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A reliability analysis of suspension bridges against #utter failure is presented using the
basic theory of reliability. For the purpose of analysis, uncertainties considered are those
arising from the variations in geometric and mechanical properties of bridge, modelling,
damping and experimentally obtained #utter derivatives. These uncertainties are
incorporated by multiplying the computed #utter wind speed with a number of independent
factors, which are considered as random variables. Each factor is assumed to follow
log-normal distribution. The wind environment at the site, which may cause #utter failure, is
considered as the other uncertainty necessary for computing the reliability against #utter
failure. The #utter wind speed for the bridge is determined using a "nite element approach
and a multimode analysis. The e!ect of some important parameters such as the mean wind
speed at the site, coe$cients of variation of the multiplying factors associated with damping,
modelling and #utter derivatives on the reliability estimates is investigated. The results of the
study show that the reliability against #utter failure is sensitive to the variation of the above
parameters.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Most of the studies of wind-induced vibration of suspension bridges relate to the
determination of the #utter wind speed and bu!eting response of the deck. The
developments of #utter and bu!eting analysis of #exible and long-span cable-supported
bridges (suspension and cable stayed bridges) under wind forces owe much to the studies of
Davenport [1, 2], Lin [3], Scanlan and Gade [4], Bucher and Lin [5], Nakamura and
Yoshimura [6], and Scanlan and Jones [7]. In the recent past, several investigations
concerning the response of cable-supported bridges to wind-induced vibration have been
performed [8}10]. Responses have been obtained by time domain analysis [11] and also by
frequency domain analysis [7, 12]. The studies also included wind tunnel tests on scaled
models [13, 14]. In 1996, Jain et al. [15] carried out a comprehensive study on the coupled
#utter and bu!eting analysis of long-span bridges by a continuum approach and by using
spectral analysis technique. The same concept was extended by Katsuchi et al. [16] to
obtain the multimode coupled #utter and bu!eting analysis of the Akashi-Kaikyo Bridge in
Japan. This study showed a good agreement between the wind tunnel test results and those
of the theoretical analysis.
2-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Compared to the dynamic response analysis of suspension bridges, reliability analysis of
suspension bridges against dynamic phenomena is relatively less. Malla [17] presented
a reliability analysis of cable stayed bridges for seismic forces. Henrik et al. [18] carried out
a study on the reliability analysis of the East Bridge across the Great Belt in Denmark,
against #utter wind speed. The study was done on the basis of measuring the critical wind
speed values on a scale model in wind tunnel tests. The considered uncertainties mostly
related to the conversion frommodel to the prototype, and to the structural damping. Apart
from this work, no other study in "nding the reliability of suspension bridges against #utter
failure is reported in the literature. Since the #utter wind speed of suspension bridges is an
important consideration in its design, it is desirable that the reliability of such bridges
against #utter condition should be properly evaluated.
Wind-induced #utter in suspension bridges is a complex phenomenon involving many

issues like bridge geometry, wind direction, modeling of the bridge and #utter derivatives,
etc. However, using simpli"ed assumptions, #utter wind speed of suspension bridges has
been obtained by several investigators which have been referred to in the preceding
paragraphs.
In line with these assumptions, the reliability of a suspension bridge against #utter speed

is presented here using the reliability analysis technique. For the purpose of analysis,
geometric and mechanical properties of the bridge, modelling, damping and the #utter
derivatives are considered as uncertainties. These uncertainties are also assumed to be
log-normally distributed. The wind environment at the site is considered as the other
uncertainty which is used for the reliability against #utter failure of the bridge. A parametric
study is conducted to show the e!ect of some important parameters on the reliability
against #utter. They include mean wind speed at the site, and coe$cients of variation of the
parameters in#uencing the computation of #utter wind speed.

2. ASSUMPTIONS

The following assumptions are made in the analysis: (1) all stresses in the bridge elements
obey the Hooke's law, and therefore no material non-linearity is considered; (2) the initial
dead load is carried by cables without causing any stress in the suspended structure; (3) the
cable is assumed to be of a uniform cross-section and of a parabolic pro"le under dead load
such that the weight of the cable can be assumed to be uniformly distributed along the span
instead of along the length of the cable; (4) the hangers (or suspenders) are assumed to be
vertical and inextensible, and their forces are considered to be distributed loads as if the
distance between the suspenders were very small; (5) the original shape of every cross-
section of the bridge deck is unaltered during vibration although the section may undergo
out-of-plane deformation (warping). Also, the peripheral bending in the walls of the section
is negligible; (6) it is assumed that there is no tower resistance to displacement at the tower
top and so the horizontal components of the cable tensionH

�
, (due to dead load) andH (t),

(due to dynamic load) are the same on both sides of the tower.

