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I thank the authors for their valuable comments on our paper. I agree with them that the
wave propagation approach is an interesting method in calculating the natural frequencies
of cylindrical shells for various boundary conditions. I think the discussions will help us to
know more about this simple and effective method.

In our wave propagation approach [1], only the wavenumbers in the axial direction of
the shell are needed for calculating the natural frequencies of cylindrical shells. These
wavenumbers are approximately obtained from the wavenumbers of an equivalent beam
with the same boundary conditions. No beam functions are needed for the displacement
amplitudes in the axial direction of the shell.

The displacements of the shell were expressed in a general format of wave propagation
and defined by
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where U, V,, and W,, are, respectively, the wave amplitudes in the x, 0, z directions, k,, the
axial wavenumber and »n the circumferential modal parameter.

In their wave approach [2], the displacements of the shell were expressed in the form of
standing waves and defined by
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where o,,(2), f,.(z), 7m(2) are the amplitude distributions of the three displacements along
the z direction. Subscripts m and n denote the mode number in the z and the 0 directions,
respectively. They actually used equation (12) of reference [2] for calculating the natural
frequencies of the shell for three kinds of boundary conditions, namely, the simply
supported-simply supported (SS-SS), clamped-clamped (C-C) and free-free (F-F)
boundary conditions. The wavenumbers were given in equations (17), (18) and (19) of the
paper, respectively, for these boundary conditions.
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It is my personal opinion that our method could be easily extended for calculating the
natural frequencies of complex shell structures. It has been extended for a cylindrical panel
[3], in which the wavenumbers are needed for the axial as well as the circumferential
directions of the panel. The wavenumbers for different boundary conditions were listed in
Table 1 of reference [3]. The method can be also extended to a laminated composite
cylindrical shell [4], where the difference between references [4] and [1] is that the
governing equations of shell are further complex. Generally speaking, this method can be
used for complex shells, like the shear deformation should be considered for a thick shell. In
this case the right shell theory and the right wavenumber in the corresponding beam should
be chosen for the analysis of natural frequencies with the wave propagation approach. This
method can even be extended to a coupled fluid-structure analysis, as for a fluid-filled pipe
structure [5]. This is possible because our solutions for the shell are expressed in a wave
propagation format (equation (1)), which can be easily coupled with the fluid medium
expressed in the same wave propagation format.

I should stress that this method is a simple and effective analytic method. With it, various
boundary conditions can be easily handled. Furthermore, it can be combined with
numerical methods, like FEM, and experimental methods to treat very complex boundary
conditions. Because only the wavenumbers in the axial direction of the shell are needed, if
they aren’t be analytically available, like from Table 1 of reference [3], they can be found
numerically or experimentally by studying the wavenumbers of the same beam with the
same boundary conditions. It is not difficult to investigate experimentally the wave
propagation in a beam with complex boundary conditions and get the wavenumbers of the
beam. It may be difficult to model analytically and numerically the damping effects at the
boundaries, but not difficult to measure the wave reflection from the boundaries.

I note that the authors did comparisons of frequency-wavenumber relationship between
wave approach and FEM for shells with a/h = 20 and 5 in the comments and reference [2].
However in my personal view, these comparisons would be more appropriate if they are
made between the exact solution and wave approach, then the validity and accuracy of the
wave approach could be better evaluated. I hope to elaborate on it more.

The system characteristic equation of a shell (equation (5) of reference [1]) is

F (ky, @) = 0, )

where F (k,,, ) is a polynomial function for the thin shell. This characteristic function can be
used to investigate the wave propagation in the shell as well as the natural frequency of the
shell. The exact frequency-wavenumber relation (dispersion curve) can be obtained for each
given frequency o from equation (3). This curve is continuous. With wave propagation
approach, discrete wavenumbers are given. The corresponding resonant frequencies are
also calculated from equation (3). This dispersion cure is discrete from the wave
propagation approach. These two dispersion curves can be compared at discrete
wavenumber points to see the validity and accuracy of the wave propagation approach. If
the discrete dispersion curves are compared between the wave approach and FEM, it might
be difficult to validate the wave approach. As we know the accuracy of FEM results is
dependent on the number of mesh elements and nodes. The FEM result should be validated
itself. This is a tough work especially for parametric analyses, for example, if we need to
calculate the natural frequencies of shell for different thicknesses and use the results as
reference. Maybe we need to validate the FEM results for different thicknesses. One kind of
meshing might be fine for one thickness, but generates large errors for another thickness.
Comparison of curves may be instructive but difficult for quantitative evaluation. In
reference [1] we directly compared the natural frequencies of a shell between the wave
propagation approach and other methods available in the literature for different shells with
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SS-SS, C-C and clamped-simply supported (C-SS) boundary conditions. These
comparisons were used for validation of wave propagation approach. We also compared
the natural frequencies between the wave propagation approach with FEM and found the
difference between them was within 2% after doing some meshing tests.
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