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Toroidal shells belong to the shells of revolution family. Dynamic sensing signals and
their distributed characteristics of spatially distributed sensors or neurons laminated on
thin toroidal shell structures are investigated in this study. Spatially distributed modal
voltages and signal patterns are related to the meridional and circumferential membrane/
bending strains, based on the direct piezoelectricity, the Gauss theorem, the Maxwell
principle and the open-circuit assumption; linear and non-linear toroidal shells are defined
based on the thin shell theory and the von Karman geometric non-linearity. With the
simplified mode shape functions defined by the Donnell–Mushtari–Vlasov theory, modal-
dependent distributed signals and detailed signal components of spatially distributed
sensors or neurons are defined and these signals are quantitatively illustrated. Signal
distributions basically reveal distinct modal characteristics of toroidal shells. Parametric
studies suggest that the dominating signal component results from the meridional
membrane strains. Shell dimensions, materials, boundary conditions, natural modes,
sensor locations/distributions/sizes, modal strain components, etc., all influence the
spatially distributed modal voltages and signal generations.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Toroidal shell structures and components are often proposed for space telescopes,
inflatable space structures, neutron accelerators, space colonies, cooling tubes, etc., over
the years. Effective distributed control of these toroidal shell structures can enhance their
operation precision, accuracy, and reliability. Static, dynamic, vibration, and buckling
characteristics of toroidal shells have been studied [1–5]. Stress and free-vibration analyses
of pipe-type toroidal shells have also been investigated recently [6–8].

Precision maneuver and control of shells requires thorough understanding of not only
the dynamic behavior, but also the distributed sensing characteristics serving as
performance indices or feedback signals [9]. Distributed sensing characteristics of
distributed segmented sensors and spatially shaped orthogonal sensors of cylindrical
shells and rings have been evaluated recently [10–12]. This study is to evaluate distributed
sensing characteristics of linear and non-linear toroidal shells of revolution laminated with
spatially distributed piezoelectric sensors of neurons. Mathematical modelling of a generic
toroidal shell of revolution is presented first, followed by distributed sensing of toroidal
shells with spatially distributed sensors. Due to the complexity of the original toroidal
shells, exact solutions are difficult to derive. Thus, the Donnell–Mushtari–Vlasov theory is
employed and, thus, a set of mode shape functions can be assumed and distributed sensor
signals can be defined. Detailed spatially distributed sensing signals and modal voltages
are presented in case studies.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



H. S. TZOUAND D. W. WANG204
2. MATHEMATICAL MODELLING

A thin toroidal shell of revolution and its cross-section are shown in Figure 1 where a1 ¼ f
denotes the meridional co-ordinate and a2 ¼ c denotes the circumferential co-ordinate
respectively. For convenience, a secondary circumferential co-ordinate w is adopted as w ¼
Rc=r; where R is the toroidal shell (major) radius and r is the shell cross-sectional radius.
Assume that the toroidal shell is thin (with thickness h), and thus follow the Love–Kirchhoff
thin shell theory and assumptions. Mathematical models of the linear and non-linear toroidal
shells are defined first, followed by the Donnell–Mushtari–Vlasov simplifications.

Furthermore, a spatially distributed sensor layer (with thickness hs) is laminated to the
shell surface and it is much thinner than the elastic shell, i.e., h4hs: Thus, the influence of
sensor elastic properties on the elastic toroidal shell dynamics is neglected. The distributed
sensor layer responds to the dynamic oscillations and generates signals. The sensor layer
can be further discretized into spatially distributed infinitesimal ‘‘neurons’’ revealing
microscopic distributed local signals of the toroidal shells. These spatially distributed
signals and modal voltages are investigated in this study.