3. FREE VIBRATIONAL ANALYSIS

For the dynamic analysis of suspension bridges, both 3-D and 2-D idealizations have
been used in modelling the structure. 3-D modelling has been adopted mostly for "nite
element analysis in which suspension system, the deck and piers are all taken together as an
integrated structure [19]. 2-D modelling has been adopted for both continuummethod and
"nite element method (FEM) of analysis. It has been observed that 2-D modelling provides



Figure 1. (a) Suspension bridge model; (b) bridge element with vertical displacement; (c) bridge element with
torsion.
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su$ciently accurate natural frequencies and mode shapes for the vertical and torsional
vibrations of the bridge deck [20, 21]. In the present analysis, a 2-D FEM modelling using
lumped mass matrix has been adopted for "nding the mode shapes and frequencies. For
this purpose, the bridge deck is idealized as a beam element having bending and torsional
degrees of freedom. At each node, the kinematic degrees of freedom considered are
shown in Figures 1 (b, c). The dynamic degrees of freedom at the nodes are considered as the
vertical and torsion (Sant-Venant) degrees of freedom only; the rotational and warping
degrees of freedom are condensed out. Since bending and torsional vibrations are
uncoupled in free vibration of suspension bridges, the torsional and (vertical) bending
modes are obtained separately. This modelling and analysis techniques lead to certain
approximations which are well accepted in the literature for the free vibration analysis of
suspension bridges.
The equation of motion for the free vibrating suspension bridge in bending mode is

derived by calculating the total potential and kinetic energies of the system and by applying
the Hamilton1s principle. The bridge is divided into a system of discrete elements. Each
element consists of bridge deck and cable connected by at least two hangers as shown in
Figure 1(b). The shape functions of the element are assumed to be cubic Hermitian
polynomials. The displacement vector of the element can be expressed as

v
�
(x, t)"� f � (x)��

�
�q� (t)�

�
(1)

in which �q�(t)�
�
is the nodal displacement vector of the element; � f � (x)��

�
is the vector of

the shape functions. Considering the total energy of the system to be consisting of (1) strain
energy and gravity energy of the cables, (2) potential energy of the deck and (3) kinetic
energy of the system, the elemental equilibrium of the system can be derived by minimizing
the total energy of the system [20]. This leads to an elemental sti!ness matrix corresponding
to the degrees of freedom shown in Figure 1(b). The elemental sti!ness matrices are assembled
to from the overall sti!ness matrix. Since vertical degrees of freedom are considered only as
the dynamic degrees of freedom for bending vibration, the overall sti!ness matrix described
above is condensed to retain only the dynamic degrees of freedom. The equation of motion for
undamped free vibration can be then written in the following form:

[M�] �rK ��#[K�] �r��"�0�, (2)



146 S. POURZEYNALI AND T. K. DATTA
where �r�� is the nodal displacement vector containing vertical degrees of freedom only,
[K�] is the condensed sti!ness matrix; and [M�] is the lumped mass matrix of the system
respectively. Solution of the free vibration equation provides the natural frequencies and
mode shapes of the bridge.
For the torsional vibration of the suspension bridge, the governing equation of motion

can be obtained in a similar way as that obtained for the vertical vibration. In this case, as
shown in Figure 1(c), q�

�
and q�

�
are the torsional rotations, and q�

�
and q�

�
are the warping

displacements of the bridge element. The warping displacements are condensed out as
described for the bending vibration.
The equation of motion for torsional vibration takes the form

[M�] �rK ��#[K�] �r��"�0� (3)

in which [M�] is the lumped mass moment of inertia; and [K�] is the overall sti!ness matrix
of the system, respectively, and �r�� is the torsional degrees of freedom at the nodes.
Solution of equation (3) provides the torsional mode shapes and frequencies. Since vertical
and torsional modes of vibration are uncoupled in free vibrations, as described, equations
(2) and (3) are shown separately to obtain the structural frequencies in vertical and torsional
vibrations. During #utter condition, coupling between vertical and torsional modes
of vibration takes place due to aerodynamic e!ects. As a result, the equation of motion
for #utter contains both vertical and torsional degrees of freedom as shown later in
equation (6).

4. EQUATION OF MOTION IN FLUTTER

The bridge deck is discretized into two-dimensional beam elements each consisting of two
nodes at its ends. At each node, two degrees of freedom, vertical displacement and torsional
rotation are considered.
The wind-induced aeroelastic or self-excited forces can be lumped at both ends of each

element as shown in Figures 2(c) and (d). The aeroelastic forces per unit length of the bridge
are given by Jain et al. [15] as

¸
�
"

1

2
�;�B �kH*�

hQ
;

#kH*
�

B�Q
;

#k�H*
�
�#k�H*

�

h

B�, (4)

M
�
"

1

2
�;�B� �kA*�

hQ
;

#kA*
�

B�Q
;

#k�A*
�
�#k�A*

�

h

B� (5)

in which ¸
�
and M

�
are the aeroelastic vertical lift force and torsional moment of the

element per unit length, respectively, � is the air mass density;; is the mean wind velocity;
B is the bridge deck width; k"B�/; is the reduced frequency; � is the circular response
frequency; H*

�
and A*

�
, i"1}4 are functions of k and are the experimentally determined

#utter derivatives for the deck cross-section under investigation. h and � are the vertical
displacement and torsional rotation at the nodes of the bridge element respectively.
Overdots indicate the time derivative. The distributed aeroelastic forces are considered to
be constant along the element.
The governing equation of motion in the matrix form can be expressed as

[M] �xK �#[C] �xR �#[K]�x�"�F�, (6)

where [M], [C] and [K] are the mass, damping and sti!ness matrices, corresponding to
both vertical and torsional degrees of freedom; �F� is the (2n�1) vector of aeroelastic forces;



