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1. INTRODUCTION

The classical theory of vibrating circular plates has been successfully implemented in the
case of isotropic, orthotropic and circularly anisotropic continuous media [1].

This is not the case when dealing with circular plates of generalized anisotropy when an
approximate analytical solution is sought since the classical approach for constructing
co-ordinate functions fails to behave properly in view of the fact that inevitably some of the
components of the energy integral functional cancel out. On the other hand, exact,
analytical solutions appear to be out of the question.

Specially constructed co-ordinate functions are presented in this paper and they allow for
the solution of some basic problems accomplished in the present investigation: vibrating
clamped and simply supported solid circular plates’ [2], and the case of annular plates with
a free inner edge using the co-ordinate functions employed in the case of simply connected
plates [3].

2. CONSTRUCTION OF THE CO-ORDINATE FUNCTIONS AND IMPLEMENTATION
OF THE ENERGY METHOD

Appropriate co-ordinate functions were first constructed for the case of clamped and
simply supported solid circular plates, see Figure 1. Generating them involved a rather
lengthy although straightforward analytical trial-and-error procedure which at the last step
required that all the terms of the integral functional did in fact contribute to the end result.

In the case of clamped plates the following combinations of co-ordinate functions were
used in order to perform numerical experiments:

W,(r,0) = A (r"(3 + cos 0) + r*>cosO(y — 3) — r3(cosO(y —2) +y) + 7y — 3)
+ A0 =P+ ) =2+49)
+ A3(@r T2 =t +2) =2+ )

+ Aysin0(r' 2 — 13y 4+ 12 (y — 2)), (1a)

TPreliminary results on the simply supported case have been presented in reference [2].
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Figure 1. Solid circular plates of generalized anisotropy executing transverse vibrations.

W,(r, 0) = A (173 + cos?0) + r2cos? 0(y — 3) — r3(cos? 0(y —2) + ) +y — 3)
+ A8 =P+ 1) —2+79)
+ A4 — () +2) =2 +7y)
+ Agsin 02 — 13y + 12 (y — 2)), (1b)
W(r, 0) = A{(r"(3 + cos0) + r?cosO(y — 3) —r3(cosO(y —2) +9) + 7y — 3)
+ A0 =P+ 1) —2+7)
+ A4 —r*(p+2) =2 +7y)

+ Agsin 03 — r*y + 13 (y — 2)). (1c)
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It can be easily verified that each co-ordinate function satisfies identically the governing
essential boundary conditions.
In the case of a simply supported outer boundary, the following approximate
displacement amplitude function was employed [2]:
W,(r,0) = A;(1 —r* +r*sin0 + r'sin0) + A,(1 — > +r3cos 0 + ' "1 cos 0)
+A3(1—VY+2)+A4(1—7”+3). (2)

In all these expressions, “y” denotes Rayleigh’s exponential optimization parameter.
Substituting the corresponding co-ordinate functions in the energy integral functional [4]

JW)=U—T, 3)

where U and T are the potential and kinetic energies, given, respectively, by

1
U= EJ; [D Wi+ 2D, W Wy, + Ds, VI/yi
+ 4D66W;c2y + 4(D16Wiy + Dy6 Wy, ) Wy 1dxdy (4a)
and
1 21172
T = 5 phw*W=dxdy, (4b)

A[’
TaBLE 1

Value of the fundamental frequency coefficient Q,, in the case of a clamped circular plate of
generalized anisotropy

P
Q1 = —(,01(12
11

D D D D D
—22 -2 —%° —1e Z2° 3 term (la) 4 term (la) 4 term (1b) 4 term (Ic)

Dl 1 Dl 1 Dl 1 Dl 1 Dl 1
1 = = 0 0 10-2196 102161 102168 1021661
3 5 3 1 1 9-6275 9-6242 9-6242 9-6248
3 3 3 1 1 10-1126 10-1091 10-1092 10-1096
3 3 3 1 1 10-0044 10-0009 10-0016 10-0015
3 3 2 1 1 106367 106332 106339 106338
1 5 3 3 3 8-4085 84062 84021 84067
i 3 3 3 . 9-1530 9-1494 9-1466 9-1506
% 3 2 3 2 10-5750 10:5717 10-5724 10:5722
0203019 0-324557 0-338756 0-512055 0-169491  §-5832 8-5802 85756 8-5807

fIsotropic plate, exact value Q; = 10-215.
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A, being the domain under study, and applying the classical Rayleigh-Ritz method, one
generates a determinantal equation whose lowest root constitutes the fundamental
frequency coefficient Q; = ./ph/D{; w,a*. Minimizing Q, with respect to y one obtains an
optimized value of the fundamental eigenvalue of the system under study.

3. NUMERICAL RESULTS

Table 1 depicts values of Q; for the case of a clamped plate and for several combinations
of the constitutive relations. The first case corresponds to the classical isotropic situation
the exact eigenvalue being 10-215 [1]. Approximations (1a) and (1c) yield 10-2161 and
10-2166 respectively.

On the other hand, these approximate displacement expressions (la) and (1b) yield
fundamental eigenvalues, which yield the lowest values for the remaining cases. In the
isotropic situation the difference with the exact value is of the order of 0-01%.

Table 2 shows values of Q; for a simply supported circular plate of generalized
anisotropy. Excellent agreement with the exact eigenvalue is obtained in the case of an
isotropic plate.

