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1. INTRODUCTION

Plates of various shapes and of non-uniform thickness are widely used in engineering
structures. Elliptical plates commonly used as cover plates for cut-outs in such engineering
systems, too, have attracted attention of researchers over the years. Although there have
been a lot of published work on vibration of clamped elliptical plates in recent years, some
of which are listed in references [ 1-6], quite little has been reported for elliptical plates with
variable thickness e.g., references [1-4]. Singh and Tyagi [1] used Galerkin’s method to
obtain frequencies of symmetric transverse vibrations of a clamped elliptic plate with
parabolically varying thickness. Singh and Chakraverty [2] used boundary characteristic
orthogonal polynomials in two dimensions to study transverse vibration of elliptical plates
with variable thickness. The method employed was the Rayleigh—-Ritz method this time.
Again, Singh and Saxena [4] used the Rayleigh-Ritz method to find the first three
frequencies and mode shapes for free flexural vibration of a plate in the form of a quadrant
of an ellipse with linear and quadratic thickness variations. They gave results for 27 different
boundary conditions. Olhoff [ 7] had earlier determined the shape of a circular plate so that
its first natural frequency of transverse vibrations became optimal. He investigated three
different boundary conditions. Hinton et al, [8] using the FEM and an automated
optimization approach together, obtained similar results to those given by Olhoff [ 7]. Since
then the optimal design of vibrating elliptical plates has not been possible yet. So the current
parametric study is a little step towards filling that gap. The effect of parabolic variation of
thickness on the frequency parameter of clamped elliptic plates has been investigated. Two
different approximate methods, the moment method and the Rayleigh-Ritz method, whose
trial functions are also different from each other are used to solve the problem. Note that the
moment method is a fundamental numerical method in applied electromagnetics while it is
rarely preferred in the field of applied mechanics. First, the fundamental frequency of
clamped elliptical plates with constant thickness for aspect ratios up to 0-1 is calculated by
the two methods. Then, the thickness function is assumed to be of parabolic variation and
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Figure 1. Elliptical plate geometry in Cartesian co-ordinates.

the volumes of the plates are equalized to get results comparable with those in the literature
for a variety of aspect ratios. Finally, the effect of variation of thickness on the frequency
parameter has been investigated.

2. BASIC EQUATIONS

Assuming that the middle surface of an isotropic plate having no in-plane forces is plane
and coincides with the x—y plane of the Cartesian co-ordinate system (Figure 1), then the
basic equation governing the transverse vibration of the plate with variable thickness is
given by the following [9]:
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where w, v, p, h, t denote the displacement, the Poisson ratio, mass density per unit volume,

the variable thickness of the plate and time respectively. Also appearing in equation (1) is
the flexural rigidity D defined by

D = ER¥/[12(1 — 1¥)] 2)

where E is Young’s modulus.
Introducing X = x/a, y = y/b and K = b/a, where a and b are the semi-major and
semi-minor axes of the ellipse, respectively, the above equation becomes
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Assuming simple harmonic motion where one seeks the solution of the form

WX, 3, 1) = WX, ), Q)

where w is the natural angular frequency.
The plate thickness, on the other hand, is assumed to vary according to the following
relation:

h(%.5) = cho[o + B(x* + ¥*)], o)
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where ho is the thickness of an elliptic plate with constant thickness, o is a parameter
defining the constant part of thickness, f§ is the taper parameter controlling the variation of
thickness and ¢ is a parameter ensuring that all the plates considered are of equal volume
defined as

c=2/20 + f). (6)

The volume of an elliptical plate with constant thickness is mab hy, and note that this
corresponds to the following which gives the volume of an elliptical plate with varying
thickness in dimensionless form:

1(aS1=%( ph/2 1(p/1-%
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How the definite integral is taken will be explained in detail later.
The flexural rigidity now may be rewritten as