The Lam!ee parameters and curvature radii of toroidal shells of revolution are

A1 ¼ r; A2 ¼ rx; R1 ¼ r; R2 ¼ rx=ðg cos fÞ; ð1Þ

where x ¼ 1þ g cos f and g ¼ r=R: The membrane and bending strains (sij8 and kij) of the
toroidal shells are functions of displacements ui:

sff8 ¼ 1

r

@uf

@f
þ u3

� �
; sww8 ¼ 1

rx
�uf sin fþ @uw

@w
þ u3g cos f

� �
; ð2; 3Þ

sfw8 ¼ 1

rx
@uf

@w
þ uwg sin f

� �
þ 1

r

@uw

@f
; kff ¼ 1

r2
@uf

@f
� @2u3

@f2

� �
; ð4; 5Þ
Figure 1. A toroidal shell of revolution with a distribute sensor layer (not to scale).
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kww ¼ �sin f
rRx

uf � @u3

@f

� �
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rRx2
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@w
� 1
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@2u3

@w2
; ð6Þ
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@w
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ðRxÞ2
sinf cos f� 1
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@f@w
� sin f

rRx2
@u3

@w
: ð7Þ

The total strains Sij are the summation of the membrane strain and the bending strain:

Sff ¼ sff8 þ a3kff; Sww ¼ sww8 þ a3kww; Sfw ¼ sfw8 þ a3kfw; ð8210Þ
where a3 denotes the location measured from the shell neutral surface. These strain–
displacement relations will be used in the signal–displacement equation of spatially
distributed sensors and neurons later. Following the thin shell assumptions, the rotation
angles are defined as bf ¼ ð1=rÞðuf � @u3=@fÞ and bw ¼ ð1=rxÞðuwg cos f� @u3=@wÞ: For
non-linear toroidal shells with geometric non-linearity defined by the von Karman
geometric non-linearity, the membrane strains need to include the quadratic effect of the
transverse displacement [13]:

sff8 ¼ 1

r

@uf

@f
þ u3

� �
þ 1

2

@u3

@f

� �2

; ð11Þ

sww8 ¼ 1

rx
�ufg sin fþ @uw

@w
þ u3g cos f

� �
þ 1

2

@u3

@w

� �2

: ð12Þ

The resulting membrane forces Nij and moments Mij are defined as functions of membrane
strains sij8 and bending strains kij :

Nff ¼ Kðsff8 þ msww8 Þ; Nww ¼ Kðsww8 þ msffÞ; Nfw ¼ Nwf ¼ Kð1� mÞ
2

sfw8 ; ð13215Þ

Mff ¼ Dðkff þ mkwwÞ; Mww ¼ Dðkww þ mkffÞ; Mfw ¼ Mwf ¼ Dð1� mÞ
2

kfw; ð16218Þ

where the membrane stiffness K and the bending stiffness D are, respectively, defined as
K ¼ Yh=ð1� m2Þ and D ¼ Yh3=½12ð1� m2Þ� and Y is the modulus of elasticity, m is the
Poisson ratio. Accordingly, the system equations of the thin toroidal shells in three axial
directions are, respectively, defined as follows:

�rx
@Nff

@f
þ rgðNff � NwwÞ sin f� r

@Nwf

@w
� rxQf3 þ r2xrh .uuf ¼ r2xqf; ð19Þ

�rx
@Nfw

@f
þ 2rgNfw sin f� r

@Nww

@w
� rgQw3 cos fþ r2xrh .uuw ¼ r2xqw; ð20Þ

�rx
@Qf3

@f
þ rgQf3 sin f� r

@Qw3

@w
þ rxNff þ rgNww cos fþ r2xrh .uu3 ¼ r2xq3; ð21Þ

where r is the mass density; .uui is the acceleration; qi is the external excitation; and the
transverse shear effects Qij are defined as functions of moments:

Qf3 ¼
1

rx
x
@Mfw

@f
þ gðMww � MffÞ sin fþ @Mwf

@w

� �
; ð22Þ

Qw3 ¼
1

rx
x
@Mfw

@f
� 2gMfw sinfþ @Mww

@w

� �
: ð23Þ

As discussed previously, exact analytical solutions of thin toroidal shells of revolutions
are difficult to obtain. Thus, simplification theories are often employed and simplified
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analytical solutions are derived. In this study, the Donnell–Mushtari–Vlasov simplifica-
tion theory is used. There are three fundamental assumptions in the Donnell–Mushtari–
Vlasov approximation: (1) in-plane displacements can be neglected in the bending strain
expressions, but not in the membrane strain expressions; (2) in-plane inertia forces can be
neglected, i.e., rh .uuk ffi 0; k ¼ f; c; and (3) the transverse shear effects, i.e., Q31=R1 and
Q32=R2; in the transverse equations can be neglected. Based on the first assumption, one
can simplify the bending strain–displacement equations:

kff ¼ � 1

r2
@2u3

@f2
; kww ¼

sin f
rRx

@u3

@f
� 1

ðrxÞ2
@2u3

@w2
; kfw ¼ � 1

r2x
@2u3

@f@w
� sinf

rRx2
@u3

@w
:

ð24226Þ

Based on the second and third assumptions, the influence of in-plane inertia forces is
neglected and the transverse shear terms are also neglected. Thus, the simplified system
equations based on the Donnell–Mushtari–Vlasov theory become

�rx
@Nff

@f
þ rgðNff � NwwÞsin f� r

@Nwf

@w
¼ 0; ð27Þ

�rx
@Nfw

@f
þ 2rgNfw sin f� r

@Nww

@w
¼ 0; ð28Þ

rxDr4u3 þ xNff þ Nwwg cos fþ rxrh .uu3 ¼ rxq3; ð29Þ

where

r2ð.Þ ¼ 1

r2x
@

@f
x
@ð.Þ
@f

� �
þ @

@w
1

x
@ð.Þ
@w

� �� �
:

A set of assumed mode shape functions based on the simplified theory are then defined and
used in the modal signal–displacement expressions next.

3. DISTRIBUTED SENSING AND MODAL VOLTAGES

The spatially distributed piezoelectric sensor layer responds to dynamic strains and
generates electrical signals, due to the direct piezoelectric effect. Based on the modal
expansion concept, the displacement is composed of all participating modes. Thus, the
sensor signals are also functions of modal-dependent strains. In this section, mode shape
functions are defined first, followed by modal-dependent signals}modal voltages. Based
on the Gauss theory, Maxwell’s principle and the open-voltage assumption, the sensor
signal fs of a generic shell sensor can be expressed as [9,14]

fs ¼ hs

Se

Z
Se

ðh31S11 þ h32S22 þ h36S12Þ dSe; ð30Þ

where Se is the effective sensor area, hs is the sensor thickness, S11 and S22 are the normal
strains, S12 is the in-plane shear strain, and h31; h32 and h36 are the piezoelectric
(displacement) constants. Note that h31 ¼ h32 and h36 ¼ 0 for most commercial
piezoelectric materials. (Note that since the in-plane electric fields are negligible for most
widely used piezoelectric materials, e.g., polyvinylidene fluoride (PVDF), the sensing
signals resulting from the in-plane electric fields are not considered here. However, it has
been reported that, for some specific piezoelectric structures, the in-plane electric field
could be more significant than the through-the-thickness electric field and the through-
thickness electric potential is not linear even in the case of a thin-walled structure [15,16].)
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Expanding the surface integration and using the toroidal shell parameters yields

fs ¼ hs

Se

Z
Se

ðh31Ss
11 þ h32Ss

22ÞA1A2 da1 da2; ð31aÞ

fsðf;cÞ ¼ hs

Se

Z
f

Z
c
ðh31Ss

ff þ h32Ss
ccÞr2ð1þ g cos fÞ df dc; ð31bÞ

where the superscript ‘‘s’’ denotes the sensor-related properties. A1 and A2 are the Lam!ee
parameters, a1 and a2 are the two curvilinear co-ordinates. The mode shape functions (or
the displacement fields) Ui (i ¼ f;c; 3) defined in the modal domain of the shear-
diaphragm-supported toroidal shells following the Donnell–Mushtari–Vlasov approxima-
tion are [8]

