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The governing differential equations and the general time-dependent elastic boundary
conditions for the coupled bending-bending forced vibration of a pretwisted non-uniform
Timoshenko beam are derived by Hamilton’s principle. By introducing a general change
of dependent variable with shifting functions, the original system is transformed into a
system composed of four non-homogeneous governing differential equations and eight
homogeneous boundary conditions. The transformed system is proved to be self-adjoint.
Consequently, the method of separation of variables can be used to solve the transformed
problem. The physical meanings of these shifting functions are explored. The orthogonality
condition for the eigenfunctions of a pretwisted non-uniform beam with elastic boundary
conditions is also derived. The relation between the shifting functions and the stiffness
matrix is derived. The boundary control of a pretwist Timoshenko beam is studied. The
effects of the total pretwist angle, the position of loading and the boundary spring constants
on the energy required to control the performance of a pretwisted beam are investigated.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The dynamic analysis of the pretwisted beams is important in the design of a number of
engineering components, e.g., turbine blades, helicopter rotor blades and gear teeth. An
interesting review of the subject can be found in the review paper by Rosen [1]. The forced
vibration problem of a pretwisted non-uniform beam with general elastic time-dependent
boundary conditions is common in engineering applications. Thus, it is necessary to
develop an accurate and simple method to solve this complicated problem and to find its
performance.

The vibrations of unpretwisted uniform Bernoulli-Euler beams with classical time-
dependent boundary conditions can be solved by using the method of Laplace transform
[2] and the method of Mindlin-Goodman [3,4]. In the Mindlin—-Goodman method,
a change of dependent variable together with four shifting polynomial functions of the fifth
order is introduced. In general, by properly selecting these shifting polynomial functions,
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the original system will be transformed into a system composed of a non-homogeneous
governing differential equation with four homogeneous boundary conditions.
Consequently, the method of separation of variables can be used to solve the problem. Lee
and Lin [5] gave the dynamic analysis of a non-uniform Bernoulli-Euler beam with general
time-dependent boundary conditions. They generalized the method of Mindlin-Goodman
and introduced four shifting functions with the physical meaning instead of those functions
with no physical meaning given by Mindlin and Goodman [3]. The vibrations of
unpretwisted uniform Timoshenko beams with classical time-dependent boundary
conditions were studied by Herrmann [6] and Berry and Nagdhi [ 7] by using the method of
Mindlin-Goodman. Lee and Lin [8] extended the previous study carried out by Lee and
Lin [5] and further generalized the method of Mindlin-Goodman to develop a solution
procedure for studying the vibrations of an unpretwisted non-uniform Timoshenko beams
with general time-dependent boundary conditions.

Approximation methods are very useful tools to investigate the free vibrations of
pretwisted beams where exact solutions are difficult to obtain even for the simplest cases.
For Bernoulli-Euler beams, Dawson [9], Dawson and Carnegic [10] used the
Rayleigh-Ritz method and transformation techniques to study the effects of uniform
pretwist on the frequencies of cantilever blades. Carnegie and Thomas [11] and Rao
[12,13] used the Rayleigh-Ritz method and Ritz—Galerkin method to study the effects of
uniform pretwist and the taper ratio on the frequencies of cantilever blades respectively.
Sabuncu [14] found by using the finite element method that the effect of trigonometric
pretwist angle on the frequencies increased as the pretwist angle increased. Rosard and
Lestar [15] and Rao and Carnegie [16] used the transfer matrix method to determine the
frequencies of vibration of the cantilever beam with uniform pretwist. Rosard and Lestar
[15] assumed that the displacements at each element are linear. Rao and Carnegie [ 16] used
an iteration procedure to determine the displacements at each element while the initial
displacements were assumed to be linear. The difficulties of the methods given by Rosard
and Lestar [15] and Rao and Carnegie [ 16] are overcome by Lin [17]. Lin [17] presented
a simple and accurate transfer matrix method for an elastically restrained non-uniform
beam with arbitrary pretwist. Moreover, it was found that the influence of the pretwist angle
on the natural frequencies of the beam with non-uniform pretwist is greater than on those of
the beam with uniform pretwist. The influence of the pretwist angle on the natural
frequencies of higher modes are greater than on those of lower modes. The stiffer the
boundary supports, the greater is the influence of the pretwist angle on the natural
frequencies. Lin [18] studied the force vibration of an elastically restrained non-uniform
beam with time-dependent boundary conditions.