Figure 2. Self-excited forces: (a) distributed vertical load; (b) distribution torsional moment; (c) lumped vertical
load; (d) lumped torsional moment.
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and �x� is the (2n�1) response vector de"ned as

�x�"�h
�
, h

�
,2 , h

�
, �

�
, �

�
,2 , �

�
��
����

(7)

in which n is the number of nodes along the total bridge length; h
�
and �

�
are the vertical and

torsional displacement at the ith node respectively.
Using equations (4) and (5), the (2n�1) aeroelastic force vector �F� can be expresed in the

form

�F�"

1

2
�;�B�

k

;� [A] �xR �#

1

2
�;�Bk� [B] �x� (8)

in which [A] and [B] are the matrices containing elements which consist of the coe$cients
H*

�
and A*

�
(i"1}4), length of the element, ¸

�
and the width of the bridge deck. Note that

[A] and [B] matrices are non-diagonal matrices, which have cross terms coupling between
the torsional and vertical degrees of freedom.
By substituting equation (8) into equation (6), the "nal equation of motion can be

expressed as

[M] �xK �#[C] �xR �#[K]�x�"

1

2
�;�B�

k

;� [A] �xR �#

1

2
�;�Bk� [B] �x�. (9)

4.1. MULTIMODE FLUTTER ANALYSIS

In multimode analysis, the displacement vector �x� is written in terms of modal matrix
[�] and modal co-ordinate vector �� (t)� as

�x�"[�]2n�m �� (t)�
���

(10)

wherem is the number of modes considered. By using the mode superposition technique, the
ith modal equation is derived from equation (9), can be written as

�G
�
(t)#

�
�
���
��2����

	
��
!

1

2
�;�B

k

;

d
��
mN

�
� �Q

�
(t)�#

�
�
���
����

�
	
��
!

1

2
�;�Bk�

e
��
mN

�
� �Q

�
(t)�"0,

i"1, 2,2 , m, (11)
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where 	
��
is the Kronecker delta function"�

1 : i"j,

0 : iOj,
(12)

and d
��
and e

��
are the elements of the matrices [D] and [E] de"ned as

[D]"[�]� [A] [�] and [E]"[�]� [B] [�]. (13)

Equation (11) can be written in a matrix form as

[I] ��G (t)�#[P] ��Q (t)�#[Q] ��(t)�"�0� (14)

in which [I] is the identity matrix of order m; [P] and [Q] are the square matrices of size
m�m for which the elements can be de"ned as

P
��
"2�

�
�

�
	
��
!

1

2
�;�B

k

;

d
��
mN

�

, (15)

q
��
"��

�
	
��
!

1

2
�;�Bk�

e
��
mN

�

, (16)

By assuming

�
�
(t)"a

�
ei�t, i"�!1.

Equation (14) can be written as

[W]m�m �a�m�1"�0� (17)

in which �a�"�a
�
, a

�
,2 , a

�
�� is the #utter mode shape vector, which indicates the

relative participation of each structural mode in #utter, and the matrix [W] is given by

[W]"�(Q!��I)#i(� P)�. (18)

Equation (17) is the well-known eigenvalue problem. To satisfy the condition
det[W]"0, it is necessary that both the real and imaginary parts of the determinant be
simultaneously zero [15]. This can be done by "rst "xing the value of reduced frequency, k,
and seeking the value of �, for which the determinant is zero, and repeating this procedure
by changing the value of k until both parts of the determinant are zero at the same �. By
having the values of �"�

	
and k"k

	
for which det[W]"0, the critical #utter speed can

be evaluated as

;
	
"

B�
	

k
	

. (19)

5. RELIABILITY ANALYSIS AGAINST FLUTTER

The uncertainties in geometric and material properties of the bridge and the construction
defects "nally lead to uncertainties in the mass, sti!ness and damping properties of the
bridge. The other uncertainties that are considered include uncertainties in mathematical
modelling and #utter derivatives. All these uncertainties a!ect the dynamic characteristics
of the bridge and hence, the critical #utter speed (;

	
). The uncertainties in mass and sti!ness

give rise to uncertainties in modal characteristic of the bridge and therefore, they are
incorporated separately by a simulation procedure. The uncertainties arising from
damping, mathematical modelling and #utter derivatives are considered directly in the
reliability limit state function.
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5.1. MASS AND STIFFNESS UNCERTAINTIES

The variation in the material and geometric properties of the bridge leading to the
variations of the mass and sti!ness properties of the system is complex and di$cult to
appropriately consider in the reliability analysis. The problem requires the mass and
sti!ness properties of the structure to be modelled as random variables leading to the use of
stochastic "nite element analysis or simulation procedure. In order to keep the present
reliability analysis procedure simple and to obtain a preliminary estimate of reliability, the
variation of the mass and sti!ness properties of the bridge are considered by writing these
matrices in the following form:

[K�]"�
�
[K], (20)

[M�]"�
�
[M] (21)

in which [K] and [M] are the basic sti!ness and mass matrices of the bridge, respectively,
and are considered as deterministic; �

�
and �

�
are log-normally distributed random

variable factors which represent the variability of sti!ness and mass matrices. In order to
make this variation more general, the factor �

�
itself can be considered as a combination of

three factors i.e.,

�
�
"F

�
F
�
F
�

(22)

in which F
�
represents the e!ect of variability of modulus of elasticity (E); F

�
represents the

uncertainty resulting from the variation of shear modulus (G); and F
�
represents the

uncertainty resulting from bridge geometry. All these factors are considered as independent
log-normally distributed random variables with a mean value of unity. The coe$cient of
variation (COV) of �

�
can be evaluated as [22]

1#	 ��
�
"(1#	�


�
) (1#	�


�
) (1#	�


�
), (23)

where 	�
�
is the COV of the �

�
, 	


�
are the COV of the factors F

�
(i"1}3).

Since some of the elements of the sti!ness matrix contain the parameter &&E'', while other
elements contain the parameter &&G'', the values of 	


�
and 	


�
may be considered as 0)5 	

�
and 0)5 	

�
; 	

�
and 	

�
are the COV of the parameters E and G respectively. Thus, equation

(23) can be written as

1#	���"(1#(0)5	
�
)�) (1#(0)5	

�
)�) (1#	�


�
). (24)

In a similar manner, 	�
�
can be calculated, assuming that �

�
"
 F

�
in which 
 represents

the variation of mass density of the material.
Since �

�
and �

�
are log-normally distributed random variables, mean values of these

random variables can be related to their standard deviations. If the standard deviation and
mean values of �

�
and �

�
are known, random value of �

�
and �

�
can be arti"cially

generated. For each combination of �
�
and �

�
, [K�] and [M�] matrices are obtained from

equations (20) and (21), and the corresponding critical #utter speed is determined from
equations (18) and (19). The mean and standard deviation of the critical #utter speeds thus
obtained, are used for further computation.

5.2. DAMPING AND MODELLING UNCERTAINTIES

Flutter speed, which is calculated in the previous section, is multiplied by three factors F
�
,

F
�
, and F

�
, in order to take into account the uncertainties due to damping, modelling and
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#utter derivatives. These uncertainty coe$cients are again considered as independent
log-normally distributed random variables, with mean value of unity.
There are very few data available from the measured structural damping of the

suspension bridges, which show the damping variability. According to Davenport [23], the
structural damping of the long-span suspension bridges can be expressed as

��"
c

n
E, (25)

where �� is the torsional mode damping ratio to critical; n is structural frequency (Hz); c is
the proportionality coe$cient; E is a log-normally distributed random factor with mean
value of unity and coe$cient of variation being 0)40. Since the #utter speed of the
suspension bridges changes with the damping ratio ��, the e!ect of the COV of the factor
F
�
(	


�
) on the #utter wind speed is investigated with the upper limit of 	


�
as 0)40.

As discussed in the beginning of section 3, an idealized model of the actual bridge has
been used for the free vibration analysis. This idealization leads to some approximations in
the analysis procedure. In addition to the uncertainties arising due to these approximations,
some other uncertainties also arise due to other assumptions and simpli"cations made in
the modelling. For example, conversion of continuum of an assemblage of discrete elements
leads to the consideration of less number of degrees of freedom in the system, use of lumped
mass matrix leads to improper representation of inertia e!ect of the system; numerical
analysis procedure used may introduce some errors in the results. The uncertainty factor F

�
is, therefore, introduced to take care of the above uncertainties in addition to those
approximations already made in idealizing the system model. The COV of the factor F

�
is

taken as 0)10.
Factor F

�
accounts for the uncertainties arising from the insu$cient knowledge of #utter

derivatives. In this study, #utter derivatives are estimated from experimentally given curves
by Scanlan and Tomko [24], which were measured under zero angle of attack and
low-speed #ow (laminar #ow). Thus, the e!ects of actual turbulent wind #ow and wind
direction are not considered in the analysis. While the directional e!ect may be ignored
because the #utter condition is generally expected for zero angle of attack, the e!ect of
turbulence may be important. It is shown by Bucher and Lin [5] that the presence of
turbulence could delay the #utter-type instability of a bridge. Therefore, the consideration
of turbulence is expected to increase the reliability against #utter failure. However,
consideration of turbulence in the #utter analysis is very di$cult, since it is quite often
modelled as a weakly stationary process which requires random vibration and stochastic
stability analyses to be performed. As a consequence, the turbulence e!ect is also neglected
here, and the conventional futter failure is considered as reported in most literature (e.g.,
reference [15]). In addition to the insu$cient knowledge on #utter derivatives as mentioned
above, experimental error and curve-"tting techniques introduce extra uncertainties for the
values of #utter derivatives used in the analysis. According to a study [25], disparity
between the results of #utter derivatives obtained under turbulent and laminar conditions,
especially for A*

�
, for reduced velocities ;/(nB)(12 is of the order of 15%. Keeping the

above in view, the COV for factor F
�
(	


�
) is taken as 0)20.