Uf ¼
X1
m¼1

X1
n¼1

Amn sinðmfÞ sin npc
c�

� �
; ð32aÞ

Uc ¼
X1
m¼1

X1
n¼1

Bmn cosðmfÞ cos npc
c�

� �
; ð32bÞ

U3 ¼
X1
m¼1

X1
n¼1

Cmn cosðmfÞ sin npc
c�

� �
; ð32cÞ

where Amn; Bmn; and Cmn are the modal oscillation amplitudes, c� defines the
circumferential angle (2p5c� > 0), and m (meridional), n (circumferential) are the
mode (or half-wave) numbers, m; n ¼ 1; 2; . . . : (Note that the rigid body mode has no
strain variations and thus there is no signal generation associated with the rigid
body mode, although there exists a rigid mode for a totally free toroidal shell.) Thus, the
mnth mode shape functions of the shear-diaphragm-supported toroidal
shells are Ufðm; nÞ ¼ Amn sinðmfÞsinðnpc=c�Þ; Ucðm; nÞ ¼ Bmn cosðmfÞcosðnpc=c�Þ; and
U3ðm; nÞ ¼ Cmn cosðmfÞsinðnpc=c�Þ respectively. For convenience, the subscripts m and n

associated with the modal amplitudes are neglected in the following derivations. Note that
the mode shape functions satisfy the so-called shear-diaphragm boundary condition
analogous to the simply supported boundary condition of a simple beam [8,17].

Recall that the distributed sensor layer is surface laminated and its mid-plane distance
measured from the shell neutral surface is rs

1 ¼ rs
2 ¼ ðh þ hsÞ=2: Accordingly, toroidal shell

strains Sffðm; nÞ ¼ sff8 þ a3kff and Sccðm; nÞ ¼ scc8 þ a3kcc defined by the modal
amplitudes are respectively written as

sff8 ðm; nÞ ¼ ðmA þ CÞ
r

sin
npc
c�

� �
cosðmfÞ; kffðm; nÞ ¼ ðm2CÞ

r2
sin

npc
c�

� �
cosðmfÞ;

ð33234Þ

scc8 ðm; nÞ ¼ 1
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�Ag sinðmfÞ sin f� B

npg
c�

� �
cosðmfÞ þ Cg cosðmfÞ cos f

� �
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npc
c�

� �
;

ð35Þ

Kccðm; nÞ ¼ �mC

rRx
sinðmfÞ sinfþ C

ðrxÞ2
npg
c�

� �2

cosðmfÞ
( )

sin
npc
c�

� �
: ð36Þ

Since the sensor layer is thin and surface laminated, the strains in the sensor layer
are equal to the outermost surface strains of the toroidal shell. Imposing the
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Donell–Mushtari–Vlasov assumption and including the sensor location effect yields the
strain-mode shape function relations and the sensor signal equation of the distributed
sensor layer laminated on the toroidal thin shell:

Ss
ffðm; nÞ ¼ ðmA þ CÞ

r
þ ðh þ hsÞðm2CÞ

2r2

� �
sin

npc
c�

� �
cosðmfÞ; ð37Þ
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þ Cðh þ hsÞ

2ðrxÞ2
npg
c�

� �2
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�
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Z
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� ���
r2ð1þ g cos fÞ df dc: ð39Þ

4. ANALYSIS OF DISTRIBUTED SIGNAL COMPONENTS

Note that the sensing signals defined previously are the distributed signals integrated
over the whole sensor area Se and averaged over the sensor area, due to instantaneous charge
distribution and averaging on the sensor surface. Accordingly, only the ‘‘averaged’’ spatial
effect is displayed. In order to study microscopic signal–strain relations, the sensor electrodes
are assumed infinitesimally small}‘‘sensor neurons’’ and thus local signal distributions
can be revealed. Spatial modal voltage distributions can be established by plotting all local
neuron signals fs

mn ðf
�
a;c

�
aÞ; where ‘‘*’’ denotes a specified neuron location ‘‘a’’:

fs
mnðf�

a;c
�
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(
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r
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� �
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� �
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� �
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� �#)
: ð40Þ
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Thus, the total signal is ½fs
mnðf

