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The coupled lateral-torsional dynamics of parallel rotor-bearing systems has been
intensively investigated. However, little attention has been paid to the analysis of coupled
vibrations of angled rotor-bearing systems so that the torsional and the lateral vibrations
of those systems are usually analyzed separately. In this paper, the coupled
axial-lateral-torsional dynamics of a rotor-bearing system geared by bevel gears is studied.
The meshing of two spur bevel gears is analyzed on the basis of a pair of virtual cylindrical
gears, and thereafter the constraint condition describing the relationship between the
generalized displacements of bevel gears is derived under some assumptions. The coupled
dynamic model is established by using Lagrange’s equation under this constraint condition.
The numerical results of a number of case studies show that the critical speeds of the coupled
model are different from those of the uncoupled model both in values and modes, and the
threshold speed of stability is fairly less than that of the uncoupled model. The effects of system
parameters, such as the pitch cone angles, on the coupling behavior are also discussed.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The past two decades have witnessed an intensive study of the coupled lateral-torsional
vibrations of parallel geared rotor systems, see, for example in references [1-5]. In geared
rotor systems, the lateral displacements of rotors may result in the variation in both
torsional angles and geometric parameters of meshing gears. The lateral translations of gear
centers may move the common interior tangent to the base circles, and give rise to
a variation in the direction of load. Thus, there is an inherent relationship between the
dynamic loads and the generalized displacements. It is the primary source of the self-excited
vibration in geared rotor systems. The coupling of lateral and torsional vibrations thereby
have to be considered.

Almost all the current investigations are limited to the vibrations of such rotating
machinery as compressors, where the rotors are parallel to each other and the gears are spur
or helical ones. Bevel gears are widely used in various transmission systems of helicopters,
ground vehicles, ships and so on because of their capability of transmitting the motion
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between the two rotors perpendicular to each other. Their dynamics, hence, has begun to
receive attention recently. For instance, Hirogaki et al. modelled the rotational motion of
bevel gears by means of virtual cylindrical gears in reference [ 6], where the axial, lateral and
torsional vibrations were assumed to be decoupled. Li et al. computed the critical speeds,
the unbalance response and initial bending responses of a miniature engine by using the
transfer matrix method in reference [7]. In their study, the relationship between the
generalized displacements of the two bevel gears was not taken into consideration. Donley
et al. in reference [8] developed an approximate dynamic model for hypoid gears by using
the finite element method. Lim and Cheng proposed a coupled rotational-translational
vibratory model of hypoid geared rotor system to analyze the dynamic effect of pinion offset
in reference [9]. To the authors’ knowledge, however, no study has been made on the
coupled axial-lateral-torsional vibrations in perpendicular geared rotor systems.

Besides the same characteristics as the parallel geared rotor systems, the dynamics of this
kind of rotor systems has its own particularity. For example, in a bevel geared rotor system,
the axial displacement of one rotor may give rise to the lateral displacement and torsional
angle of the other rotor through bevel gears. Namely, the axial, lateral and torsional
vibrations of the system may couple with each other. The present paper, therefore, is mainly
concerned with the coupling among the axial, torsional and lateral vibrations due to the
bevel gear transmission.

2. KINETIC CONSTRAINT FOR A PAIR OF SPUR BEVEL GEARS

The tooth surface of a pair of spur bevel gears is the envelope of a family of spherical
involute curves. Figure 1 shows a pair of bevel gears, whose transmission can be simplified
as a pair of virtual cylindrical gears shown in Figure 2. In this study, the following
assumptions upon the system of concern will be used hereinafter:

(1) All the gears or disks are rigid, while the rotors (or shafts) are elastic.

(2) Errorsin tooth location and profile are so small that a meshing tooth is in line contact
with its mate.

(3) All the generalized displacements are very small, and therefore it is reasonable to use
the small perturbation in analysis.

Figure 3 shows a pair of spur bevel gears arranged perpendicularly. This pair can be
simplified as a pair of virtual cylindrical gears in the co-ordinate frames 0x;y.iZe;, | = 1, 2,
which are fixed on rotors 1 and 2 respectively. As done in reference [1], the relationship
between the lateral translations x,.q, V.1, X.» and y,., of two virtual cylindrical gear centers

Figure 1. Schematic diagram of a bevel gear pair.
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Figure 3. A pair of spur bevel gears.

and the torsional angles @,, and ©,, can be simplified to
Xe1 SINO + Yo1 COSU + Fo1 Opy = X SINO + Vo3 COSU + T3 Or, (1)

where « is the pressure angle of gear, r,; and r,, are the radii of base circles of the two virtual
cylindrical gears.