5.3. EVALUATION OF RELIABILITY

In the reliability analysis the failure of the structure is de"ned as

g (X)"R!S(0. (26)
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In general, the variables R and S are called resistance and load e!ect of the system and are
functions of a number of basic random variables. In this study, R and S may be written as

R";
	
F
�
F

�
F
�
, S";M , (27)

where ;M is the annual maximum mean wind speed at the site which is a random variable
following Gumbel type I distribution. To evaluate the probability of failure (p

	
), the joint

probability density function of the associated randon variables say,X
�
,X

�
,2 ,X

�
, must be

known. Then p
	
is calculated as

p
	
"�� ���


�	
� f� (x�, x�,2 , x

�
) dx

�
dx

�
2dx

�
(28)

in which f
�
(x

�
, x

�
,2 , x

�
) is the joint probability density function of X

�
,X

�
,2 ,X

�
. For

most engineering problems f
�
(x

�
, x

�
,2 , x

�
) is not explicitly known. In such cases, some

simplifying assumptions are made. One of the widely used assumptions provide [26]

p
	
"�

�


�


f
�
(s)F

�
(s) ds (29)

p
	
"1!�

�


�


f
�
(r)F

�
(r) dr (30)

where f
�
and f

�
are the PDF, and F

�
and F

�
the CDF of the variables S and R respectively.

The values of integrals in equations (29) and (30) usually must be computed numerically. In
very few cases, the closed-form solutions of these integrals are available.

5.4. PROBABILISTIC DESCRIPTION OF THE MEAN WIND

The annual maximum mean wind velocity ;M at the site is the random variable S in
equation (27). It depends upon the wind environment at the site. In this study, it is assumed
that the mean wind velocity is de"ned at the height of the bridge deck and is perpendicular
to the longitudinal axis of the bridge (consistent with the assumption that #utter derivatives
are obtained only for zero angle of attack). The distribution of the annual maximum mean
wind velocity ;M or S is required to obtain p

	
given by equations (29) and (30). For the

reliability analysis, the annual maximummean wind velocity having a certain return period
is considered. The distribution of the annual maximum mean wind speed is assumed to
follow the type I extremal (largest) distribution which is also called Gumbel type I
distribution. The probability density (PDF) and distribution (CDF) functions of the annual
maximum mean wind can be expressed as follows:

f
�
(;M )"�� exp [!�� (;M !uN )!exp�!�� (;M !uN )�], !R);M )#R, (31)

F
�
(;M )"exp [!exp�!�� (;M !uN )�], !R);M )#R (32)

in which f
�
(;M ) is the probability density function (PDF), and F

�
(;M ) is the probability

distribution function (CDF). The parameters uN (location) and �� (dispersion) are given by

;M
����

"uN #
0)5772

��
, (33)


�"

��

6�� �
, (34)
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where;M
����

and 
 are the mean and standard deviation of the annual maximummean wind
speed ;M .

5.5. ESTIMATION OF THE STATISTICAL PARAMETERS OF THE MEAN WIND SPEED

The parameters uN and �� are determined using the concepts of return period (¹
�
) and

design wind speed (;
�
). The return period is de"ned as the time interval between two

successive statistically independent events. The return period, which sometimes is also
called the mean recurrence interval, is de"ned as

¹
�
"

1

p
"

1

1!F
�
(;

�
)

(35)

in which;
�
is the speci"ed design wind speed; and p is the probability of annual maximum

mean wind speed ;M , exceeding ;
�
in any 1 year.

If ;
�
is the lifetime design wind speed, [1!F

�
(;

�
)] is the probability of the annual

extreme wind speed exceeding the design value ;
�
. Hence, the probability of not exceeding

;
�
in the "rst m year is [F

�
(;

�
)]�. So, the probability of at least one extreme wind speed

(maximum mean wind speed) exceeding ;
�
in m years is

p
�
"1![F

�
(;

�
)]�, (36)

F
�
(;

�
)"[1!p

�
]���, (37)

where m is the lifetime of the structure, and p
�
is the associated risk during its lifetime.

The characteristic wind speed for the limit state is de"ned in this study as the annual
maximum mean wind speed with an estimated probability of exceedence of 5% (0)05) in
a lifetime period of 50 years (50) of the structure. Based on this de"nition, substituting
m"50 and p

�	
"0)05 into equation (37), the computed design wind speed;

�
becomes the

characteristic wind speed for the limit state for the site. It is shown below that di!erent
combinations of mean and standard deviation of the annual maximum mean wind speed
can provide the same design wind speed. Thus, di!erent combinations of the parameters
�� and uN can exist for the same design wind speed. By substituting the Gumbel distribution of
F
�
(;

�
) from equation (32), into equation (37), it can be written that

exp [!exp �!�� (;
�
!uN )�]"[1!p

�
]���. (38)

Taking the log of both sides of this equation, it may be rewritten as

exp �!�� (;
�
!uN )�"S

�
(39)

in which

S
�
"!

1

m
ln (1!p

�
). (40)

Again, taking the log of both sides of equation (39) and rearranging it, the following
expressions are obtained:

;
�
"

S
�
��

#uN , (41)

where

S
�
"!ln S

�
. (42)
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From equations (33) and (34), the Gumbel distribution parameter uN can be written in terms
of mean (;

����
) and standard deviation (
) of annual maximum mean wind speed as

u� ";
����

!