D(Xa )_}) :DocsHa (8)

where Do = Eh3/[12(1 — v¥)] and H = [a + (X% + 79)]°.
Substituting equations (4) and (8) into equation (3) gives
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3. SOLUTION BY THE MOMENT METHOD

First the moment method, one of the well-known (e.g., reference [10] and references cited
therein)—although rarely applied in mechanical engineering problems—weighted residual
methods, is used to solve the above equation. A three-term deflection function satisfying the
geometric boundary conditions of zero edge deflection and zero slope at the edge is chosen:

w=(a, + a¢ + a3 > ¢, (10)
where ¢ = X* + 32 — 1.
The residual &g, which will later be obtained by substituting equation (10) into equation
(9), is defined by the following:
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The three moment equations are then found from the following:

INONVIEE S
J {f erX' dj}} dx=0, i=0,2and 4. (12)
0

0

The reason for choosing even values of i is that if odd values of i are included in equation
(12), the method does not yield any results. In fact, this is not surprising since integration of
er X' over the whole plate area will result in zero which will cause the determinant of the
coefficient matrix to be zero when odd values of i are used. Also, note that there is no
difference in results if 3 is put in place of X' due to the symmetry of the problem. One may
also ask what happens if ¢’ is put in the place of X'. This case coincides with Galerkin’s
procedure with a three-term deflection function if values of i are taken to be 2, 3 and 4.
Results of this case (for an elliptical plate with constant thickness) are exactly the same as
those given in references [1, 6], where Galerkin’s method with up to a 10-term deflection
function and the Rayleigh-Ritz method with a three-term deflection function are used
respectively. Results of the other two cases when i =0, 1,2 and 1, 2, 3 are almost the same as
above.

The definite integration over the plate area is a difficult task, so thanks to the following
formula, as given in references [1, 2] makes it possible to evaluate the exact integral.

prqudxdy_(—vjp* rtl ﬁ/ Prd 4o (13)

where p and ¢ are even integers and p, ¢ and r are greater than — 1.
It is now a generalized eigenvalue problem:

[A — 2*B]{a;} =0, (14)

where A and B are not symmetric matrices both of which are of the order three.
For a non-trivial solution, the determinant of the coefficient matrix should be equal to
Zero:

|A — 2*B| = 0. (15)

Solution of equation (15) leads to a characteristic equation involving a polynomial of third
degree in A*, the smallest root of which corresponds to the square of the fundamental
frequency.

The frequency parameter is then found to be

N (16)

4. SOLUTION BY THE RAYLEIGH-RITZ METHOD

The well-known expression, in Cartesian co-ordinates, for the strain energy of a plate in
bending is as follows [9, 11]:
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where S represents the area of the plate.
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Since the same notation as the moment method is used, some of the details are omitted
here.
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The kinetic energy of the plate on the other hand is given by [11]

1
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N
Note that a different deflection function which satisfies the geometric boundary conditions
is chosen now:

W = (ago + a20X> + a2 7> (21)

It should be explained here that there is no other reason for choosing a different type of
deflection function than trying to contribute to the available literature. Otherwise, it might
be chosen the same as equation (10) but then the results would not be any better—at least
for the constant thickness case—than those obtained by using equation (21), which can be
seen in Table 1 by comparing with the results of reference [6], where the Rayleigh-Ritz
method with the same deflection function as equation (10) is used, with results of the present
work.
The total energy functional, F, is given by

F=U-T. (22)

TaBLE 1

Comparison of frequency parameters (A*> = wb*./pho/Do) of clamped elliptical plates with
constant thickness (x = 1:0, f = 0-0 and v = 0-3)

b/a Ref. [9] Ref. [6] Relative = Moment Relative Rayleigh- Relative
error (%) method  error (%)  Ritz meth. error(%)
1-0 10216 10216 00 10217 0-01 10217 0-01
05 6-845 6936 1-3 7-932 159 6-849 0-06
04 6-504 6:657 2:4 7-683 181 6514 0-15
02 5-996 6343 58 7-391 233 6:058 1-03

01 5-831 6277 7-6 7-326 256 5:941 1-89
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In order to find a least upper bound on the frequency equation (21) is substituted into

equation (22) and then it is minimized with respect to the coeflicients a;;, which finally gives
three homogeneous equations in g;;:
[A — 2*B]{a;;} =0, (23)

where A* is defined as w?b*pho /Dy, and A and B are symmetric matrices both of which are
of the order three and B is positive definite.