�
a;c

�
aÞ� ¼ ½fs

mnðf
�
a;c

�
aÞ�men þ ½fs

mnðf
�
a;c

�
aÞ�bend ; where the

subscripts ‘‘men’’ and ‘‘bend’’ denote the membrane and the bending effects respectively.
The modal sensing signals ½fs

mnðf
�
a;c

�
aÞ�men induced by the membrane strains and

½fs
mnðf�

a;c
�
aÞ�bend induced by the bending strains are, respectively, defined as

½fs
mnðf

�
a;c

�
aÞ�men ¼ hsðh31sff8 þ h32scc8 Þ ¼ hs h31
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� �
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1
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; ð41Þ
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�
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aÞ�bend ¼ hsðh31rs

1kff þ h32rs
2kccÞ with rs

1 ¼ rs
2 ¼ 1

2
ðh þ hsÞ; ð42Þ
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2
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" #)
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� �
:

ð43Þ

Accordingly, detailed signal contributions from various strain components and their
modal voltages can be evaluated and significant components identified.

5. SENSOR SIGNALS OF NON-LINEAR TOROIDAL SHELLS

Distributed signals and the strain contributions of a distributed sensor layer laminated
on a thin linear toroidal shell of revolution were defined previously. Distributed signals
and modal voltages of a sensor layer and neurons laminated on a non-linear toroidal shell
are defined in this section. As discussed previously, based on the von Karman geometrical
non-linearity, the bending strains of the non-linear toroidal shell remain identical to the
linear case. However, a quadratic effect of the non-linear transverse displacement is added
to the membrane strains [18]:

sff8 ¼ 1

r

@uf

@f
þ u3

� �
þ 1

2

@u3

@f

� �2

; ð44Þ

sww8 ¼ 1
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�ufg sin fþ @uw
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þ u3g cos f
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þ 1

2

@u3

@w

� �2

: ð45Þ

Assume that the geometric non-linearity is small and its influence on natural modes is
insignificant. Substituting the mode shape functions defined for the toroidal shell with the
Denell–Mushtari–Vlasov assumption and simplifying gives the strain-mode shape
function relations:

1

2

@u3

@f

� �2

¼ 1

2
ðmCÞ2 sin2 npc

c�
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sin2ðmfÞ; ð46Þ

1

2
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2
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r

sin
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2
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scc8 ðm; nÞ ¼ 1
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The mnth modal sensing signals ½fs
mnðf

�
a;c

�
aÞ�men induced by the membrane strains,

½fs
mnðf

�
a;c

�
aÞ�bend contributed by the bending strains, the total signals ½fs
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�
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mnðf;cÞ�
including the geometric non-linearity effect can be respectively defined as follows. Note
that ½fs
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�
aÞ�bend is identical to the linear case.
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Thus, distributed modal voltages and signal contributions of non-linear toroidal shells can
be evaluated accordingly. Again, the sensing signals are calculated based on ‘‘small’’
geometric non-linearity of toroidal shells, such that the mode shape functions remain
uninfluenced.

6. MODAL VOLTAGES AND SIGNAL ANALYSIS

Recall that the signal generation is a function of strains induced in the sensor layer at
various modal oscillations of the toroidal shells. Modal voltages and signal components
associated with various strain components are analyzed in this section. It is assumed that
the piezoelectric constants h31 and h32 are the same, the radius ratio R=r ¼ 4; and the
modal amplitudes Amn; Bmn; and Cmn are assumed to be unity. Thus, the modal signals are
normalized with respect to the modal amplitudes, per se. Note that the modal amplitudes
Amn; Bmn; and Cmn fluctuate at different modes and their relative amplitudes vary with
respect to the shell geometries and/or sizes in reality. Accordingly, the following modal
voltage plots and various signal components only provide qualitative information.
Quantitative modal voltages can be inferred only if the ‘‘true’’ modal amplitudes of the
toroidal shell are well defined. This model amplitude influence on the non-linear
Figure 2. Signal distributions induced by the meridional membrane strains: (a) m ¼ 1; (b) 2, (c) 3, (d) 4.