0)5772

1)28255

";
����

!0)45
. (43)

Finally, by substituting uN from equation (43) into equation (41),

;
�
"
 �

S
�

1)28255
!0)45�#;

����
. (44)

Equation (44) can be rewritten in a convenient form as

;
�
";

����
[1#S

�
CO<] (45)

in which

S
�
"�

S
�

1)28255
!0)45� and CO<"



;

����

. (46)

From equation (45), it is evident that di!erent values of ;
����

and CO< can provide the
same design wind speed;

�
, as mentioned before. Thus, for a chosen set of values for m and

p
�
, ;

�
and ;

����
, a value of CO< and hence, a combination of parameters �� and uN can be

calculated from equations (46) and (33) and (34).

5.6. DISTRIBUTION OF THE RESISTANCE R OF THE SYSTEM

As mentioned earlier, the resistance of the structure R, (equation (27)) is de"ned as

R";
	
F
�
F
�
F
�

(47)

in which all F
�
s are considered as independent log-normally distributed random variables. If

it is now assumed that;
	
is also log-normally distributed, thenR will also be a log-normally

distributed random variable having

RI ";I
	
FI
�
FI
�
FI
�
, (48)

1#	�
�
"(1#	�

�	
)(1#	�


�
) (1#	�


�
) (1#	�


�
), (49)


�
�� �

"ln (1#	�
�
) (50)

in which hat over script denotes the median values; 	 is the coe$cient of variation and 

���

is the standard deviation of lnR. The PDF of R can be obtained as

f
�
(r)"

1

r

���

�2�
exp �!1

2 � ln�
r

RI �


��� �

�

�, r'0. (51)

The above assumption leads to considerable ease in computational e!ort.
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If the distribution of ;
	
is not assumed as log-normal, then f

�
(r) is numerically

calculated. In this case, PDF of R can be written as [26]

f
�
(r)"�




�

�
1

f � f�	�
r

f � f
 ( f ) df, (52)

where factor F is the product of factors F
�
, F

�
and F

�
; f

�	
and f



are the PDFs of the #utter

speed (;
	
) and factor F respectively. It is assumed that the random variables F and ;

	
are

independent. In equation (52), noting that f is a positive value and, by choosing r/f"X,
equation (52) can be expressed as

f
�
(r)"�




	

1

X
f
�	
(X) f


 �
r

X� dX. (53)

Assuming that F is log-normally distributed, the reliability of the bridge for actual
distribution of the #utter speed;

	
is numerically calculated using equation (53). Reliability

estimates using f
�
(r) calculated by both equations (51) and (53) are obtained and compared

in the numerical study.

6. NUMERICAL STUDIES

As a numerical example, the Vincent Thomas Suspension Bridge located between San
Pedro and Terminal Island in Los Angeles County, California was chosen. For this
three-span suspension bridge, the structural data are given by Abdel-Gha!ar [20, 21].
The sti!ening girder is assumed to be hinged at the ends of each span, and the cables are

free to move at the tower top (i.e., roller-type cable connection). The number of elements in
the side spans,N

�
"N

�
, was taken to be 11 elements, and those for the center span,N

�
was

taken as 28 elements.
Flutter derivatives H*

�
and A*

�
, i"1}3 are taken from Scanlan and Tomko [24]. The

approximate theoretical expressions for the #utter derivatives may be written as

A*
�
K0, H*

�
"!0)8 y for all y

A*
�
"!0)1436 sin (0)5984y), 0)y)5)25,

A*
�
"0)08422y!0)4411, 5)25(y,

H*
�
"0, 0)y)5,

H*
�
"0)00582 y�!0)0121 y�!0)60252, 5(y, (54)

A*
�
"0, 0)y)2,

A*
�
"0)2y!0)4, 2)y)6,

A*
�
"0)3y!1, 6(y,

H*
�
"0, 0)y)4,

H*
�
"!0)011666 y�#0)11 y�!1)41334 y#4)64003, 4(y

in which y"2�/k; k"B�/;.
Since the values of H*

�
and A*

�
for this bridge are not available, it is assumed to be

negligible. The given approximate theoretical values of #utter derivatives are plotted in
Figure 3.
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Figure 3. Approximate #utter derivatives (equation (54)) of Thomas Suspension Bridge.
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Figure 4. First six free vertical and torsional vibrations mode shapes.
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6.1 FREE VIBRATION

The results of the free vibrational analysis ("rst 19 frequencies and "rst 6 mode shapes)
are shown in Figure 4 and Table 1. In the "gure, < and ¹ refer to vertical and torsional,
respectively, and A and S refer to anti-symmetric and symmetric respectively. It is seen that



TABLE 1

Modal properties of ¹homas Suspension Bridge

Natural Modal
Mode frequency Frequency � Mode mass
number (Hz) (rad/s) type (mN )