As shown in Figure 3, the motion described in the co-ordinate frame ox,;y.;z.; can be
determined from

Xoi cosd; O sind; |(x;
Vei) = 0 1 0 Yips ()
Zoi —sind; 0 cosd; ||z

where 0; = 0;, — 0,, i = 1,2 are the pitch cone angles.
For the virtual cylindrical gears and the bevel gears, the following kinetic relation holds
true:

i@ = 1,;0;, (3)

where r,,;, i = 1, 2 are the radii of base circles of bevel gears. Substituting equations (2) and
(3) into equation (1) yields

X1 SINocosdy + y;cosa + zysinasind; + @1y,

= X, 8IN0COSJ, + y,COSO — Z, SN0 SIN Gy + O,ty,. 4)
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Now, let each torsional angle be composed of two parts as
@i = Qi + Hia l = 1, 2, (5)

where Q;, i = 1, 2 represent the rotating angles of two rotors and yield the transmission
relationship of bevel gears

Qrp1 = Qo145 (6)

Equation (6) is frequently used in the analysis of torsional vibration of geared rotor systems.
Substituting equations (5) and (6) into equation (4) gives the governing equation of small
perturbations of motion

aixy + byyy + cizy +di0y = arx, + byys + ¢z + dy0,, (7

where the parameters a;, by, ¢;, d;, i = 1,2 are only related to the geometry of the teeth
profiles as

a; =sinucosd;, da, = sinocosd,,

b, = cosa, b, = cosa, ®)
¢y =sinasind;, ¢, = — sinosind,
dy =1y, dy =15,

Equation (7) is a kinetic constraint condition of two meshing bevel gears in the system. It
indicates a coupling among the axial, lateral and torsional degrees of freedom.

3. DYNAMIC MODEL OF A ROTOR SYSTEM GEARED BY BEVEL GEARS

Figure 4 shows a typical bearing-rotor system geared by a pair of spur bevel gears. The
system consists of two homogeneous elastic rotors, each of which carries a rigid disk and
a straight bevel gear. The rotors are supported on four journal bearings and a thrust
bearing. The system can be discretized into n elements on the basis of lumped parameter
model. The co-ordinate frames o0;x;y;z;, i = 1,2 are used to refer to rotors 1 and 2,
respectively, where the planes x;z;, i = 1,2 are horizontal.

Gear 1 i Rotor 1 -1
1 i£1 e
I i i+1 -1
*i Ty Gear 2
J+L| j+1
Rotor 2

Figure 4. A typical bevel gear-rotor-bearing system.
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3.1. KINETIC ENERGY

The total kinetic energy of a system is the summation of the translational and rotational
kinetic energies of rigid disks, gears and rotors as

T=Z%mivic'vic+%ci'mi- )

If the terms of higher order are neglected, the kinetic energy can be approximated as

T =Y [miE + 37 +20) + 22 Qi+ 0)° + 3 JH(9F + D) — JiQe,  (10)
where m; (i =1,2,...,n) is the total lumped mass of the ith element, J/ (i=1,2,..., n;
j =d, z) the diametrical and polar moments of inertia, x;, y;, z; @;, ¥; and 0; the three
translational displacements of the mass center, two tilting angles, and torsional angle of the
ith lumped mass respectively.

3.2. POTENTIAL ENERGY

Figure 5 shows the deformation of the ith element of rotor, where S; — ;, M;_1, Q;—1, N;_1,
S;, M;, Q;, N; are the forces and moments acting on the (i — 1)th and ith elements
respectively. The potential energy of the system results from the lateral, torsional and axial
deformations, i.e.,

U=U,+ U+ U, (11)

From the equilibrium equation of the ith element, one can obtain the transfer equation in
x direction as

~ 2

1 -

2EI 6EI

ey L =P«
Q EI 2EI 0]
fAR o (12)
S| 0 0 1 —1 sl

00 O 1

L dj

where E is the Young’s modulus, I the second moment of inertia of the shaft section, [ the
length of the shaft section. Then, the energy of bending of the ith element in direction x can
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Figure 5. The ith element of rotor.
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be expressed as