4. EXTENSION OF THE PROCEDURE TO THE CASE OF A CIRCULAR ANNULAR PLATE
OF GENERALIZED ANISOTROPY WITH A FREE INNER EDGE

The structural system is depicted in Figure 2. Following the approach developed in
reference [3] the same approximations (1a) and (1c) were used for the doubly connected
plate integrated over the corresponding domain in the case of a plate clamped at the outer
boundary; see Table 3. The procedure is the same in the case of the simply supported outer

TABLE 2

Fundamental frequency coefficient of a simply supported circular plate of generalized
anisotropy. Analysis of convergence of expression (2)

| ph
91: p—w1a2
Dll

2 % % % % 2term (2) 3term (2) 4 term (2)
Dl 1 Dl 1 Dl 1 Dl 1 Dl 1
1 1o % 0 0 494250 493605 493515
3 5 3 . 1 4-4866 4-4810 4-4802
3 3 2 . 1 4-5879 4-5822 4-5815
3 3 3 . 1 47153 47093 47087
3 3 3 3 i 50351 50287 50278
i 3 3 : 1 3-9004 3-8953 3-8949
1 3 3 1 1 42819 42766 42759
B 1 3 3 2 47402 47347 4-7339
0203019 0324557  0-338756  0-512055 0169491 41645 41590 41582

fIsotropic plate (u = 0-30). exact value Q; = 4-93515.
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TABLE 3

Fundamental frequency eigenvalue of an annular plate clamped at the outer boundary (2 =

0
Q= [— wia
11

Annular plate

D D D D D
m —2 o mt —2° 3 term (1a) 4 term (1a) 4 term (1b) Reference [1]
Dl 1 Dl 1 Dl 1 Dl 1 Dl 1

1 2 - 0 0 177354 177350 177317 17-638

1 1 1 0 0 158830 158820 158785 15-855

3 15 1 . 1 170668 170658  17-0632 —

3 1 2 . 1 181588 181528 181516 —

3 1 1 . 1 176290 176285  17-6262 —

3 5 2 1 1 187000 186983  18:6957 —

3 : 1 1 1 149425 149220 149396 -

i 3 3 1 . 161920 161913  16:1893 -

% i 2 3 2 190792 190887 190787 —

0-203019 0-324557 0-338756 0-512055 0-169491  14-8421 14-8374 14-8346 —

TABLE 4
Fundamental frequency eigenvalue of an annular plate simply supported at the outer boundary
(a=13)
| ph
Ql = Dp;ll U)l(lz
Annular plate £ =1
D D D D D
—22 ~12 —%° —1° —2° 3term (2) 4 term (2) Reference [1]
Dl 1 Dl 1 Dl 1 Dl 1 Dl 1
1 o 20 0 0 5171 5087 5061
2 3 3 0 0 4638 4556 4571
3 & 3 3 3 4-909 4-853 —
3 3 3 3 3 5147 5099 —
3 3 3 3 3 5096 5032 —
2 3 3 3 3 5415 5344 —
i 3 3 2 3 4288 4241 —
i 3 3 3 3 4-666 4611 —
4 i 3 3 5 5371 5324 —

0203019 0324557  0:338756  0-512055 0:169491 4-331 4257 —
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Figure 2. Annular plates with free inner boundary.

TABLE 5

Comparison of results of Q; = \/ph/D; w.a® in the case of an annular plate of rectangular
orthotropy clamped at the outer boundary®

I
Ql = ﬂwl(lz
\ Dy

g 3 term (la) 4 term (1a) Reference [3]
0 9-2260 9-2086 9-213
0-10 9-2855 9-2765 9-293
0-20 9-4753 9-4617 9-485
0-30 10-3230 10-3185 10-313
0-40 122220 122118 12221
0-50 15-8828 15-8820 15-855
0-60 23-0439 23-0350 22-792
0-70 387924 387624 37-493
0-80 79-1419 79-1419 77-213
090 301-0760 301-0760 289-020

"Note: D,/Dy = D,,/Dyy = 1/2; jt; = Dy,/Dyy = 1/3; Dy/Dy = Dgo/Dyy = 1/3; D5 = Dy = 0.
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TABLE 6

Comparison of results of Q, = /ph/D; w,a? in the case of an annular plate of rectangular
orthotropy simply supported at the outer boundary’

h
Ql = g—l w1a2

b

2 4 term (2) Reference [3]
0 4-492 4492
0-10 4-493 4-494
0-20 4-403 4-376
0-30 4-282 4-264
0-40 4-308 4310
0-50 4:556 4571
0-60 4-107 5127
0-70 6-188 6207
0-80 8:522 8-523
0-90 15784 15777

"Note: D,/Dy = D3,/D1y = 1/2; pt = D12/Dyy = 1/3; Di/Dy = Des/D11 = 1/3; D16 = D26 = 0.

boundary; Table 4. For this situation expression (2) was employed and the rate of
convergence was observed as the number of co-ordinate functions was increased.

The algorithmic procedure developed in this study was also used in the case of annular
plates of rectangular orthotropy. The case of plates clamped at the outer boundary is
depicted in Table 5, while Table 6 deals with the simply supported situation. Good
agreement with results previously published in the literature is observed.
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