1 0)1961 1)2324 V}AS 2461656)04
2 0)2187 1)3743 V}S 2242256)44
3 0)3437 2)1595 V}AS 1694918)34
4 0)3461 2)1744 V}S 2839954)34
5 0)4569 2)8710 V}S 2476722)50
6 0)4960 3)1163 T}S 97979869)71
7 0)5445 3)4215 V}AS 2596112)11
8 0)7023 4)4124 T}AS 104379722)40
9 0)7960 5)0012 V}S 2381936)85
10 1)0632 6)68024 T}AS 71796835)18
11 1)0725 6)7388 T}S 127301319)14
12 1)0878 6)8351 V}AS 854013)18
13 1)0879 6)8352 V}S 1112550)47
14 1)0948 6)8791 V}AS 2476727)02
15 1)1229 7)0556 T}S 90565331)63
16 1)4493 9)1062 V}S 2463948)43
17 1)4709 9)2418 T}AS 109804780)28
18 1)8551 11)6557 V}AS 2617732)09
19 1)9000 11)9381 T}S 103247913)56

Note: T"torsional; V"vertical; S"symmetric; AS"anti-symmetric.
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the "rst "ve modes correspond to the vertical mode of vibration. Note that free vibrational
mode shapes are either purely vertical or purely torsional as it would be expected.

6.2. FLUTTER

In order to study the participation of di!erent modes in the #utter contribution, the
#utter speed is evaluated by multimode analysis by considering the original values of mass
and sti!ness properties by taking �

�
and �

�
as unity. Table 2 shows the results for "ve cases,

which include di!erent number of modes considered in the #utter analysis. For cases 1,
2 and 5, the magnitude of #utter mode shape �a

�
�, which shows the relative contribution of

any structural mode in #utter occurrence, is given in Table 3. It can be seen from Table 3
that the sixth mode (i.e., the "rst symmetric torsional mode) is the predominant mode for
the #utter condition. This mode gets coupled with the second and "fth modes, which are
the "rst and third vertical symmetric modes, respectively, for the #utter condition. The
contributions of the other modes in #utter occurrence are very less in comparison with
these modes. Therefore, the #utter condition was investigated by considering only the three
modes namely second, "fth and sixth.
Since no strong coupling between the modes is observed for the bridge problem with
#utter derivatives shown in Figure 3, it was decided to change the bridge deck con"guration
to that of an airfoil (keeping sti!ness and mass properties same as the original deck)
and reanalyze the system for #utter. The airfoil #utter derivatives, which are given by
Jain et al. [15], are expressed in terms of Theodorsen's [27] circulation functions



TABLE 2

Flutter conditions evaluated by multimode analysis (�"1%, ��"1, ��"1)

No. of modes Flutter frequency Flutter reduced Flutter speed
Case considered � (rad/s) frequency k (m/s)

1 6 2)855 0)93 57)01
2 7 2)855 0)93 57)01
3 8 2)855 0)93 57)01
5 10 2)855 0)93 57)01
9 19 2)855 0)93 57)01

TABLE 3

Relative -utter mode participation (��"1, ��"1, �"1%)

Magnitude: �a
�
�

Mode no.

Case 1 2 3 4 5 6 7 8 9 10
(ref.

Table 2) �10�
 �10�� �10��� �10�� �10�� �1 �10��	 �10�
 �10�� �10��

1 7)8630 8)2849 1)2820 7)0984 1)7827 1)0 * * * *

2 8)7197 9)1670 3)0392 7)8965 1)9034 1)0 4)2003 * * *

3 7)8998 9)1670 1)7308 7)8965 1)9034 1)0 4)0899 9)1579 6)5869 2)2922
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C(k)"F (k)#i G(k) as

H*
�
"!

2�
k
F(k), A*

�
"

�
2k
F(k), (55a)

H*
�
"!

�
k �
1#F (k)

2
#

2G (k)

k �, A*�"

�
k �
F(k)!1

8
#

G(k)

2k �, (55b)

H*
�
"!

�
k� �2F(k)!

kG (k)

2 �, A*�"

�
k� �

F(k)

2
!

kG(k)

8 �, (55c)

H*
�
"

�
2 �1#

4G(k)

k �, A*�"!

�
2k
G(k) (55d)

and

F (k)"
J
�
(k) [J

�
(k)#Y

	
(k)]#Y

�
(k) [>

�
(k)!J

	
(k)]

[J
�
(k)#Y

	
(k)]�#[Y

�
(k)!J

	
(k)]�

, (55e)

G(k)"
Y

�
(k) Y

	
(k)#J

�
(k)J

	
(k)

[J
�
(k)#Y

	
(k)]�#[Y

�
(k)!J

	
(k)]�

. (55f)

in which J
	
and J

�
are Bessel functions of the "rst kind; and>

	
and>

�
are Bessel functions of

the second kind. Since for Thomas Suspension Bridge the values of H*
�
and A*

�
are not



Figure 5. Theodorson's circulation function.

Figure 6. E!ect of coe$cient of variation of damping factor (	

�
) on reliability.
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available, for consistencyH*
�
andA*

�
are neglected here. FunctionsF (k) andG(k) are plotted

in Figure 5. It is observed that in this case, only the second and sixth modes get coupled; and
the #utter speed is 116)17 m/s at a #utter frequency �"2)074 rad/sec and k"0)322.
Magnitudes of the #utter modes are �a

�
�"1)13 and �a

�
�"1)0. Thus, a signi"cant coupling

between the two modes is observed for this case.