U.i :%(— Si—1Xi—1 — Mi—1¢i—1 + Six; + M)

1 /12EI 6EI
=3 <l—3>.(xi —xi-1)® — <l—2>_(xi — Xi—1)(@; + @i-1)

1 [4EI
+2< >((pl + @ipio1 + O7-1). (13)

The potential energy U, of bending in direction y can be written out in a similar manner.
Thus, one has

U= i Uy + Uy). (14)

i

The potential energy U, corresponding to torsional deformation reads as

"1 /GI
Uz = ZE <Tp>(91 - 01’—1)2, (15)

where G is the shear modulus, I, the polar second moment of inertia of the shaft section.
Finally, the potential energy U, corresponding to the axial deformation is

"1/EA
U, =Z§<T>(Zz —Zi—1), (16)

where A is the cross-sectional area of shaft.
Substituting equations (13)-(16) into equation (11) yields

12EI 6EI
U= Z [2< >i(xi —xi—1)? — <1_2>i(xi — Xi-1)(@; + ¢i-1)

1/4EI 1/12EI
2( i ) (0f + Qioi—1 + Q7-1) + 2( 3 >i(J/i —yie1)?
6E] 1/4EI
- <l—2>'(yi —Vic)Wi + i) + 3 < > W? +yahiog +yiy)
1/GI 1/EI
+ §<Tp>i(6i —0;-1)* + §<T)i(zi - Zi—1)2:|~ (17)

In the above expressions, the mesh stiffness is not taken into account since it is much higher
than the stiffness of shafts in large geared systems.

3.3. EQUATIONS OF MOTION

For the geared system shown in Figure 4, equation (7) can be written as

0; = [d0; + (a1x; + byy; + ¢12;) — (a2x; + byy; + ¢»2))]/d>. (18)
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Substituting equation (18) into equations (10) and (17) to eliminate the torsional angle 0;,
and employing Lagrange’s equations, one obtains

3<5—7>—£+5—U=Q, (19)
dt \ dq 0q  0q
where q=1{...,x;, Vi Zi» @;» Y3, 0;, ... }T represents the generalized co-ordinates. Each
station (or node) in Figure 4 has six degrees of freedom, except that the station on Gear
2 has five. Therefore, the system in Figure 4 has totally (6n — 1) degrees of freedom.
Neglecting the terms of higher order, the dynamic equations on each station can be
obtained, where the dynamic equations on Gears 1 and 2 are shown in Appendix A, and
those on the other stations are ignored. In fact, these equations can be derived from the
finite element method except the ones on two gear stations.
After assembling them, the system equations of motion becomes

Mg + Gq + Kq = Q, (20

where the system mass and stiffness matrices M, K still remain symmetrical in spite of the
fact that the equations on Gears 1 and 2 seem to lose their form, and the gyroscopic matrix
G is skew-symmetrical.

In the case of small vibration, the dynamic forces of a hydrodynamic journal bearing can
be expressed in terms of the coefficients of stiffness and damping. The strain energy and the
dissipation function of a hydrodynamic journal bearing can be written as

ot D= e e
cyx ny y kyx kyy y AF)’

where ki, kyy, kyx, Ky, Cxxs Cxys €y and ¢, are the coefficients of stiffness and damping of the
hydrodynamic bearing, which depend on rotational speed and static load on journal
bearing. In general, the static bearing loads are related to the transmitted power and system
weight. In order to simplify the problem, in the following numerical analysis the load on

each bearing is supposed to only depend on the weights of the system, which includes two
disks, gears and rotors. Thus, the dynamic equation of the system can be recast as

Mg + (G + C)q + Kq = Q. (22)

In general, vector Q is composed of external excitations such as the unbalanced force and
excitation torque. In matrices M and K, there exist some entries that couple a part of
components in (X;, ¥, 2, 0;, X » V2 and (x;, yi, z;, 05, X, ¥, 2;) respectively. These entries are
related to a;, by, ¢;, di, i =1,2, J; and (GI,/l);+,. That is, the coupled terms are only
determined by the geometric parameters of bevel gears and the rotor system. Consequently,
the lateral, torsional and axial vibrations couple mutually.