For a non-trivial solution, the determinant of the coefficient matrix should be equal to
Zero:

A — J*B| = 0. (24)

Similarly, solution of equation (24) leads to a characteristic equation involving
a polynomial of third degree in A*, the smallest root of which corresponds to the square of
the fundamental frequency.

The frequency parameter is then found to be

N (25)

5. PRESENTATION AND DISCUSSION OF RESULTS

First, in order to check the accuracy of the present work the frequency parameters of
clamped elliptical plates with constant thickness for aspect ratios from 1 to 01 are
calculated. The results are compared with some of the literature in Table 1. Note that results
obtained by the Rayleigh-Ritz method correlates well with reference [9] for all aspect
ratios, while the moment method is not sufficiently accurate as b/a decreases.

In order to be able to compare the results of the present work with others available in the
literature a little manipulation had to be made to equations (3) and (18), since in references
[1-3, 5, 9], where the Galerkin method, the Rayleigh-Ritz method with characteristic
orthogonal polynomials, collocation method with a five-term deflection function, the pb-2
Rayleigh-Ritz method and a minimal energy method with a five-term deflection function
were used, respectively; frequency parameters of clamped elliptical plates are given as

4% = wa*/phy/Dy. The results of this comparison can be seen in Table 2.

TABLE 2

Comparison of frequency parameters (A* = wa*./pho/Do) of clamped elliptical plates with
constant thickness (o« = 1:0, f = 0-0 and v = 0-3)

bja 1-0 09 0-8 0-7 0-6 0-5 0-4 03 02
Reference [9] 10-216 11-443 13229 15928 20:195 27-378 40:649 69-163 149-89
Reference [1] 10-216 — 13-246 — 20-337 27743 41605 — 15859
Reference [3] 10-205 — 13:226 — 20-363 27-815 41-588  70-292 —
Reference [2] 10-216 — 13-229 — 20-195 27:377 40-646 —  149:66

Reference [5] 10-217 — 13-230 — — 27-388  40-663 — —
Moment meth. 10-217 11939 14287 17-686 22:942 31726 48:020 83-405 18826
Rayleigh-Ritz 10-217 11-444 13231 15931 20201 27395 40713 69461 151-48
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TABLE 3

Comparison of frequency parameters (A* = wa*./pho/Do) of clamped elliptical plates with
varying thickness, which are not of equal volume (¢ = ¢ = 1-0)

p b/a — 1-0 0-8 06 04 02
0-8 Reference [1] 15-815 20-501 31-450 64266 244-74
Moment meth. 16:116 22-838 36:942 77-590 —
Rayleigh-Ritz 16:070 20-808 31768 64-160 240-40
06 Reference [1] 14-428 18-703 28:696 58-651 223-39
Moment meth. 14-576 20:619 33323 69:962 —
Rayleigh-Ritz 14-557 18-849 28772 58066 21724
04 Reference [1] 13-032 16-895 25927 53-005 20193
Moment meth. 13-087 18-465 29-799 62:523 —
Rayleigh-Ritz 13-084 16-941 25-857 52-145 194-74
02 Reference [1] 11-629 15-076 23141 47-324 180-34
Moment meth. 11-640 16-362 26-351 55233 —
Rayleigh-Ritz 11-642 15-074 23-009 46-375 172:94
0-0 Reference [1] 10-216 13-246 20-337 41-605 158-59
Moment meth. 10-217 14-287 22-942 48-020 —
Rayleigh-Ritz 10-217 13-231 20-201 40-713 151-48