For pretwisted Timoshenko beams, the influence of the shear deformation and the
rotatory inertia have been considered. Carnegie [ 19] determined the fundamental frequency
of a cantilever beam by using Rayleigh’s principle. Dawson et al. [20] used the
transformation method to study the effects of shear deformation and rotatory inertia on the
natural frequencies. Gupta and Rao [21] and Abbas [22] used the finite element method to
determine the natural frequencies of uniformly pretwisted tapered cantilever blading.
Subrahmanyam et al. [23] and Subrahmanyam and Rao [24] used the finite element
method and the Reissner method to determine the natural frequencies of uniformly
pretwisted tapered cantilever blading respectively. Celep and Turhan [25] used the
Galerkin method to investigate the influence of non-uniform pretwisting on the natural
frequencies of uniform cross-sectional cantilever or simply supported beams. Lin et al. [26]
derived the exact field transfer matrix of a non-uniform pretwisted Timoshenko beam with
arbitrary pretwist and studied the free vibration of a pretwisted Timoshenko beam with the
elastic boundary conditions. No research has been devoted to the forced vibration and the
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boundary control of the pretwisted Timoshenko beam with time-dependent elastic
boundary conditions.

In this paper, the governing differential equations and the general time-dependent elastic
boundary conditions for the coupled bending-bending forced vibration of a pretwisted
Timoshenko beam are derived by Hamilton’s principle. A solution procedure for studying
the dynamic behavior of the system is developed by using the method of
Mindlin-Goodman and the eigensolutions of the system obtained by using the modified
transfer method given by Lin et al. [26]. A general change of dependent variable with
shifting functions is introduced and the physical meanings of these shifting functions are
further explored. The orthogonality condition for the eigenfunctions of a non-uniform
pretwisted beam with elastic boundary conditions is also derived. The stiffness matrix for
a non-uniform beam with arbitrary pretwist is derived. The relation between the shifting
functions and the stiffness matrix is derived. The vibration control of a pretwisted beam
with boundary inputs is investigated.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Consider the forced vibration problem of a pretwisted non-uniform Timoshenko beam
with time-dependent elastic boundary conditions as shown in Figure 1. Both shear
deformation and rotatory inertia are considered. The displacement fields of the beam are

u(x, t) = —z¥.(x,t) — y¥,(x, 1), v(x,t) =v(x,1),
w(x,t) = w(x,t) (1)

where u, v, and w are the displacements in the x, y, and z directions respectively. ¥, and
Y, are the angle of rotation due to bending about the z and y directions respectively. ¢ is the
time variable. The total potential energy II and the kinetic energy K of beam are

1 (- 1
II = 5 J J‘ (Gxxgxx + 20-xysxy + 2O-x28xz) dA4 dx + 5 KZGL[IIIZ(Oa t) _fl(t)]z
0J4

1 1
+5 Ko [w(0,9) — 01 + 7 Koo [¥,(0.1) — 3017

_:7:3&

£0 g3 =L 50 L O 0

Figure 1. Geometry and coordinate system of a pretwisted beam subjected to the transverse loads and the
boundary excitations.
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1 1
+ 5 K,rr[0(0,1) — fu()]* + 5 K.or[P(L, 1) — f5(0)]°

1 1
+ 5 Kerr[W(L0) = fo(0]* + 5 Kyox[P(L0) = /(0]

+;K”R[1)Lt) — f5(t) J[pxt) (x,0) + q(x,t)v(x, )] dx

—JEOW:(0,1) — fF(Ow(0,1) — fF(0) ¥, (0, 1) — f(1)v(0,1)

— [FOW(L, 1) — fEO)W(L, 1) — f3(t) W, (L, 1) — fE()v(L, 1), @
K= % JLJ [(Ow/01)* + (dv/0t)* + (u/0t)*] p dA dx, 3)

where A is the cross-sectional area of beam. E is Young’s modulus. f; and f*,i =1,2,...,8,
are the slopes, displacements, external moments, and shear excitations at the left and right
of the beam in the y and z directions respectively. p(x,t) and ¢(x,t) are the external
transverse loads in the z and y directions respectively. L is the length of beam. p is the mass
density per unit volume. ¢ and ¢ are the stress and the strain respectively. K denotes a spring
constant. The subscripts y and z denote the y and z directions respectively. The subscripts
T and 6 denote the translational and rotational springs respectively. The subscripts L and
R denote the left end and the right end of the beam. Application of Hamilton’s principle
yields the coupled governing differential equations and the associated time-dependent
elastic boundary conditions.
In terms of the following dimensionless quantities

Bi,.(c):%, Fi=f, i=15357, Fi=f%, i=2.4.68,

F?‘=$§y(0), i=1,3,5,7, F?:%, i=2,46,8,

FiO) = raFie) + paFr o, md =200, P(é,r)=%,

Q(éﬂ=%, wa=%, 6 = o0
e =" wig="" /3=%
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KzOLL KzTLL3 KyOLL

bs=%on,0° "~ Eo5,0° "7 E0L,0°
g ol B ]
S_E(O)Iyy(())’ /i1—1+ﬁia Viz—l +ﬁi’
1,00 ___EOLO . _x
a0 ' TR06040L T L

t |EW0)I,, (0
ot [EOLO @
L=~ p(0)A(0)
the four coupled dimensionless governing characteristic differential equations of motion are
obtained:

o [S©) [ow rw
o, ov] o, av] . S© (oW
5_5[3” 65}6_5[3”6_5} I <8é T)
o, v,
- nRyy(é) W - nRyz(é) 6‘52 = 03 (6)
o IS (v v
T [T <6_f - 'Pyﬂ +m(Q) 57 =07, (7
0 vl o ow,| S©) (v
8_5[3” 65}6_5[3” aé]*T(@?“‘"y)
Ro@ e ka0l 0, e 8
—n yz(é) 62 —n zz(é) 8‘62 — Y éE(, ) ()

and the associated dimensionless elastic boundary conditions are at ¢ = 0:

oY, o _
— Y12 <Byya—£+Byz 8—§y> +y1 ¥ = F(n), )
S (oW _
— Y22 — <— — lIjz> + W = F,(1), (10)
w\ ¢
oY, o _
— 732 (Byz 8—5 + Bzz 6—5)}) + “/31le = F3(T)9 (11)

S [oV _
— Y42 ; <ﬁ_§ - lPy> + 741V = Fa2), (12)



74 S. M. LIN AND S. Y. LEE

At ¢ =1:
oY, oY _
Vs2 <Byy ra + Byy a—éy> +75:%¥. = Fs(1), (13)
S (oW _
Vo2 — <— - le) +761W = F¢(2), (14)
w\ ¢
Y. oY _
V72 <Byz ra + B.. a—5y> +y71 ¥ = F4(7), (15)
S (oV _
y82ﬁ<6—5_ lpy>+“/s1V=F8(f)a (16)
where I;;, i=j and i #j, are the area moment of inertia and the product of inertia
respectively.

When the dimensionless translational spring constant is infinity or zero, the
time-dependent displacement or the time-dependent shear force is prescribed. If the
dimensionless rotational spring constant is infinity or zero, the time-dependent slope or
the time-dependent moment is prescribed.

The associated dimensionless initial conditions of the motion are

W (&, 0) = Wo(Q),

WED)
0 Wo(8),

lpz(€5 0) = lezO(‘f):

0¥.(£0)

=y (&
a'C zO(g)a

V(& 0) = Vo(9),

0 )
)
T
P,(E0) = Py (6),
W = ¥,0(). (17)
T

3. SOLUTION METHOD

3.1. CHANGE OF VARIABLE

To find the solution for these differential equations with variable coefficients and
non-homogeneous elastic boundary conditions, one generalizes the method given by Lin

[18] by taking

8 8
W) =wE+ ) Fin)g(d), V(&1 =0&1)+ ) Fi(t)gd),
i=1 i=1

sz(éa T) = @z(é? T) + Z F_i(f) hl(é)» lIly(és T) = q_)y(éa T) + Z F_I(T)El(é)s

(18)
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where the shifting functions g;(&), §;(¢), hi(¢) and hy(¢) are chosen to satisfy the following
differential equations:

d [S(9) (dgi )}
S =, 19
ac [ w \ae ()
d dh; d dh; S(&) (dg;
B, i S B, 2 (Y ) 20 20
dé[”dé}rdé[”dé}r p <d€ ()= 0
d | S (dg_i —)}
C2(% p) =0, 21
ac [ W \ag 1
d dh; d dh; S (dg; - .
— | B,, — — | B,. — — = —h =0 i=12,..,8 22
dé[”dé}rdé[”dé}r I (df ’ 2
and the associated dimensionless elastic boundary conditions.
At ¢ =0:
dh; dh;
— 712 <Byy d—f + B, d—f> + 7110 = 041, (23)
S (dyg;
— — | 5= — hi + i = 51’ ] 24
szﬂ(dé > V219 2 (24)
dh; dh; _
— V32 <Byz d—f + B.. d—5> + 7310 = 043, (25)
s(dg .\ .
— - V= — hi + i = 5,’ N 26
y42,u<d§ > V419 4 (26)
At & =1:
dh; dh;
Y52 <Byy d_é + B,. d_f> +7s1h; = d;s, (27)
S (dg;
Ye2 — —h; i = Jis> 28
/62N<dé >+V619 6 (28)
dh; dh; _
Y72 <Byz d_é + B.. d_§> + 7710 = 07, (29)
S (dg; - _
Y82 — < — hi> + 7819; = Jis, (30)
p\d¢

where 9,; is a Kronecker symbol.
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After substituting equations (18-30) into equations (5-16), one obtains the following

differential equations in terms of w(¢, 1), 9(¢, 1), ¢.(&, 1) and @,:

o [SE©) [ow . 0*w o
L [7 <a_5 _ <p>} w5 Y =)

0 0¢. ] 0 gy |, SE© (ow
a—z[% a—z}%[% %} r <az %)

¢, 3p,
— MRy (&) =5 — MRy (&) =5 = P&, 7)

ANGY .
2 [7 <a_§ - (pyﬂ Fm@) S5 = ()

3 06, @ 06,1 S© (05

— | B.. = — | B.. ¥ RS2 R

af[ » aé]*@f[ = af]* r <aé “”y>
2_

0 ¢,
— IR,-(&) =5 — R = = G(E 7). EE(0. 1)

where

8 d2__ _
PED=n Y o IRyOME) + RO R

8 d°F, _
Q& v=n ) W [R,z(O)hi(&) + Ra(9hi(Q)]
i=1

and the associated homogeneous boundary conditions:
At & =0

0p, 0Q _
— Y12 <Byy a_(Pé + B,. %) +7119: =0,

S /ow _
—“/22; ﬁ_é_nz + 721w =0,

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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09 J9 _
— 732 <Byz 55 + Bzz 6_5)}) + V31§0y = O,

ov _
—V42 6’ — @y | +7410=0.

