be emphasized that only bounds can be calculated to this velocity and that
one can get arbitrarily close to the condition of 1 : 1 resonance but never really obtain
exactly equal eigenvalues. This is not really a problem in this methodology as no attempt
is made to reduce the linear equations to a Jordan canonical form. In this example, only
the lower bound was utilized in the computation of the stability exponents and was
computed as close to the critical velocity as was possible (within 1)0E-17 of the critical
velocity).

The numerical integration was performed using Runge}Kutta}Fehlberg method as this
provided an estimate of the error during each step. A two-pass approach was adopted to
ensure that the error estimate was acceptable and below a speci"ed tolerance value over the
entire integration time frame. In this manner, the maximum acceptable integration stepsize
was chosen. A typical plot illustrating the motion of the leeward conductor is shown in
Figure 2. For lower amplitudes, the motion slowly diverged to a limit cycle while for higher
amplitudes the motion slowly converged onto it.

The magnitude of the maximum and minimum exponents computed over a four-cycle
period by both the methods mentioned above was then plotted against a representative
amplitude parameter. The single-cycle exponents may be obtained from these by taking the
fourth root of each of the exponents. These plots are illustrated in Figure 3 clearly
indicating the existence of a limit cycle for an amplitude parameter +62. At this value of
the amplitude parameter, the minimum and maximum exponents are equal to each other
and also equal to unity. The minimum exponents obtained by the two methods are almost
identical. This is not entirely unexpected as the minimum exponent below the limit cycle is
usually unity, while the minimum exponent above the limit cycle is less than unity.
Minimum exponents correspond to stable components of the motion. As the exponents of
unstable motion are generally di$cult to estimate, the maximum discrepancy would be
expected in the maximum exponents corresponding to the unstable domain which is below
the limit cycle.



Figure 2. Limit cycle oscillations of a twin conductor bundle: (a) unstable leeward conductor motion slowly
diverging to a limit cycle; (b) stable leeward conductor motion slowly converging to a limit cycle (the equilibrium
positions of the windward and leeward conductors are shown as an &&�'' and &&�'' respectively).

Figure 3. Plot of the maximum and minimum stability exponents for a range of amplitudes of the twin bundle of
conductor: Key for matrix exponents: *�*, monodromy (max); *�*, monodromy (min); *�*, aggregate
(max); *�*, aggregate (min).
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5. CONCLUSIONS

In this letter, the problem of predicting the stability of non-linear unstable systems
characterized by a 1 : 1 internal resonance form of linear dynamics is considered. Two
methods of computing the stability exponents are presented and compared by applying to
a benchmark application characterized by a slowly evolving limit cycle. The quantitative
results obtained match the qualitative results of several previous investigators. Both
methods have a distinct advantage over direct numerical integration as the imaginary
eigenvalues of the 1 : 1 internal resonance linear dynamics do not actually contribute to the
stability exponents. The numerical method incorporates this feature thus ensuring that the
computed exponents are reliable and accurate.

The numerical stability exponent prediction techniques may be applied to practical
problems well beyond the benchmark problem considered here. Apart from other similar
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applications such as the analysis of the stability of periodic orbits (see for example reference
[8]), the techniques may be used to alter and control the stability exponents in controlled
time periodic systems along the lines suggested by Calico and Weisel [9]. As pointed out by
them, the application of Floquet and extended Floquet-type theories to the control problem
is quite limited. The methods presented here allows for the "ne tuning of the stability
exponents after a controller has been designed by certain peliminary approximate methods.
A complete discussion of this aspect is beyond the scope of this letter and will be presented
elsewhere.

A number of chaotic systems are also characterized by a 1 : 1 internal resonance form of
linear dynamics and the techniques presented are currently being evaluated as possible
methods for the prediction of the occurrence of chaos. The results of this study will also be
presented elsewhere.

Finally, it must be said that while there are a number of other issues associated with the
numerical determination of the stability exponents, the objective of this letter was to present
a numerical technique not only to predict the complete response of such systems but also to
generate an amplitude parameter diagram and reveal features associated with the
instabilities. The objective was successfully achieved.
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