4. NUMERICAL RESULTS

In this section, a numerical example is given in order to examine the critical speeds, the
threshold speed of stability, and the unbalance responses of the rotor-bearing system
geared by bevel gears as shown in Figure 6. In this system, each rotor is discretized into four
nodes (node no. 1-4 as rotor 1 and 5-8 as rotor 2), or three beam elements.

In the system shown in Figure 6, each rotor is laterally supported by two journal
bearings. There are two identical 360° cylindrical bearings at nodes 1 and 3, and two 5-pad
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Figure 6. A bearing-rotor system geared by bevel gears.

tilting-pad bearings at nodes 6 and 8 respectively. A rigid axial support is located at node
1 to constrain the axial rigid motion. The parameters of the four journal bearings were
taken as follows. The diameter D, was 100 mm, the ratio L/D of length to diameter 0-5, the
ratio Y of clearance 0-002, the dynamic viscosity u of oil 00221 Ns/m?. The eight
coeflicients of stiffness and damping of bearings were computed under the assumption of
short-bearings. The diameter of two rotors was chosen at d = 100 mm. The equivalent
masses and moments of inertia of gears and disks were set as m, = my; = 600 kg,
my = 300kg, ms =40kg, J5 =J, =15kgm?, J5 =J% =25kgm?, J, = 12kgm?, J; =
20 kgm?, J5 = 0-05kgm?, J3 = 0-072 kgm?. The geometric parameters of the bevel gears
were taken as o = 20° 0, = 70°, J, = 20° ry; = 300 mm, r,, = 100 mm. The material
constants of the rotors were assumed to be E = 206 GN/m? and G = 78 GN/m?.

4.1. CRITICAL SPEEDS AND MODES

When the vector Q of generalized external force vanishes, equation (22) governs the free
vibration of the system. The corresponding eigenvalue problem can be solved by using the
generalized inverse iteration method in reference [10].

As a part of the design procedure of a geared rotor system, it is usual to compute the
critical torsional speeds of the transmission train, and then the critical lateral speed of each
rotor as well [1]. This is called the computation based on the uncoupled model for short. In
the torsional analysis of the critical speeds or natural frequencies, the bevel gear branched
system shown in Figure 6 can readily be seen as an idealized one shown in Figure 7, where
Jy = Jz7"§1/”1§2, Jy = J§V§1/V§2 +J5,J3=J4 ki = (Glp/Ll) "51/"1329 ky = GIp/LZ’ L; = 650 mm,
L, = 850 mm. The natural frequencies are w,; = 213-2 rad/s, w,, = 705-7 rad/s.

The critical speed of the coupled axial-lateral-torsional model is defined as the speed of
the rotor system when it is equal to the imaginary part of one of the eigenvalues of the
system. For simplicity, only the critical speeds and corresponding modes of the rigidly
supported system were computed. Table 1 gives the lowest critical speeds of rotor 1, rotor 2
and the coupled model respectively. The corresponding mode shapes of the coupled model
are shown in Figure 8, where the horizontal axis represents the node number of the rotors
(1-4 as rotor 1 and 5-8 as rotor 2), and the vertical axis the dimensionless generalized
displacements.
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‘Il ‘,2 ‘]3
Figure 7. The torsional idealized model of the geared system.

TaBLE 1

Critical speeds of the rigidly supported rotor system (r.p.m.)

Mode 1st 2nd 3rd 4th 5th 6th 7th 11th
Rotor 1 1476 2117 3491 — — — — —
Rotor 2 2695 2698 5240 — — — — —
Coupled model 1399 1743 2265 2694 2706 3347 3501 16086

Coupled model? 1399 1745 2267 2695 2704 3334 3501 16078

fIn this case, 6, = 60° and J, = 30°.