At ¢ =1:
9. J9 _
V52 <Byya_«é+Byy 6fy> +V51(;0z:0a
S<mv _>+ S0
|\ A z ) w = )
62 AGE ® Y61

09, 9 _
V72 <Byz a«é + Bzz ('7’—5) + V71902 = Oa

o _
“/sz 65 — @y | + 7810 =0.

The transformed initial conditions (17) become

REO = W)= X FO0g@ 0= Vol — ¥ F00)
ow(&,0 8 dF;(0 00(&,0 . 8 dF(0) _
oo - Y a0, TV =0 - T S0,

P:(6,0) = Voo (O — X FiOhi(),  ¢,(&0) = ¥y0(O) — ). Fil0)hi(8),

i=1 i=1
23.(,0 5 dF,0 05,(5,0) s F »
PO g -y T, Py gy T
i=1 i=1

3.2. SHIFTING FUNCTIONS AND ITS PHYSICAL MEANINGS

77

(38)

(39)

(40)

(41)

(42)

(43)

The system composed of equations (19-30) in terms of the shifting functions presents the
static problem of a pretwisted non-uniform Timoshenko beam subjected to unit end
restraints. The shifting functions g;, §;, h; and h; are the static deflections and angle of
rotation due to bending in the z and y direction, respectively, of a generally elastically
restrained pretwisted beam subjected to a unit transformed moment or a unit transformed
shear force at the ends respectively. When the rotational spring constant is infinity or zero,
the unit transformed moment is a unit end slope or a unit end moment. When the
translational spring constant is infinity or zero, the unit transformed shear force is a unit

end displacement or a unit end shear force.
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The corresponding shear forces are obtained by integrating the governing equations (19)
and (21) once, respectively,

- _ S(¢) (dyg: _
Qz,i(f) = 7 (d_f - hi> = C1,i» (45)
~ _S(Q) (dgi
0,.(8) = o (dé — hi> = Cy- (46)

Substituting equations (45) and (46) into equations (20) and (22), respectively, and
integrating these once, one obtains

_ dh; dh;

- Mz,i(é) = Byy d_f + Byz d—f = - cl,ié + c3,i: (47)
_ dh; dh;
- My,i(é) = Byz d—i + Bzz d—i = - cZ,ié + C4,i° (48)

Obviously, the coefficients ¢, ;, ¢5;, ¢3; and ¢4 ; are the corresponding shear forces and
moments at £ = 0 in the direction of z and y respectively. The following equations can be
obtained easily via equations (47) and (48):

dh;
(Bzszy - B)%z dé = - Cl,iéBzz + cZ,iéByz + C3,iBzz - C4,iByzv (49)
, di;
(Byz - Bzszy) d—é = - Cl,iéByz + cZ,iéByy + C3,iByz - C4,iByy' (50)

Integrating equations (49) and (50) once, respectively, one obtains

hi =c1i91(8) + c2,i h2(8) + ¢3,:03(E) + caiPall) + 5, (51)
hi = c1,:01(8) + €2,:02(8) + ¢3,:03(8) + ca,:04(8) + Co.i (52)
where
_ [ - CBZZ(C)
PO =) 5.0B,0 - BLO
_ [ - CByz(C)
¢a0) = Jo B..(0)B,,(0) — B;.(0) at
_ (‘é BZZ(C)
9= 5080 - B0
[ - Bzz(C)
= d
PO= ] 5080 - B0
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P1(8) = 28, @3(8) = Pa(d),

_ ¢ - CByy(C)
vee) = J o B(0B,(0) — BLO

B
Pall) = f o BB, (0 — B ™~ 3)

Substituting equations (51), (52) and (53) back into equations (45) and (46), respectively, the
following displacements are obtained:

gi(&) = 1 w1 (&) + c2,w2(&) + c3,w3(8) + ca,iwalé) + 5.8 + ¢q, (54)
Gi = ¢1,i01(8) + ¢2,02(8) + ¢3,:03(E) + c4,04(E) + c6,:€ + 3, (55)

where cs ;, cg.i;, ¢7.; and cg; are h;(0), h;(0), g;(0) and §;(0), respectively,

£ ¢
wi(Q) = L <% + ¢1(C)> i, w9 = L PO dl, =234,

g g

6= | (iwz(c))dé, WO = | o0d =134 (56)
0 \S(0) 0

Substituting equations (45-48, 51-56) into the boundary conditions (23-30), the

coefficients ¢; ;, i, j = 1, 2, ..., 8, of the general shifting solutions (51-52, 54-55) are obtained:

— - —1r -

[C1,i] 0 0 =712 0y O 0 0 di1
Ca,i — V22 0 0 0 0 0 721 O iz
C3,i 0 0 0 732 0 93 0 0 i3
Ca,i _ 0 — Va2 0 0 0 0 0 a4 Oia ’ (57)
Cs,i oy %) o3 a ysi 0 0 0 dis
Ce,i &s %6 %7 g Y61 O per O die
C7,i %o %10 %11 a2 0 950 O 0 iz
[ Csi| || %13 %14 %15 e 0 781 O V81 | _5i8_

where
o =ps191(1) = 752, a2 =7s5102(1), a3 =75103(1) + 752,
oty =75104(1), a5 =p61wi(l) + y62, %6 =7V61Wa(1),
a7 =761W3(1), ag =Pe1wa(l), o9 =77101(1),
a0 =77102(1) = 772, o1 = y71903(1), 12 =77104(1) + 772,
ar3 =78101(1),  o1a =ps102(1) + V82, 015 = psiva(l),

16 = Yg1Ua(l). (58)
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It should be noted that if the ratio of bending rigidity to shear rigidity u is zero,
dg;/dé = h;, dg;/dé = h; and the shifting functions become the same as those for
Bernoulli-Euler beams given by Lin [18].

3.3. ORTHOGONALITY CONDITION

The solution for equations (26-37), w(¢, 1), 0(¢, 1), ¢,(E, 1) and @, (&, T) can be obtained by
using the method of eigenfunction expansion. The eigenfunctions are specified by the
associated homogeneous governing differential equations and homogeneous boundary
conditions.

To derive the orthogonality condition of the eigenfunctions of the system, one lets A2
be the nth eigenvalue or the square of the nth dimensionless natural frequency and
[Wy @zn Uy @,n]" be the nth eigenfunction of the system, where the superscript T is the
symbol of transpose of a matrix. The governing characteristic differential equation can be
expressed as

Hﬂ+AﬂMB'Z =0, (59)

where the differential operators [I'] and [M] are

[d /S d d /S
— (2= —— (2 0 0
dq’(ud£> dé(u)

S d d d S d d
i () iz (5 )

=]

(60)

f =
i B . LEL L
a& \u dé &\
d d S d d S
0 B, — > =2 (B.)-°
] d<<yd9 P dé( dQ il
and
m 0 0 0
- 0 nR,, 0 nR,. A0)Q2L*
pay=| T D ey S OAOKR L 1)
0 O m 0 E(O)Iyy(o)
0 nR,, 0 #R..

in which 2, is the nth natural frequency. The eigenfunctions satisfy the boundary conditions
(36-43). It can be observed that equation (59) and the associated boundary conditions
(36-43) take the meaning of the free vibration of an elastically restrained non-uniform beam.
The eigenfunctions and the eigenvalues can be obtained by using the modified transfer
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matrix method proposed by Lin et al. [26]. It was shown that as the element of the field
transfer matrix can be integrated anaytically, the exact field transfer matrix of the system is,
therefore, obtained.

Taking the inner product, one can easily show that

w, W}

1 1 X
L [y 025 0y 0] D11 7 | = f Do 0 o0 0] D71 7 a2 (@)

J

Dyn Dyj
and
w, WJ
! ~ Pzn ! ~ gozj ~
f (%) @y 0 03] [T dé=j e 00 0] 11 7 a6 4B (63
0 n 0 J
Pyn Pyj
where

5 S(dw,, >1 S(dwj >
=W;— - Wzn — Wy =\ =7 — Pzj
Tu\ag )l T e T

d(pzn dQDn ! d(pz d(p‘
+ @ |:Byy KE +Byz dg:|0—(pzn|:Byy déj—i_Byz dgj

1

0

1 1

do., do,,
+§Dyj |:Byz dé +Bzz dg:|
1

AT/ AT

and B vanishes because of the boundary conditions (29-36). Thus, the self-adjointness
of the system is proved. Consequently, the orthogonality condition is obtained as
follows:

de.; deoy;
— Py |:Byz déj =+ Bzz dg]:|

0 0

(64)

1
J‘O {m(ijn + Ujvn) + nRyyq)zngozj + ’/IRzzqoynq)yj + nRyz(goznqoyj + goynq)zj)} dé

_ {O, j#n, (65)

&, J=1,

where ¢, is a real number.
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3.4. MODE SUPERPOSITION

The solution w(¢, 1), 9(&, 1), @.(&, 1) and ¢,(&, 1) specified by equations (31-44) can be
expressed in the following eigenfunction expansion form:

W(E ) ()
o0 = 0un(0)