Before carrying out a parametric study in order to see the effect of  and f on the
frequency parameter of clamped elliptical plates of equal volume, which is achieved by
changing o from 1-0 to 0-0 and f from 0-0 to 1-0, results of the present work are again
compared with reference [1]. Having seen that results for the case ¢ = 1-0 correlate well
enough with reference [1], which is shown in Table 3, the parametric study, whose results
are shown in Table 4, was performed. It is interesting to see that whatever f is when a — 0-0
the frequency parameters of clamped elliptical plates increase rapidly. Results for the case of
circular plates are given in detail in Table 5. Results of this case for different aspect ratios on
the other hand are presented in Table 6. Note that the optimal shape of a clamped circular
plate given by references [7, 8], where the thickness variation is represented by a 4-point-
cubic spline, is convex. In the present work, on the other hand, the thickness function is
concave since it is of parabolic variation. Although one may have doubts about the validity
of results obtained by the moment method for elliptical plates, it should be kept in mind that
for the case of circular plates results of the two different methods nearly coincide and that as
b/a decreases the trends of results are quite similar to each other.

In the case of a circular plate an increase of 53% in the frequency parameter is reported in
reference [ 7] (Figure 2), while a similar increase is found by the present work when o=~0-22
and = 1-:0. However, due to structural strength and constructional reasons there may be
a constraint upon the rate of h,igin/heage, Where hy,:, is the thickness at the origin and
heage 1s the thickness of the edge. If, for instance, this constraint is considered to be
horigin/heage = 05, gains in frequency parameters are presented in Table 7 (the case when
o = B, also seen in Figure 3). Note that due to symmetry, only half of the plate is shown in
Figure 3. It is interesting to see that although results of the moment method for the case of
constant thickness deviate from the literature as b/a decreases, for the case of varying
thickness relative increases or gains in frequency parameters calculated by the moment
method are nearly the same order as Rayleigh-Ritz’s method.
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TABLE 4

Frequency parameters (2> = wb?./pho /Do) of clamped elliptical plates with varying thickness
when both o and 5 are changed from 1-0 to 0-0 (MM and R-RM denote for the moment method
and the Rayleigh—Ritz method respectively)

bja =10 bja =08 bja =05 bja =02

p o MM RRM MM R-RM MM R-RM MM R-RM

1-0 10217 10217 9-144 8468 7-932 6-849 7-391 6:058
0-8 10217 10217 9-144 8468 7-932 6-849 7-391 6-058
0-0 0-6 10217 10217 9144 8-468 7932 6-849 7-391 6-058
0-4 10217 10217  9-144 8468 7-932 6-849 7-391 6-058
0-2 10217 10217 9-144 8468 7-932 6-849 7-391 6:058

1-0 10-582  10-583  9-520 8770 8-289 7-091 7732 6-286
0-8 10:666  10-667  9:605 8:839 8:370 7-146 7-809 6:339
0-6 10-801  10-801 9742 8:951 8-499 7-237 7-932 6-425

