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An e$cient relationship between geometric and material properties of pin-jointed truss
structures and their eigenvalues is established. The problem is formulated as an inverse
eigenvalue problem. This formulation allows the determination of the required
modi"cations on the structural members to achieve speci"ed eigenfrequencies. In addition to
the modi"cation of the existing structural elements, the formulation also allows addition of
new structural elements to obtain the desired frequencies. Using the proposed inverse
method, two cases of plane as well as space truss structures are studied and the results are
compared with those obtained using the conventional optimization techniques adopted by
commercial "nite element codes.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Dynamic characteristics are one of the most fundamental considerations in the design of
structural systems. The most basic feature in determining the vibration behaviour of
a structure is its eigenfrequencies and the eigenmodes associated with each natural
frequency. It is important for the designer to ensure that the natural frequencies of the
structure do not coincide with the excitation frequencies. The common industrial practise
for optimising the vibration behaviour of structures is to conduct a series of modi"cations
on the simulated structure in order to achieve the required eigenfrequencies. Each
modi"cation requires the analysis of the modi"ed structure, which is usually only slightly
di!erent from the structure previously analyzed. This approach, known as forward variation
approach or design load analysis cycle, is extremely time consuming, expensive and rarely
yields an optimum solution. The vibration minimization problem can be de"ned as an
inverse engineering problem. Inverse engineering refers to problems, where the desired
response of the system is known or decided but the physical system is unknown.
In the conventional approach in deciding which parameters to change in achieving the

required resonance frequencies, the designer usually considers making structural
modi"cation by adding or removing material from certain parts of the structure or adding
mass to others. Modi"cation of damping characteristics of the structure is also a means of
changing the dynamic behaviour of the structure. In using all these techniques, the previous
experience of the engineer is relied on to make the necessary modi"cations. This implies
a number of usually expensive "nite element analysis (FEA) design iterations. A number of
commercially available FEA codes provide some optimization modules. The algorithm
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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used in these modules is such that the user de"nes the areas within the model, where the
optimization is to be conducted. These are converted by the program to constraint
equations. The user also de"nes the optimization parameters. These are used as state
variables. Finally, the user de"nes the objective function, e.g., minimum eigenvalue. The
program then goes through many forward iterations in order to obtain a solution.
To eliminate the need to re-analyze the whole structure, research e!orts were conducted

towards developing new concepts with su$cient information to "nd the exact modi"ed
parameters which yield the required natural frequencies. Early work in this direction [1}3]
utilized the "rst order terms of a Taylor's series expansion and is based on Rayleigh's work.
Chen and Garba [4] used the iterative method to modify structural systems. Later Baldwin
and Hutton [5] presented a detailed review of structural modi"cation techniques and
classi"ed them into three categories:

(1) techniques based on small modi"cation;
(2) techniques based on localized modi"cation;
(3) techniques based on modal approximation.

Further research on structural modi"cation was carried out by Tsuei et al. [6}8], who
presented a method of shifting the desired eigenfrequencies using the forced response of the
system. The method is based on modi"cation of either the mass or sti!ness matrix by
treating the modi"cation of the system matrices as an external forced response. This
external forced response is formulated in terms of the modi"cation parameters, thus
creating a modi"ed eigenvalue problem. More recently, Zhang and Kim [9] investigated
the use of mass matrix modi"cation to achieve the desired natural frequencies. McMillan
and Keane [10] investigated a method of shifting eigenfrequencies of a rectangular plate by
adding concentrated mass elements.
Sivan and Ram [11}13] extended further the research on structural modi"cation by

studying the construction of mass and spring system with prescribed natural frequencies.
They developed a new algorithm based on Joseph's work [14] to obtain a physically
realizable solution. The resulting solutions were only approximate as they were based on an
optimization approach rather than an exact solution.
In the last few years, the work on the inverse problem conducted by Gladwell [15] started

to be taken seriously by engineers and researchers interested in this "eld of engineering. The
work is applied to both discrete and continuous systems.
In this paper, a simple but e$cient formulation between geometric or material properties

of pin-jointed truss structures and their eigenvalues is established. The formulation allows
the shifting of the frequency and solves for the required modi"cation on chosen geometric
and material parameters. The importance of the present formulation becomes more
apparent when only a local modi"cation is allowed due to practical constraints.

