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1. INTRODUCTION

In the course of the last 20 years, the Khokhlov}Zabolotskaya}Kuznetsov (KZK) equation
[1, 2]
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has widely been used to describe (mainly numerically) non-linear "elds of beams of sound
and of short pulses (see, for instance, Proceedings of the 10th ISNA 1984, 15th ISNA 1999).

Here, p represents the disturbance pressure of the gas medium, p"pJ !p
�
, p� is the

instantaneous value of the pressure, p
�
, �

�
are the pressure and density of the undisturbed

gas, respectively, c
�
is the speed of sound in the undisturbed gas, �"(�#1)/2, � is the ratio

of the speci"c heats, � is the retarded time, �"t!z/c
�
, z is the longitudinal co-ordinate.

The quantity b is the e!ective di!usivity of sound which was introduced by Kirchho! in
1868. The symbol �

�
denotes the transversal part of the Laplace operator:

�
�
"��/�r�#(1/r)�/�r in cylindrical co-ordinates in the presence of axial symmetry. The

question of the value of �
�
is determined by the condition that the value of �

�
shall be equal

to � corresponding to the zero-value boundary conditions.
In what follows, the lossless version of equation (1) is considered as
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attention being restricted to axisymmetric beams, with p"p (r, z, �) in cylindrical
co-ordinates. As shown by Rudenko and Soluyan [3], equation (2) is equivalent to the
system of two coupled equations
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It has been used to describe, numerically by the "nite di!erence method, non-linear wave
propagation in tubes [4]. In the foregoing equations (3) and (4), div

�
"�/�r#1/r in

cylindrical co-ordinates, and u, v are the disturbance longitudinal and radial particle
velocities respectively. The origin of equation (4) is the #ow irrotationality condition. It is of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



388 LETTERS TO THE EDITOR
interest to derive a relation between p and u which might be used to test numerical solutions
to equation (2) and system (3, 4).

2. ANALYSIS

Such a relation accurate to the second order can easily be obtained from the equation of
motion in the r direction, by using the equation of continuity, the equation of motion in the
z direction, system (3, 4) and the equation of state for a #uid undergoing an isentropic
process, namely
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Here, � is the density disturbance, �� , p� are the instantaneous values of the density and
pressure, respectively, and s is the entropy.

Indeed, in the presence of axial symmetry the continuity equation and the equation of
motion in the r direction can be written in the physical co-ordinates r, z, t as
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where uJ , vJ are the instantaneous values of longitudinal and transversal particle velocities
respectively. It should be noted that, since the KZK equation is formulated by assuming
zero mean #ow, the instantaneous values of longitudinal and radial particle velocities must
be equal to the corresponding disturbance velocities, uJ "u, vJ "v.

From equations (6) and (7),

��J vJ /�t#(1/r)�r�J vJ �/�r#��J uJ vJ /�z#�pJ /�r"0. (8)

Substitution of the equation of state (5) into equation (8) yields, in the second order
non-linear-acoustics approximation, the equation
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After transposing from the physical co-ordinates z, t to the co-ordinates z, �, equation (9)
takes the form
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Use of the fact, see references [1}4], that

u"u(�, �z, ��r), v"v(�, �z, ��r), v/c
�
&����, (11)

where �&u/c
�
is the dimensionless wave amplitude, �;1, into equation (10) yields, in the

second order approximation, the equation

�
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�v/��#�p/�r"0. (12)

It is worth noting that it follows from the paraxial approximation (11) that

�/��"O(1), �/�z"O(�), �/�r"O(����).
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The exact expression of the #ow irrotationality condition can be written as

�u/�r!�v/�z#(1/c
�
)�v/��"0.

Now on making use of the paraxial approximation, one "nds that this equation can be
written as
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It follows from the latter equation that
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It is clear from this equation that v/c
�
+O(����). This provides a proof of the validity of the

ratio v/u (11). Substitution of equation (4) into equation (12), leads to the relation

�p/�r!�
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c
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�u/�r"0. (13)

The right-hand side error of equation (13) is O(����), where O is the usual order symbol.
Thus, by integrating equation (13), one readily obtains

p (z, r, �)!�
�
c
�
u(z, r, �)"f (z, r, �), (14)

where the function f (z, r, �) is of order ��.
It should be noted here that equation (14) can be combined with equations (3, 4) to

obtain equation (2) or with equations (2, 4) to obtain equation (3). Indeed, by introducing
expression for u from equation (14) into equations (3, 4) one obtains

1

�
�
c
�

�p
�z

!