From Table 1 and Figure 8, it is obvious that the lateral components of the first, second,
third and sixth modes, corresponding to the critical speed at 1399, 1743, 2265 and
3347 r.p.m. of the coupled model mainly stem from the first three modes of rotor 1, while the
fourth and fifth modes, corresponding to 2694 and 2706 r.p.m. from the first two critical
speeds of rotor 2. In these modes, the axial component is negligible, and only the coupling
between lateral and torsional vibrations is remarkable. The mode of the seventh critical
speed is almost composed of perfectly lateral components of the two rotors. This implies
that the coupling among the three kinds of vibrations is very weak. The perfectly torsional
frequencies, computed from the perfectly torsional model as shown in Figure 7, are
insignificant in the coupled model because they vary greatly both in modes and values.
Therefore, when calculating the critical speeds or the natural frequencies in the rotor system
geared by bevel gears, the perfectly lateral or perfectly torsional model may lose some very
important coupled modes. In the above modes, the components of the axial displacement
are very small because the axial stiffness is much larger than the lateral and torsional ones of
the system. The 11th mode shown in Figure §(h) vibrates mainly in the axial direction.

Table 1 also gives the critical speeds when ¢; = 60° and 0, = 30°. The results indicate
that the critical speeds almost do not vary with the pitch cone angles.

4.2. SYSTEM STABILITY

In geared rotor-bearing system, the eigenvalues as well as eigenvectors in most cases
occur in conjugate complex pairs. The smallest real part of eigenvalues reflects the stability
of a stable system. That is, the ability of the system to resist any external disturbance. The
threshold speed of stability is defined as the lowest speed when the real part of one of the
eigenvalues is equal to zero.

Table 2 gives the threshold speeds of stability computed from the individual
rotor-bearing model and the coupled axial-lateral-torsional model of the rotor-bearing
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Figure 8. Mode shapes and critical speeds of the rigidly supported system. (a) 1399 r.p.m.; (b) 1743 r.p.m.; (c)
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TABLE 2

Threshold speed of stability of the system supported by oil film bearings (r.p.m.)

Rotor 1 Rotor 2 Coupled model Coupled model

Speed 4050 >20000 3041 3033

"In this case, 6, = 60° and J, = 30°.

04
03 [
02 f

Node number Node number

Figure 9. The first two mode shapes at stability threshold speed when the rotors are supported by
hydrodynamic bearings: (a) mode 1; (b) mode 2. —@—, L, lateral displacement in x direction; —O—, L, lateral
displacement in y direction; —&—, A axial direction; —¥—, T torsional direction.

system geared by bevel gears respectively. Figure 9 shows the first two mode shapes of the
system at the threshold speed of stability based on the coupled model, where mode 1 is
stable, and mode 2 is unstable. In the figure, the vertical axis represents the modulus of
dimensionless generalized displacements, and the horizontal axis still represents the node
number of the rotors (1-4 as rotor 1 and 5-8 as rotor 2). From Table 2, the threshold speed
of rotor 2 is very high because it is supported by tilting-pad bearings. Therefore, the stability
of the system mainly depends on that of rotor 1. When the coupling is considered, the
threshold speed of stability is decreased by 24-:9% and becomes 3041 r.p.m. At this speed,
the lateral components are predominant in the corresponding mode (mode 2), which is
followed by the torsional one, while the axial one is the smallest. When the rotating speed of
rotor 1 is 2800 r.p.m. (meanwhile rotor 2 is 8400 r.p.m.), the stability of system deteriorates.
This phenomenon has been found in parallel geared rotor system; Schwibinger and
Nordmann [4] explained that the stability behavior of the coupled torsional-lateral
vibration of their rotor-bearing system was affected by the energy exchange between the
torsional and the lateral system. Because torsional and lateral displacements are coupled in
gear stage, torsional oscillations of the geared rotor train are also excited. In bevel geared
rotor system, because the geared rotor system is coupled in axial, torsional and lateral
directions, this results in the fact that the mass, damping, and stiffness matrices of the whole
system are changed, which make the eigenvalues and eigenvectors of the system varied.
That is, the instability behavior as well as nature characteristics of the system are influenced.
Then why is the threshold speed of stability decreased in bevel geared rotor-bearing system,
not increased? Intuitively, this result results in the fact that the system damping mainly
provided by the journal bearings only takes the effect in the lateral vibrations. The coupling
among the axial, lateral and torsional vibrations enables the axial and torsional vibrations
to share this damping with the lateral vibrations. In other words, the energy exchange
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among the axial, the lateral and the torsional vibrations occurs at the gear mesh. This leads
to the deterioration of the system stability.

Table 2 indicates that the threshold speed of stability of the coupled model is affected by
the pitch cone angles 6, and J,. It is obvious that the speed changes only a little.