2. THEORETICAL CONSIDERATION

To construct a system with desired eigenfrequencies, it is necessary to "nd a relationship
between the structural parameters of the system and its eigenfrequencies. For a discrete
system such as a mass and spring system, and when only one or 2 degrees of freedom (d.o.f. )
are involved, the formulation which accounts for such relationship is easily obtained and
hence the change of sti!ness or mass required for shifting the eigenvalues can easily be
evaluated. However, for systems with a large number of d.o.fs and continuous systems
special algorithms have to be developed.
A contribution in this direction was made by Esat and Akbar [16]. They presented the

sti!ness of a discrete system as a function of the desired eigenvalues and showed that the
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sti!ness varies linearly with the eigenvalues. The formulation is very simple; however, the
resulting sti!ness of the modi"ed system may not be physically implemented.
For the new system to be constructed, the modi"cation carried out on the structural

properties of the system must have a physical meaning (realizable). In the case of truss
structures, both the elastic modulus and the cross-sectional area of the bars can be modi"ed
to shift the eigenfrequencies. Any modi"cation on the elastic modulus would cause only
sti!ness modi"cation of the structures. However, a modi"cation in the area parameter
would result in both sti!ness as well as mass modi"cation of the structure. In the following
section, a formulation giving the cross-sectional area modi"cation as a function of the
required eigenfrequency is "rst developed. This formulation can then be used to obtain the
elastic modulus variation as a function of the desired eigenfrequency.

3. MODIFICATION OF THE CROSS-SECTIONAL AREA PARAMETER

For a pin-jointed truss structure, both the sti!ness and mass modi"cations can be given
as functions of the area modi"cation of any member in the structure:

[�K]"�A[K�], [�M]"�A[M�] , (1)

where [�K] and [�M] are the variations or modi"cations of the system sti!ness and mass
matrices, respectively, �A, which is a scalar, is the change in the area of an individual
modi"ed member and [K�] and [M�] are the matrices containing the coe$cients of the
sti!ness and mass participation, respectively, of the modi"ed member, i.e., they are the
sti!ness and mass matrices of the modi"ed member, where the area A is taken as unity.
The equation of motion for free vibration of a dynamic system is given by

[K!�
�
M]���"0, (2)

where [K] and [M] are the sti!ness and mass matrices of the system, ��� is the displacement
vector and �

�
is the eigenvalue of the original system.

If a modi"cation �A is carried out on any member of the structure, this would result in
modi"cations in both sti!ness and mass matrices of the whole structure and hence the
equation of motion becomes

[K#�K!�
�
M!�

�
�M]���"0, (3)

where �
�
is the new eigenvalue of the modi"ed structure. It should be noted that the

dimensions of [�K] and [�M] are adjusted to make their addition to [K] and [M]
possible.
Transformation to modal co-ordinates can be obtained by putting

���"[�]�u�,

where [�] is the full (and square) mass normalized modal matrix for the original system.
Hence,

[K#�K!�
�
M!�

�
�M][�]�u�"0, (4)

[K�#�K�!�
�
M�!�

�
�M�]�u�"0. (5)

If we pre-multiply the above equation by [�]� and use the orthogonality characteristic of
[�] with respect to [K] and [M] one obtains the following equation:

[�#���K�!�
�
I!�

�
���M�]�u�"0, (6)

where [�] is the diagonal eigenvalue matrix and I is the identity matrix.
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Or:

[�!�
�
I]�u�"![���K�!�

�
���M�]�u�. (7)

Hence,

�u�"!([�!�
�
I]��[���K�!�

�
���M�])�u� . (8)

By pre-multiplying both sides by [�] and substituting [�K], [�M] and [�]�u� by �A[K�],
�A[M�] and ���, respectively, gives

���"!�A([�][�!�
�
I]��[��][K�!�

�
M�])���. (9)

This can be written as

���"!�A[F][G]���, (10)

where

[F]"[�][�!�
�
I]��[�]� (11)

and

[G]"[K�!�
�
M�]. (12)