= T, : 66
e | =2 O we (©0)
6,(E7) o2l

Substituting it back into the governing equations (31-34) and the initial conditions (44),
multiplying by [w,(&) ¢..(&) v.(E) ¢,,(E)] and integrating in accordance with the
orthogonality condition (65), one obtains

a2,

"+ AT, = i (67

where p (&) = (1/¢,) [ [WaP — @z + Vud — ¢yud] dE. The corresponding initial conditions
are

1
T,(0) = f (MO9P(E0) + 0,5(E,0) + 1R, PunBo(E10) + R oyt (E. 0)

0

R, [0, (6,0) + (5, O} d, (69
aTO)_ [ [ GRE0) 000 26.(2.0)
dr _L{m (Wn PR >+nRyy(PznT
05,(¢,0 95,(8,0 03.(5,0
R D R, P g, D g e

The solution of equation (67) is

T,(tr) = T,(0)cos A,7 + Ai dj(;"r(o) sin 4,7 + Ai frpﬁ,‘ Q) sin A,(t — {) d{. (70)

0

After substituting solution (70) back into equation (66), the general forced response of the
beam with time-dependent boundary conditions is finally obtained by substituting the
shifting functions (51-52, 54-55) and equation (66) into equation (18).

4. BOUNDARY CONTROL

Consider the steady response of a pretwisted Timoshenko beam subjected to the
harmonic concentrated transverse loads and the harmonic boundary excitation forces. The
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external concentrated forces and boundary inputs are

P(E, 1) = P*0(C — o) sin @t, (S, 1) = Q%0(C — &o) sin @,

Fit)=F;sinwt, i=1,2..,8.
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(71)

If the transient response from the initial conditions is neglected, the general dynamic

solution (18) is reduced into the following steady solution:

V(& 1) = V(&) sin @t = <P* Vi) + Q*VF(E) + i > sin @,

W (& 1) = W(E) sin @t = <P* W) + Q*Wir(& i > sin @,
P, (& 1) = P, () sin @t = <P* Y€ + QP8 + Z F.px (é)) sin @,

V. (¢ 1) = P, () sin @t = <P* YEE) + 0*PE ) + Z Fw# (é)) sin @'T,

where

< Wn(éo)vn(é) * _ > Un(éo)vn(é)
Loati—oy O Loy

V(&) =

o0

@ Cinu(6)

V(@) = gi(&) + L A= oY)

* _ 2 Wn(éO)Wn(i) * _ o Un(éO)Wn(é)
WiO= L ey MO 2= oy
* & @ Cin(©)

WO =) + X
* _ o Wn(io) len(é) % _ = Un(io) len(é)
5, (8) = ngl m , P8 = ngl 78,,(/1,% e

»© '4
YHE = R+ ¥ ‘”(24(5))

< n TZn o n Tzn
vy = ¥ T g - 3 T,

_ © '4
PEE) = k@) + Y ‘”(;4@))
n=1 n

(72)

(73)
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in which
1

1
ci,n = f Wl[ani + Ung_i] dé + ;1 J {@zn [Ryyhi + Ryin] + q)zn [Ryyhi + Ryzﬁi]} dé
0 0

i=1,2,..,8. (74)

If the displacements V' and W at ¢ = &, are controlled to be zero, the following two
conditions are obtained from equation (72):

FiWi (&) = — P*WF (&) — Q* Wi (&),

e

i=1

13

8
FiViE(&) = — PAVE(E) — Q¥ V(). (75)
=1

One can choose only two boundary inputs to satisfy the conditions. If the mth and nth
inputs are chosen, the corresponding coefficients of the boundary inputs are obtained as

[Fm} _ [W,;"(fl) Wn*(él):|_1 [P*Wp*(él) + QW)

:|, F.=0,i#mand n. (76)
F Va(&) Vi) PEVE(CH) + QFVE(Ey)

n

Based on these results, the energy required for the displacement control can be derived
easily.

5. NUMERICAL RESULTS AND DISCUSSION

To illustrate the application of the method and explore the physical phenomena of the
system, the following examples are presented.

Example 1. To establish the element stiffness matrix of a non-uniform beam with arbitrary
pretwist, the static deflection curves of the beam subjected only to a unit displacement or
a unit slope at either end of the beam segment have to be determined. However, it is known
from the meanings of the shifting functions explored in the previous section that these
deflection curves are just the shifting functions ¢;(&), Gi(¢), hi(¢), hi(&) for the
clamped-clamped beam listed in the case 2 of Appendix A. Thus, the element stiffness
matrix relation can be written as

[—Q:(00 M.(0) (1) —M.(1) —Q,(0) My(0) Q,(1) — M,(1)T"
= [kijls.s [¢F(0) w*(0) ¢3(0) v*(0) ¢#(1) w¥(1) ¢(1) v*(D)]", (77)

where v*, w¥, ¢}, and ¢* represent the static displacements and the angle of rotation due to
bending in the y and z directions, respectively, and the elements of the stiffness matrix are

kij= —cii kai=cap kai=ci kai = —cp i +c3,

ksi= — c2., kei = — Cair k7i = €2, ksi = — €25 + Casi (78)
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TaBLE 1