6.3. RELIABILITY ESTIMATE

Flutter speed was obtained for 42 sets of �
�
and �

�
(equations (20) and (21)). For each set,

the mean value of the modal damping was taken as 0)6% and the #utter derivatives were
taken from Figure 3. The combination of di!erent values of �

�
and �

�
are considered such

that the maximum dispersion in critical #utter speed, ;
	
, can be obtained. The mean (


�	
),



Figure 7. E!ect of coe$cient of variation of modelling (	

�
) on reliability.

Figure 8. E!ect of coe$cient of variation of #utter derivatives (	

�
) on reliability.
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standard deviation (

�	
) and coe$cient of variation (	

�	
) of the #utter speed as obtained

from 42 runs are 52)25m/s, 4)4149 m/s and 8)45% respectively. Choosing m"50 years as
lifetime of the bridge and p

�
"5% as the risk of the failure within 50 years, the reliability of

the bridge against #utter failure is carried out. For the reliability analysis, the mean values
of the factors F

�
, F

�
and F

�
are taken as unity and the coe$cients of variation 	


�
, 	


�
and

	

�
are initially taken as 0)40, 0)10 and 0)20 respectively. The sensitivity of the parameters

	

�
, 	


�
and 	


�
on the reliability estimate is studied separately and is shown in Figures 6}8.

The design wind speed is considered as ;
�
"40m/s.

As mentioned before, the reliability estimates obtained by assuming ;
	
to be log-

normally distributed (equation (51)) provide ease in computational e!ort. For the design
wind speed of 40m/s, the reliability estimates are obtained by considering the actual
distribution of;

	
(equation (53)) and are compared with those obtained by assuming;

	
to

be log-normally distributed (Table 4). It is seen that the di!erence between the two results is
not much. Thus, for the ease of computation it is accepted to treat ;

	
as log-normally

distributed.



TABLE 4

E+ect of -utter wind speed distribution on reliability (;
�
"40m/s; 	


�"0)20, 	

�"0)10,

	

�"0)20, �"0)6%, m"50, p

�
"5%)

Mean wind speed (m/s)
Distribution of ;

	
20 25 30 35

Log-normal 0)9866 0)9722 0)9371 0)8670
Actual distance 0)9784 0)9626 0)9241 0)8486

TABLE 5

Results of the reliability analysis for ;
�
"40 m/s (m"50, p

�
"5%)

Mean wind (m/s)

Parameters 20 25 30 35

CO< 0)20342 0)12205 0)006678 0)02906
�� 0)31525 0)42034 0)63034 1)26103
uN 18)1691 23)6268 29)0845 35)5423

R
	
(reliability) 0)9612 0)9142 0)8391 0)7441

Note: �� and uN are the Gumbel distribution parameters.
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For di!erent combinations of coe$cient of variation and mean wind speed at the site
having the same design wind speed (equation (45)), the reliability estimates are obtained.
Table 5 shows the reliability of the bridge against #utter failure. It is seen that for the same
design wind speed, the reliability varies signi"cantly with the values of the annual maximum
mean wind speed (;

����
) assumed for computing the parameters (uN and �� ) of the Gumbel

distribution of the wind speed at the site (equation (45)). Higher the value of the assumed
;
����

(and hence, uN and �� ) lower is the value of the reliability. Thus, the reliability against
#utter failure for suspension bridges designed for the same design wind speed could be
di!erent for di!erent locations. For higher values of location (uN ) and dispersion (�� )
parameters, the reliability estimates are lower.

6.4. EFFECT OF DAMPING FACTOR ON RELIABILITY

Figure 6 shows the e!ect of the coe$cient of variation of the damping factor (F
�
) on the

reliability estimate for a design wind speed (;
�
) of 40 m/s. The reliability decreases with the

increase in the coe$cient of variation of the damping factor (	

�
). For higher values of;

����
,

the rate of decrease in reliability with the increase in 	

�
is more.

6.5. EFFECTS OF FACTORS F
�
AND F

�
ON RELIABILITY

Figures 7 and 8 show how the reliability decreases with the increase in the coe$cients of
variation of the factors F

�
(modelling) and F

�
(#utter derivatives). The results are shown for
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two values of ;
����

keeping the design wind speed (;
�
) same. It is seen that the rate of

decrease of reliability remains the same for both values of ;
����
.

7. CONCLUSIONS

The reliability of suspension bridges against #utter failure is investigated. The reliability is
estimated for uncertainties in sti!ness and mass properties, modelling, damping and #utter
derivatives of the deck cross-section of the bridge. All uncertainty factors are assumed to be
log-normally distributed. The annual maximum mean wind speed at the site is assumed to
followGumble type I distribution. Using the proposed method of analysis, the results of the
study on the Vincent Thomas Suspension Bridge show that (1) the #utter wind speed may
be assumed to be log-normally distributed without introducing much error in the reliability
estimate; (2) the reliability of suspension bridges designed for the same n-year wind speed
may signi"cantly vary depending upon the prevailing annual maximummean wind speed at
the location of the bridge; (3) the coe$cient of variation of damping factor may signi"cantly
decrease the reliability estimate for higher values of the mean annual maximum wind speed;
(4) coe$cients of variation of multiplying factors associated with modelling and #utter
derivatives can have an appreciable e!ect on the reliability estimate.
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