Equation (10) can be simpli"ed in a matrix form as

�
�A��#(FG)

���
(FG)

���
2 (FG)

���
(FG)

���
�A��#(FG)

���
2 (FG)

���
2 2 2 2

(FG)
���

(FG)
���

2 �A��#(FG)
���
� �

�
�

�
�

2

�
�
�"0, (13)

where the terms (FG)
���

are elements of the matrix [FG] which is a function of the
eigenvalue �

�
and the su$x n denotes the nth term in the matrix. It should be noted that the

solutions to equation (13) are not necessarily real and positive. This is because, although the
matrices [F] and [G] are symmetric, their product is not. However, a necessary and
su$cient condition for solvability of this equation is set in the solution algorithm by
requiring that (�A/A))1. By imposing this condition and noting that �A represents the
variation in the cross-sectional area (which can be negative) only real solutions to equation
(13) are retained.
The characteristic equation of the modi"ed system for the eigenvalue �

�
is given by

�
�A��#(FG)

���
(FG)

���
2 (FG)

���
(FG)

���
�A��#(FG)

���
2 (FG)

���
2 2 2 2

(FG)
���

(FG)
���

2 �A��#(FG)
���
�"0. (14)

Equations (13) are for global modi"cation, where all the bars are to be modi"ed at the same
time and with the same �A. In this case, n is equal to the total number of unconstrained
d.o.fs. However, if this is not the case, then only the terms corresponding to the nodes
associated with the modi"ed bars are retained. For example, if only one bar is to be
modi"ed then equations (13) would be reduced to four equations for a plane truss and to six
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equations for a space truss, where the associated nodes are not constrained. It is more usual
to conduct a sensitivity analysis on the structure "rst by considering the variation of �A
with respect to change of eigenfrequency for each structural member. The modi"cations are
then carried out on the members which are most sensitive to this change. A solution �A for
the above problem can be obtained by solving the characteristic equation (14) once the
desired eigenvalue �

�
is speci"ed.

4. ALGORITHM

For a given truss structure:

(1) Obtain the sti!ness and mass matrices [K] and [M],
(2) run a modal analysis to obtain the natural eigenvalues [�] and the corresponding

eigenvectors,
(3) compute the mass normalized modal matrix [�],
(4) obtain the desired eigenvalue �

�
from the desired frequency f

�
,

(5) compute the matrix F"[�][�!�
�
I]��[�]� ,

(6) specify the member to be modi"ed,
(a) compute the sti!ness and mass matrices [K�] and [M�] by taking the cross-

sectional area of the member as unity,
(b) obtain the matrix [G]"[K�!�

�
M�],

(c) carry out the matrix multiplication [FG]"[F][G],
(d) compute �A�� from the characteristic equation (14), ��A��[I]#[F][G]�"0,
(e) determine �A which represents the necessary variation of the cross-sectional area

of the member considered for the desired frequency.
(7) Repeat step 6 to consider another member.

The algorithm allows for the addition of new members to the structure to obtain the
required frequency. In this case, if the new bar is to be added between two existing nodes
then only the other geometric and material properties and the nodes numbers are to be
entered in step 6 for [K�] and [M�] to be computed. However, if the new bar is to be
connected to a new external node, then of course that node has to be considered in step
1 with any corresponding boundary conditions. If more than one member is to be altered
simultaneously, as in the case of the second example in the next section, then in step 6 above
all the numbers of the members to be modi"ed must be entered, and in step 6(a), [K�] and
[M�] refer to the assembled sti!ness and mass matrices for the considered members.

5. NUMERICAL APPLICATION

5.1. THREE-BAR TRUSS

A three-bar truss structure is shown in Figure 1 and has the following dimension and
material properties:

E"2�10�� kN/m�,

�"7860 kg/m�.