The influence of the tip pretwist angle @, the rotatory inertia and shear deformation on the
transverse displacements of cantilever beams subjected to a harmonic concentrated transverse
force and boundary inputs

@ = 30° @ =90°
n =0, n = 0-001, n =0, n = 0-001,
w=0 w= 0003133 u=0 w= 0003133
¢ w |4 w |4 w |4 w |4
00 0-010 0-0100 0-0100 0-0100 0-0100 0-0100 0-0100 0-0100
01 00118  0-0100 00119 0-0100 00123 0-0100 00124 0-0100
02 00172  0-0100 00175 0-0100 00191 00102 00194 00102
03 00262 00101 00269 00101 0-0302 0-0107 0-0309 00107
04 00389 00101 0-0400 0-0102 0-0451 00116 0-0463 00117
05 00552 00103 0-0569 00103 00633 00131 00651 00132
06 00753 00105 0-0778 0-0105 0-0843 0-0151 0-0866 00153
07 00993  0-0108 0-1026 00108 0-1074 00178 0-1104 00181
0-8 01276 00122 0-1318 00113 01322 0-0211 0-1358 0-0215
09 01604 00118 01658 00119 0-1581 0-0249 01623 00255
1-0 0-1987  0-0126 0-2054 00127 0-1849 00292 0-1896 0-0301

Note: Transverse force and bouindary inputs are given as follows: [P(£,1) = 0-:015(£ — 0-5)sint, Q(&,1) =0,
F,=F,=001sint, Fi(r)=0,i=1,3,5,..., 8 B,,=(1 —01&cos? P +20(1 —01¢)*sin* éP, B.. =20
(1 —018)*cos? &P + (1 —0-1¢) sin? éd, By, = [10(1 — 0-18)* — 0-5(1 — 0-1¢)] sin 2&P].

in which the coefficients c;; are the coefficients of the shifting functions. If the functions in
equations (53) and (56) can be integrated analytically, the exact stiffness matrix is obtained.
Otherwise, an accurate solution can be easily obtained by using the numerical integration
method. If the shear deformation is neglected, the matrix relation (77) becomes the same as
that given by Lin [18].

For the following numerical solutions, the first five modes are used in the series
expansion. Table 1 shows the influence of the tip pretwist angle @, the rotatory inertia
constant 1, and the shear deformation constant u on the transverse displacements of
a cantilever beam subjected to harmonic concentrated transverse load P and the boundary
excitations F, and F,. It is shown that larger the constants # and p, the greater is its
influence on the displacements. When the tip pretwist angle @ is increased, the displacement
W is increased but the displacement V is decreased. This is the reason why only the
transverse load P in z direction is applied to the beam.

Example 2. Consider a sliding-free beam subjected to only the transverse load P. Letting
m = 2 and n = 4 and taking the relation (76), the tip—displacements W (1, 1) and V' (1,7) can
be controlled to be zero. The displacements W and V of the beam subjected to
a concentrated load p at the center position are shown in Figure 2. The energy required to
control the performance of the beam is

E(1) = E*sin” @t = (F,0, + F,Q,) sin” o, (79)
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Figure 2. The transverse displacements of cantilever beams subjected to a harmonic concentrated transverse
force and the boundary controls [P(¢&, ) = 0-016(£-0-5) sint, Q(é, 1) =0, F, = F,sint, Fy = Fysint, Fi(t) =0,
i=1,35,..,8 B, =(1—01&%*cos? &n/3 + 20(1 — 0-1&)* sin? &n/3, B.. = 20(1 — 0-1&)* cos? ém/3 + (1 — 0-18)*
sin? &n/3, By, = 9:5(1 — 0-1&)* sin 2¢n/3, n = 0:001, p = 0-003133].
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Figure 3. The influence of total pretwist angle and the position of the external loading on the control energy of
a cantilever beam [P(&,7) = 0-016 (¢-&y) sint, Q(&, 1) =0, F, = Fysint, Fy = Fysint, Fi(t)=0,i=1,3,5,..., 8,
B, =(1— 0:15)4 cos? E@ +20(1 — 0-1¢)* sin? EP, B., =20(1 — 0-1&)*cos? ED + (1 — 01 &)* sin® EP, By, =9'5
(1 —0-1&)*sin 2E@, n = 0-001, p = 0-003133].
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where {F,, F,} and {Q,, 0.} are the input boundary displacements and the corresponding
shear forces at ¢ = 0 respectively. The shear forces are

Yo

d¢

5,50 <dV(0) s, (0)>’ QZZSLO) <dW(0)

= —¥_(0)]. 80
e 7 )) (80

Figure 3 shows the influence of total pretwist angle and the position of the external
loading on the control energy E*. It is shown that when the position of the external loading
approaches the free end, the required control energy is evidently larger. Moreover, the total
pretwist angle is increased, the required control energy is increased.