02 0-4 11-061  11-060 10-002 9-165 8741 7-411 8-162 6:592
0-2 11-805 11822 10-719 9797 9-393 7-931 8776 7-084
0-0 24674 27265 21727  22:622 18494 18493 17083  16:898
1-0 10906 10903  9-848 9-035 8:598 7-306 8:026 6-491
0-8 11-061  11-054 10-002 9-160 8741 7-408 8-162 6-:590
04 0-6 11313 11298  10-249 9-363 8-968 7-574 8:377 6-749
0-4 11-805  11-777 10:719 9-760 9-393 7-901 8776 7-061
0-2 13-189 13178 11990 10923  10-507 8-859 9-813 7-960
0-0 24674 25856 21:727 21452 18494 17533 17083  16:017
1-0 11213 11198 10151 9-279 8878 7-506 8292 6:684
0-8 11-437 11412 10-369 9-457 9-077 7-652 8-480 6-824
06 0-6 11-805 11762 10:719 9747 9-393 7-891 8776 7-053
0-4 12518  12-445 11381 10315 9-977 8359 9-322 7-496
0-2 14379 14299 13052 11-854 11415 9:628  10-651 8:682
0-0 24-674 25187 21727 20:896 18494 17075 17083  15:596
1-0 11513 11-478 10440 9-512 9-142 7-697 8:541 6-:869
0-8 11-805 11-754 10:719 9-741 9-393 7-886 8776 7-049
08 0-6 12284 12203 11-166  10-114 9789 8:194 9-146 7-342
0-4 13-189  13:063 11990 10-828  10-507 8783 9-813 7-896
0-2 15373 15211 13925 12:611 12:152 10254 11329 9-267
0-0 24-674 24796 21-727  20:571 18494 16:808 17083  15-349
1-0 11-805 11-749 10:719 9-737 9-393 7-883 8776 7-047
0-8 12-166  12:084 11056 10-014 9:692 8112 9-056 7-265
10 0-6 12747 12624 11:590 10463  10-160 8483 9-491 7-615

0-4 13-810 13629 12:547  11-297 10984 9171  10-254 8-261
0-2 16203 15959 14-647 13232 12757 10767  11-883 9747
0-0 24-674  24-540 21727 20358 18494 16632 17083 15187

6. CONCLUDING REMARKS

As expected for a given volume it is possible to increase the frequency parameter of
clamped circular plates. This is a sharp increase as o gets closer to zero, which does not have
a practical value in engineering terms. When the edge thickness is twice as high as the origin
thickness relative increases in frequency parameter are found to be around 15% by the two
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TABLE 5

when o — 0-0

187

pho /Do) of clamped circular plates with varying thickness

o — 1-0 0-5 0-1 0-05 0-01 0-0
p =10 11-805 13-189 18-837 21-081 23792 24-674
Moment M. =05 11-061 11-805 16203 18-837 23-006 24674
p=01 10-407 10-582 11-805 13-189 18-837 24-674
p=10 11-749 13-039 18595 20-870 23-638 24-540
R-RitzM. f =05 11-053 11-768 16-:294 19-146 23-672 25471
p=01 10408 10-584 11-906 13-727 21-540 28774
TABLE 6

Relative increases in frequency parameter (2> = wb*./phy/Do) of clamped elliptical plates
with varying thickness, when oo = 0-0 and f = 1-0

b/a 1-0 09 0-8 0-7 0-6 0-5 0-4 0-3 02 0-1

Moment method 24-674 23-168 21-727 20-440 19-356 18-494 17-844 17-384 17-083 16915
R. increase (%) 141 140 138 136 134 133 132 132 131 131
R.-Ritz method 24-540 22-268 20-358 18:799 17-567 16:632 15-953 15486 15-187 15-:024
R. increase (%) 140 140 140 141 142 143 145 148 151 153

7 |

ﬁ i

Figure 2. The optimal shape of a clamped circular plate given by references [7, 8].

TaBLE 7

Gains in frequency parameter (A* = wb>./pho/Do) of clamped elliptical plates, when
o= ﬁ = 10 (horigin/hgdge = 05)

bja 0 09 08 07 06 05 04 03 02 Ol
R-Ritz 11749 10659 9737 8976 8363 7883 7513 7237 7047 6936
Gains % 150 150 150 150 150 151 153 158 163 167
Moment 11805 11267 10719 10206 9759 9393 9112 8910 8776 8701
Gains % 155 16-5 17-2 17-8 182 184 186 187 187 188
7
Z |
!
L
ﬁ i

Figure 3. The shape of a clamped plate when a = f = 1-0 (hoyigin/heage = 0-5).
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different methods for the circular plate. As the aspect ratio decreases, gains slightly increase
for elliptical plates too.

10.

11.
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