Cross-sectional area for all members is

A"0)3871�10�� m�.
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The sti!ness and mass matrices for the structure are

K
�
"�

0)185216�10� !0)533072�10	

!0)533072�10	 0)540406�10� �
M

�
"�

0)107133 0

0 0)107133� .
The resulting eigenvalues and mass normalized modal matrices are obtained as

�
�
"�

0)165577�10
 0

0 0)511732�10
� ,

�"�
3)02277 0)443877

0)443877 !3)02277� .
The lowest frequency f

�
"��

�
/2�"2047)95 Hz, if this is to be increased by 5% the

new (desired) frequency would be f
��

"2150)35 Hz and the corresponding eigenvalue
�
�
"0)182549�10
.
If a modi"cation is to be carried on the cross-sectional area of member 1 to achieve

the new desired frequency, then both matrices [K�] and [M�] for member 1 have to be
calculated. These are equal to

K�"�
0)296884�10�� 0)164935�10��

0)164935�10�� 0)916307�10��� ,

M�"�
1348)73 0

0 1348)73� .
Both matrices [F] and [G] as de"ned in equations (11) and (12), can now be computed and
by applying equations (13) gives:

�
�A��!0)409636�10� !0)758481�10�

!0)154944�10� �A��!0)162078�10�� �
�
�

�
�
�"0.

By solving the above characteristic equation: one obtains�A"0)222�10�� m�. Therefore,
in order to shift the frequency f

�
to 2150)35 Hz the cross sectional area of bar 1 needs to be

increased by 57)36%.
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Figure 2. Plane truss structure.

TABLE 1

Five lowest natural frequencies (Hz) of the plane truss structure

Software Five lowest natural frequencies

Present results 39)2741 99)7494 165)864 187)710 362)533
ANSYS 39)274 99)749 165)86 187)71 362)53
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5.2. PLANE TRUSS STRUCTURE

(1) The second case considered is a 12-bar truss cantilever as shown in Figure 2. Bars 13
and 14 are initially not included in this section. The material properties and the
cross-sectional area of the bars are

E"2�10�� N/m�,
�"7860 kg/m�,
A"5�10��m� for all bars.

As shown in the previous section the method consists of two main steps. These are:

(1) The modal analysis to calculate the eigenvalues and eigenvectors of the original
system as well as the required data for subsequent use.

(2) The speci"cation of the frequency (eigenvalue) and the determination of the required
modi"cation.

Therefore, the developed code has been validated by "rst applying it to modal analysis of
the truss cantilever and the results obtained for the "rst "ve frequencies are checked against
those obtained from ANSYS [17]. These are shown in Table 1, where it is seen that a very
good comparison is obtained.
In the second step, the lowest natural frequency was increased by 5% through increments

of 1% and for each increment, the required modi"cation in the cross-sectional area of bar
1 was determined. The same problem was now presented to ANSYS [17] as an
optimization problem, where the objective function was de"ned as minimization of the bar
cross-sectional area subject to feasible upper and lower bounds. The state variable and
design variables were, respectively, de"ned as the required eigenfrequency and the bar
cross-sectional area. The ANSYS program uses the conventional forward iteration
optimization algorithm. This involved 14 iterations to arrive at the optimum solution.
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Results obtained from the present formulation as well as from ANSYS optimization
analysis are shown in Figure 3. In comparing the two approaches it should be pointed out
that:

� In the present formulation no iterations or convergence were involved and only the
solution of a quadratic equation (equation (14)) was required to obtain an exact solution,
i.e., if the calculated modi"cations were implemented and a modal analysis was carried
out the exact desired frequency would be obtained.

� Using commercial software such as ANSYS requires the reanalysis of the whole structure
with a large number of iterations. In addition, the results obtained for the modi"cation are
only approximate, i.e., if the calculated modi"cations were implemented, and a modal
analysis was carried out, only an approximate solution to the desired frequency would be
obtained.