1

�
�
c
�

� f
�z

#

1

2
div

�
v!

�
2c�

�

1

��
�
c�
�

�(p!f )�

��

"

1

�
�
c
�

�p
�z

#�
�
div

�
v!

�
2c�

�

1

��
�
c�
�

�p�
��

!

1

�
�
c
�

�f
�z

#

�
c�
�

1

��
�
c�
�

�pf
��

!

�
2c�

�

1

��
�
c�
�

�f �
��

"0,

(15)

(�v/��)#c
�
(1/�

�
c
�
) �p/�r!c

�
(1/�

�
c
�
)� f/�r"0. (16)

The sum of the last three terms in equation (15) is of magnitude O(��) and the last term in
equation (16) is of magnitude O(����) and thus, with the accuracy of this analysis, are
neglected to give
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Integration of equation (18) with respect to � from �"�
�
to the current �, yields the relation

between v and p:
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where v(z, r, �
�
) is equal to zero.

Substitution of relation (19) into equation (17) yields equation (2).
Following a similar procedure, the expression for p from equation (14) can be introduced

into equation (2):
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The sum of the last four terms in equation (20) is of magnitude O(����) and thus, within the
accuracy of this analysis, is neglected to give
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After multiplying by r, di!erentiating with respect to r and multiplying by 1/r, equation (4)
becomes

(�/��)((1/r)�rv/�r)"!(c
�
/r)(�/�r) (r�u/�r). (22)

By introducing the expression for (1/r)�/�r (r�u/�r) from equation (22) in the second term of
equation (21) one obtains
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This equation may be written as

�u
�z

#

1

2 �
�

��

�
�� �

1

r

�rv
�r �d�!

�
2c�

�

�u�
��

"0. (24)

Integration of the second term in equation (24) from �"�
�
"!R to the current � and use

of the zero-value boundary conditions at �"�
�
"!R leads to equation (3). These prove

the assertion that the KZK equation (2) is equivalent to system (3, 4). The equation of
motion in the z direction in the second order approximation may be written as
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The right-hand side error of equation (25) is O(��). After inserting equation (14) into
equation (25), the latter takes the form
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The second term in equation (26) is of magnitude O(��). Hence, it is omitted in the
derivation to the second order. The result is written as
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When space-averaging over the tube cross-section, equations (3), (14) and (27) are reduced
to the following equations respectively:
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In deriving equation (28), the boundary condition (see reference [4]), v (z, r, �)"0 at r"a is
used. From equations (28)}(30), one has

�uN /��#(�/2c
�
)�u�/��!(1/�

�
c
�
)�pN /��"0. (35)

Integration of equation (35) with respect to � from �"�
�
"!R to the current � and use of

the zero-value boundary conditions at �"�
�
"!R, yields the following relation between

p and u:
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3. DISCUSSION AND CONCLUSIONS

Since the sum of the neglected terms in the original equation (10) is of magnitude O(����),
it follows that the right-hand side error of equation (36) is O(��).
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In order to investigate the validity of the obtained formula (36), one compares this
formula with the one-dimensional Riemann solution for a lossless compressible #uid with
an adiabatic (barotropic) equation of state pJ "p
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where �� is the instantaneous value of the density.
In deriving equation (37), c�
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(5). Formula (37) can be rewritten as
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It can be easily seen that when space-averaging over the tube cross-section, equation (38) is
reduced to equation (36), thus validating the present mathematical solution.

Finally, it is important to notice that by applying the preceding space-averaging
procedure over a whole transversal plane in the case of the free "eld in the presence of axial
symmetry with the corresponding zero-value boundary conditions at rPR, one can obtain
the &&impedance relation'' connecting particle velocity and sound pressure in
a quasi-one-dimensional non-linear progressive wave, which is the same as that obtained
here for ducts. Thus, equation (36) is not necessarily limited to sound in ducts.

Formula (36) would be useful in the testing of solutions to equation (2) and system (3, 4)
obtained by various numerical methods.
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