Figure 5. Signal distributions induced by the circumferential bending strains: (a) n ¼ 1; (b) 2, (c) 3, (d) 4.

Figure 4. Signal distributions induced by the meridional bending strains: (a) m ¼ 1; (b) 2, (c) 3, (d) 4.

Figure 3. Signal distributions induced by the circumferential membrane strains: (a) n ¼ 1; (b) 2, (c) 3, (d) 4.
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component is significant, since there is a quadratic term involved in the expression, due to
the von Karman geometric non-linearity. The true signals of the non-linear component are
usually small when the true modal amplitudes are considered.

Figures 2–5 illustrate the distributed modal signal components of the toroidal shell
respectively induced by the meridional membrane strains, the circumferential membrane
strains, the meridional bending strains, and the circumferential bending strains. In order to
illustrate the individual modal effect in a specific direction, only one wave number is
allowed to change from 1 to 4, while the other wave number is fixed. For example, m varies
from 1 to 4, while n is fixed at 1, i.e., (m ¼ 124; n ¼ 1). Figures 2 and 4 illustrate the signal
variations (m ¼ 124; n ¼ 1) in the meridional direction f on the open cross-sections;
Figures 3 and 5 show the circumferential signal variations (m ¼ 1; n ¼ 124) of the
Figure 6. Modal voltage distributions contributed by the membrane strains: (a) modes (m ¼ 124; n ¼ 1); (b)
modes (m ¼ 124; n ¼ 2); (c) modes (m ¼ 124; n ¼ 3); (d) modes (m ¼ 124; n ¼ 4).
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toroidal shell. Note that the top left is ‘‘1’’, the top right is ‘‘2’’, the bottom left is ‘‘3’’, and
the bottom right is ‘‘4’’ in the following modal signals. Furthermore, modal voltages
(m ¼ 124; n ¼ 124) contributed by the total membrane strain components and those
contributed by the total bending components are presented in Figures 6 and 7. There are a
total of 16 modal voltage components to illustrate the signal variations at various natural
modes in each plot. Again, the modes are arranged from the top left to the top right, and
then from the bottom left to the bottom right in these distributed modal signals. These
modal voltages and their signal components clearly illustrate distinct modal character-
istics. Again, these signal distributions are calculated based on the infinite number of
infinitesimally small sensor electrodes}neurons, such that the microscopic distributed
signal behaviors can be observed clearly.

Again, these modal voltage plots and various signal components only provide
qualitative spatial distribution of sensing signals. Quantitative modal voltages can be
Figure 7. Modal voltage distributions contributed by the bending strains: (a) modes (m ¼ 124; n ¼ 1); (b)
modes (m ¼ 124; n ¼ 2); (c) modes (m ¼ 124; n ¼ 3); (d) modes (m ¼ 124; n ¼ 4).



MICRO-SENSING CHARACTERISTICS OF SHELLS 215
inferred only if the ‘‘true’’ modal amplitudes and geometries of the toroidal shell are well
defined. Analytical solutions also suggest that the membrane-induced signal component is
much larger than the bending-induced signal component. The meridional membrane
component is larger than the circumferential component.