Having validated the program, it is now used to further illustrate the e$ciency of the
developed formulation. To investigate the required modi"cations of the cross-sectional area
of the bars for desired frequencies, the lowest natural frequency of the truss cantilever was
increased by �f

�
"5% through steps of 0)5% and for each step the required change in the

cross-sectional area of each bar is obtained. These are shown in Figure 4. It can be seen that
while an increase in the cross-sectional area of some bars, for example, 1, 2, 3 and 7, is
necessary to achieve the desired frequency, other bars require their areas to be decreased.
This is due to the fact that the cross-sectional area a!ects both the mass and sti!ness
matrices of the structure. It is also noted that the "xed frequency may not be achieved by
varying the areas of some bars, for example in this case, by shifting the frequency by 2% no
solution is obtained by modifying bars 2, 7 or 8. Similarly, a shifting of the lowest frequency
by 5% can be achieved by modifying the cross-sectional area of bars 1, 3 or 9 only.
Therefore, if no restriction is made on which bar is to be modi"ed to shift the frequency, the
designer can compare the set of results and choose the structural member to be modi"ed.
(2) As mentioned above, the method can also deal with the possibility of adding new bars

to an existing structure to achieve a desired frequency. For example, Figure 2 shows the
addition of new bars to the truss structure. In this example, bars 13 and 14 are added
separately in order to shift the lowest frequency. Figure 5 shows that to shift the frequency
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by 5% only a small sectional area for bar 13 is required and this cannot be achieved by
adding the bar 14 alone no matter how large is its cross-sectional area. This last example
demonstrates how e$ciently the method can be used to modify the frequencies of the
existing structures.

5.3. SPACE TRUSS STRUCTURE

The second example corresponds to the tower shown in Figure 6. The cross-sectional
areas of the bars are:

A"3�10�� m� for C
�
and C

�
bars (corner columns in bottom and top levels respectively),

A"1)5�10�� m� for B
�
bars (horizontal members in bottom level),

A"0)8�10�� m� for B
�
bars (horizontal members in top level),
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A"0)8�10�� m� for T
�
bars (diagonal members in bottom level),

A"0)4�10�� m� for T
�
bars (diagonal members in top level).

The cross-sectional areas given above are for each bar, the elasticity modulus is equal to
2)1�10�� N/m� and the material density is �"7860 kg/m�.
The sensitivity of the lowest natural frequency to any modi"cation on the cross-sectional

area of the di!erent bars is "rst investigated. Figure 7 shows the percentage variation of the



TABLE 2

¹he ,ve lowest frequencies (Hz) of the original and modi,ed structures

Modi"ed structure

Original structure
Cross-sectional area of bars

C
�
increased

Cross-sectional area of bars
C

�
decreased

26)96 30)00 30)21
31)21 32)91 35)00
40)89 39)65 46)61
66)59 60)28 68)86
67)97 62)10 71)07
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"rst natural frequency with the required percentage variation on the cross-sectional area of
the bars. It is seen that the "rst frequency is most sensitive to bars C

�
and C

�
.

To further illustrate the e!ectiveness of the developed formulation, two practical
applications are carried out on the tower structure. In the "rst case, it was desired to shift
the "rst frequency of the original structure from 26)70 to 30)00 Hz by restricting alteration
to the cross-sectional area of C

�
bars. The results obtained from the developed method

showed that an increase in the cross-sectional area of bars C
�

from 3)00�10�� to
5)60�10��m� is required. The results showing the lowest "ve natural frequencies for both
the original and modi"ed structure are given in Table 2.
In the second case, it was desired to shift the second frequency of the original structure

from 31)21 to 35)00 Hz by restricting alteration to the cross-sectional area of C
�
bars. The

solution obtained showed that a reduction in the cross-sectional area of C
�
bars from

3)00�10�� to 1)95�10��m� is required. The results showing the lowest "ve natural
frequencies for both original and modi"ed structures for this case are also given in Table 2.

6. CONCLUSIONS

In this paper, a method for determining the required structural property modi"cation to
achieve desired frequencies for pin-jointed structures is developed. The formulation allows
the determination of the necessary modi"cations on the bars cross-sectional area to shift
any of the frequencies to desired positions. The approach can be used to increase or
decrease the frequencies, and the structural modi"cations can also include the addition of
new structural members. This approach provides the structural designers with an e$cient
algorithm, which is formulated in such a way that no iterations or convergence are involved
in the process and only few calculations are required to obtain the necessary modi"cations.
Further research work is currently being undertaken to develop the formulation and
algorithm for two-dimensional and higher order elements.
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