Example 3. Consider a sliding-spring beam subjected to only the transverse load P at
¢ = 0-6. Letting m = 2 and n = 4 and taking relation (76), the displacements W (0-5, t) and
V (05, 7) can be controlled to be zero. In Figure 4, the effects of the boundary spring
constant y¢; and the total pretwist angle @ on the control energy are shown. When the
spring constant y¢; is increased, the required control energy is decreased substantially. In
Figure 5, the effects of the boundary spring constant yg; and the total pretwist angle @ on
the control energy are shown. If the spring constant yg; is small, the influence of yg; on the
required control energy is small. When the spring constant yg; approaches the value of one,
the required control energy is decreased evidently. These results are obtained because the
displacement w in the z direction is dominant.
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Figure 4. The influence of transverse spring constant y,; and the total pretwist angle @ on the control energy of
a beam [P(&,7) = 0015(¢ — 0-6)sint, Q(£,7) =0, F, = Fysint, Fy = Fysint, Fi(t)=0,i=1,3,5,..., 8, 91, =
Y21 =731 = Ta1 =752 =71 =72 = 1, By = (1 — 018 cos? E@ + 20(1 — 0-1¢)* sin® {B,  B.. = 20(1 — 0-1¢)*
cos? E@ + (1 — 0-1&)* sin? E@, B,. = 95 (1 — 0-1&)* sin 2&@, n = 0-001, u = 0-003133].
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Figure 5. The influence of transverse spring constant yg; and the total pretwist angle @ on the control energy of
a beam [P(¢, 1) = 0:016(¢ — 0-6)sint, Q(£,7) =0, F, = F,sint, Fy = Fysint, F;(t)=0,i=1,3,5,...,8, 711 =
721 =731 =741 =752 =72 =772 =1, By =(1 = 01&*cos? &P +20(1 — 0-1¢)*sin* {P,  B.. = 20(1 — 0-1&)*
cos? E@ + (1 — 0-1&)* sin? @, B,. = 9-5(1 — 0-1&)* sin 2E@, 7 = 0-001, u = 0-003133].
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6. CONCLUSION

The governing differential equations with the general time-dependent elastic boundary
conditions for the coupled bending-bending vibration of a pretwisted non-uniform beam
are derived by Hamilton’s principle. An accurate solution procedure for the forced vibration
of a pretwisted beam with general time-dependent elastic boundary conditions is proposed.
The physical meanings of the shifting functions are revealed. The self-adjointness of the
system is proved. The orthogonality condition for the eigenfunctions of a non-uniform
pretwisted beam with elastic boundary conditions is derived. The stiffness matrix for
a non-uniform beam with arbitrary pretwist is derived. The boundary control of a pretwist
beam is derived. The effects of the total pretwist angle and the spring constants on the
energy required to control the performance of a pretwisted beam are large.
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APPENDIX: SHIFTING FUNCTIONS

Case 1: Clamped—Free. For this case, 11 = Y21 = V31 = Y41 = Y52 = V62 = V72 = V82 = 1,

V12 =722 = V32 = Va2 = V51 = V61 = V71 = V81 = 0, and the shifting functions are

g1=¢ g2=1, g3=94=0, gs=w3(), ¢g¢=wi(E) + wis(l),
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g7 = wa(&), gs = wa(&) + wa(d),

g1=92=0, gs=¢ Ja=1 gs=vs(0. ge=0v1(S)+ v3(9),
g7 = v4(&), gs = 02(C) + val©);

hy =1, hy=hy=hs=0, hs = $3(8), he = $1(8) + $3(9),
ha = d4(9), hg = ¢2(S) + ¢a(d),

hy=1, hy=h,=hy =0, = 03(8), hs = @1(8) + @3()
hs = @4(8) hs = @5(8) + @4 (9.

Case 2: Clamped-Clamped. For this case, 71 = Y21 = V31 = Ya1 = Vs1 = Y61 = V71 =
781 =L, 712 =722 = V32 = Va2 = V52 = V62 = V72 = 782 = 0, and the shifting functions are

where

gi(&) = 1 w1 (&) + cowa (&) + c3,w3(E) + caiwall) + 6:1E + ia,
gi = €1,i01(&) + €2,102(8) + ¢3,,03(8) + c4,04(8) + ;38 + dya,
hi = ¢y, 91(8) + €2,i$2(E) + ¢3,:03(8) + c4,iP4(E) + i1,

hi = c1,;01(8) + €2,:02(8) + ¢3,:03(8) + ca,:04(&) + di3,

cji = dj1 (05 — 6i1) + djp(di6 — i1 — 02) + dj3(6i7 — 6i3) + dj4(5i8 — 0i3 — Oia),

diy dyp dyz dyg d1(1)  ¢2(1) ¢3(1) Pu(l)]|”
dyy dyy dyz dyy _ wi(l) wy(1) wi(1) wa(1)
d31 diz; diz dig B 01(1)  @2(1)  @3(1)  @u(1)
dyy dyy daz day vi(1)  va(1)  v3(1)  va(l)
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