Detailed two-dimensional distributed signals in the meridional and circumferential
directions are also calculated and plotted. Figure 8 illustrates the signals (m ¼ 124; n ¼ 1)
and (m ¼ 1; n ¼ 124) respectively induced by the meridional and circumferential membrane
strains of a linear toroidal shell; Figure 9 illustrates the signals (m ¼ 124; n ¼ 1) and
(m ¼ 1; n ¼ 124) induced by the meridional and circumferential bending strains of the
linear toroidal shell. Figures 10 and 11 respectively illustrate the distributed signals induced
by the meridional and circumferential membrane strains of a non-linear toroidal shell. For
convenience, a reference point is used in the circumferential plots. Note that the signals
Figure 8. Signal distributions (m ¼ 124; n ¼ 1) and (m ¼ 1; n ¼ 124), respectively, induced by the meridional
(a) and the circumferential (b) membrane strains: (a) 0, toroidal shell; 1, first mode; 2, second mode; 3, third
mode; 4, fourth mode; (b) 0, toroidal shell; 1, first mode; 2, second mode; 3, third mode; 4, fourth mode.

Figure 9. Signal distributions (m ¼ 124; n ¼ 1) and (m ¼ 1; n ¼ 124), respectively, induced by the meridional
(a) and circumferential (b) bending strains: (a) 0, toroidal shell; 1, first mode; 2, second mode; 3, third mode; 4,
fourth mode; (b) 0, toroidal shell; 1, first mode; 2, second mode; 3, third mode; 4, fourth mode.



Figure 10. Signal distributions (m ¼ 124; n ¼ 1) induced by the meridional membrane strains of a non-linear
toroidal shell: (a) first mode; (b), second mode; (c), third mode; (d), fourth mode. (0, shell; 1, modal signals)
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induced by the meridional component are more significant than those induced by the
circumferential component, because the strain levels are higher in the meridional direction.
The signal distribution patterns, Figures 10 and 11, of the non-linear toroidal shell are
different from those, Figure 8, of the linear toroidal shell, due to the quadratic non-linear
term in the membrane strains. The signal distributions, Figure 9, induced by the bending
strains remain identical for both linear and non-linear toroidal shells.

7. CONCLUSIONS

Toroidal shells belong to the shells of revolution family, in which the shell surfaces are
formed based on full or partial rotations of specified lines or curves. Dynamics,
measurement, and control are critical issue for advanced precision toroidal shell structures
and components. Dynamic sensing signals and their distributed characteristics of spatially
distributed sensors or neurons laminated on toroidal shell structures are investigated in
this study. Mathematical models of linear and non-linear toroidal shells were established
based on the thin shell theory and the von Karman geometric non-linearity assumptions.
Modal-dependent distributed signals and detailed signal components of spatially



Figure 11. Signal distributions (m ¼ 1; n ¼ 124) induced by the circumferential membrane strains of a non-
linear toroidal shell: (a) first mode; (b) second mode; (c) third mode; (d) fourth mode. (0, shell; 1, modal signals)
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distributed sensors or neurons were defined based on the simplified mode shape functions
defined by the Donnell–Mushtari–Vlasov theory. Detailed modal signal distributions
depend on variations of the meridional and circumferential membrane/bending strains,
defined by the direct piezoelectricity, the Gauss theorem, the Maxwell principle and the
open-circuit assumption. Accordingly, with the analytical solutions, various distributed
signals, modal voltages, and contributing signal components of distributed thin-film
sensors and neurons laminated on linear and non-linear toroidal shells were evaluated
quantitatively. Parametric studies of distributed modal voltages and signal distributions
suggest that the dominating signal component results from the meridional membrane
strains, rather than the circumferential membrane strains. The signals contributed by the
bending components are relatively insignificant, as compared with the membrane
counterparts. Signal distributions basically reveal distinct modal characteristics of toroidal
shells. Analysis data also indicate that the distributed sensor layout of this toroidal shell
consists of meridionally laminated strips that would provide the best measurement effect
at the least material cost. This analysis also suggests that distributed signals and
dominating signal components of toroidal shells depend on not only materials and
dimensions, but also boundary conditions, natural modes, sensor locations, modal strain
components, etc. As these design parameters change, the effective distributed sensor
layouts or signal patterns would also change.
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