4.3. UNBALANCE RESPONSES

Two case studies were made for different offsets of unbalance. In the first case, the offset of
unbalance was supposed to be 0-01 mm at the gear on rotor 1. Figure 10 shows the
variations of the unbalance responses at each node versus rotating speed. The results
indicate that the unbalance on rotor 1 can evoke the responses of rotor 2 because of the
coupling, and the frequencies of the peak responses of rotor 2 correspond to those of rotor 1.
Compared with the uncoupled model, the coupling model increases the lateral amplitude of
unbalance response at bearing 1 by 22% at the rotating speed of 2800 r.p.m. for rotor 1, but
decreases the amplitude at bearing 2 by 4%.
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0-00008 = 888804?
0-00004 0
2500
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Figure 10. Unbalance responses in three directions: (a) lateral; (b) axial; (c) torsional.
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In the second case, the offset of unbalance was supposed to be 0-01 mm at the disk on
rotor 2. Figure 11 shows the variations of the unbalance responses at each node with respect
to the rotating speed. The results also indicate that the unbalance responses are evoked not
only in the lateral direction, but also in the axial and torsional directions. In Figures 10(b)
and 11(b), the responses at nodes 1-4 are very small because the freedom in the axial
direction at node 1 is constrained. Moreover, in the case of §; = 60° and J, = 30°, the
unbalance responses will be modified, but the change is not large. If the rotor is subject to an
external moment (or force) in the torsional (or axial) direction, the responses in three
directions will be observed because of the coupling.

5. CONCLUSIONS

In this paper, a kinetic constraint equation for the generalized displacements of a pair of
bevel gears is formulated under a few assumptions. Using this constraint equation and
Lagrange’s approach, the dynamic equation of the coupled axial-lateral-torsional
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Figure 11. Unbalance responses in three directions: (a) lateral; (b) axial; (c) torsional.
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vibrations of rotor system geared by a pair of bevel gears is established. The results show
that the axial vibration, lateral vibration, and torsional vibration are coupled mutually and
should not be analyzed separately. In addition, an example is given for analyzing the
dynamic characteristics such as the critical speeds, the threshold speed of stability and
the unbalance response of the geared rotor system. The numerical results indicate that the
coupling between the lateral and torsional vibrations is much more significant in the system
than other couplings. Some case studies are also presented for the variation of pitch cone
angles. These results are beneficial in understanding the coupled axial-lateral-torsional
vibrations for the rotor system geared by bevel gears.

10.
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APPENDIX A: DYNAMIC EQUATIONS ON GEARS

Dynamic equations on Gear 1 (the ith station in Figure 4) are as follows:
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and the dynamic equations on Gear 2 (the jth station in Figure 4) are
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APPENDIX B: NOMENCLATURE

amplitude

Young’s modulus

shear modulus

vector of angular momentum

equivalent polar inertia moments in Figure 7

second moment and polar second moment of area
lengths of the equivalent shaft in Figure 7

forces and bending moments acting on the end of shaft section
kinetic energy

potential energy

gyroscopic matrix

matrices of generalized mass, damping and stiffness
vector of generalized force

vector of generalized velocity

vector of generalized displacement

parameters determining the geometry of gears 1 and 2

damping coefficients of journal bearing

diametrical and polar moments of inertia of the ith mass
torsional stiffness coefficients of the equivalent shaft in Figure 7
stiffness coefficients of journal bearing

length of the ith shaft section

lumped mass of the ith element

total node number of two rotors

base circle radii of bevel gears 1 and 2

base circle radii of the first and second virtual cylindrical gears
Cartesian co-ordinates

translational displacements of the mass center of the ith lumped mass

two tilting angles and torsional angle of the ith lumped mass
rotational angles of gears 1 and 2

rotating speeds of rotors 1 and 2

pressure angle of gear

pitch cone angles of gears 1 and 2
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the first and the second natural frequencies of torsional vibration in Figure 7

vector of angular velocity
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Subscripts

a,lt
e
1,2
i, J
x’y

Superscripts
d,z

@
s

M. LI ET AL.

axial, lateral and torsional directions
virtual cylindrical gear

gears (or rotors) 1 and 2

the ith and jth shaft sections (or nodes)
x and y components in lateral direction

diameter and the z (or polar) direction
the first and second order derivatives with respect to time
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