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The present work is devoted to theoretical vibration analysis of a complex mixed
continuous system. Undamped free transverse vibrations of an elastically connected
beam}string system are considered. Solutions of the problem are formulated by using the
modal expansion method. Two in"nite sequences of the natural frequencies corresponding
to two possible kinds of vibration motions: synchronous and asynchronous are determined.
In a numerical example, illustrating the theory presented, the e!ect of string tension force on
the natural frequencies of the system is investigated in detail.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Fundamental one- and two-dimensional simple continuous systems, such as a string,
beam, membrane, plate and shell are usually used for modelling real mechanical
structures. Connecting these simple systems by constraints of di!erent type, interesting
and technically important complex continuous systems are obtained. An elastically
connected double-solid system is the simplest model of such a system, which is composed of
two elastic solids attached continuously by a Winkler elastic layer [1]. The vibration
analysis of complex continuous systems is of great theoretical and practical importance, and
has a wide application in civil and mechanical engineering [1}8]. Reference [1] is
entirely devoted to developing the general transverse vibration theory of some typical
complex systems, namely: double-string, double-beam, double membrane and double-plate
systems.

In the present paper, the mixed complex system consisting of a beam and a string
continuously joined by means of a linear elastic element is considered. Analogous
one-dimensional systems of two beams or two strings have been investigated by many
authors, Seelig and Hoppmann [2], Saito and Chonan [3, 4], Kozlov [5], Kashin [6], Rao
[7], Oniszczuk [1, 8}20], Irie et al. [21], Hamada et al. [22, 23], Yoshi and Upadhya [24],
Vu [25], Frostig and Baruch [26], Kukla and Skalmierski [27], Sakiyama et al. [28],
Lueschen and Bergman [29], CabanH ska-P"aczkiewicz [30}32], Kukla [33], and Vu et al.
[34], among others. Their considerations have referred to the various aspects of free
vibrations for these interesting systems.

In this report, undamped free transverse vibrations of the title system [35] are analyzed
and complete exact theoretical solutions of the problem are formulated.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. The general physical model of an elastically connected complex beam}string system.
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2. FORMULATION OF THE PROBLEM

The scheme of the vibratory system under consideration is depicted in Figure 1. An
elastically connected beam}string system consists of two parallel, one-dimensional
continuous elastic bodies, which are a beam and a string attached to each other by
a Winkler elastic layer. This classical foundation model is modelled as an in"nite number of
closely spaced independent (unconnected) linear massless springs. A uniform layer is
characterized by one constant parameter, which is the sti!ness modulus k (the Winkler
foundationmodulus). Both beam and string have the same length, and are simply supported
at their ends. It is assumed that the beam is slender, prismatic and homogeneous. The string
is uniform, homogeneous and is stretched under suitable constant tension. In the general
case, it is also assumed that the system is subjected to transverse arbitrarily distributed
continuous loads. Small undamped vibrations of the system are considered.

Applying the Bernoulli}Euler beam theory, transverse vibrations of an elastically
connected beam}string system can be described by the following non-homogeneous partial
di!erential equations [1, 35]:
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i"1, 2. It is evident that subscripts 1 and 2 refer to the beam and string respectively.
The boundary conditions for a simply supported beam and string are as follows:
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The initial conditions for this problem are assumed in the general form
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3. SOLUTION OF THE FREE VIBRATION PROBLEM

The governing homogeneous partial di!erential equations for free vibrations of
a beam}string system (see Figure 2) are as follows:
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Figure 2. The analyzed model of an elastically connected complex beam}string system.

FREE VIBRATIONS OF BEAM}STRING SYSTEM 705
Free vibrations of the system considered are determined by using the classical modal
expansion method. Thus, general solutions of equations (4) satisfying the boundary
conditions (2) are assumed to be in the form
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X
�
(x) is the known mode shape function for a simply supported single beam and string.

Substituting expressions (5) into equations (4) results in the relations:
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from which a set of ordinary di!erential equations for unknown time functions is obtained
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The solutions of equations (7) have the form
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where �
�

denotes the natural frequency of the system. After introducing them into
equations (7) one obtains a homogeneous set of algebraic equations for unknown constants
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For non-trivial solutions of equations (9), the cardinal determinant of the system
coe$cient matrix must vanish. This gives the following frequency equation:
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The frequency equations (10, 11) have two real, positive roots ��
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[35]:
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Then, two in"nite sequences of natural frequencies �
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are obtained:
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Now solutions (8) may be written as
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Introducing trigonometric functions, the above unknown time functions are transformed
into the following form:
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The mode shape coe$cients a
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(16) can be presented as
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which allows one to easily prove that the coe$cient a
��
, dependent on the lower natural

frequency �
��
, is always positive while a

��
, dependent on the higher frequency �

��
, is always

negative.
Finally, the free transverse vibrations of a complex elastic beam}string system are

expressed by the following formulae:
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The functions X
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(x) and X
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(x) are the natural mode shapes of vibration of a system
corresponding to two sequences of the natural frequencies �

��
. An elastically connected

complex beam}string system executes two kinds of vibrating motions: synchronous
vibrations (a
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'0) with lower natural frequencies �

��
and asynchronous vibrations

(a
��

(0) with higher frequencies �
��
. The general mode shapes of vibration (18) are exactly

the same as the natural mode shapes determined for a double string [18], and a simply
supported double-beam system [19]. It can also be shown that the nature of free vibrations
is analogous and the mathematical form of the corresponding solutions is identical for all
these three systems as a consequence of governing the same boundary conditions.

Now the initial-value problem is considered, to determine the "nal form of the free
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where �
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is the Kronecker delta function: �
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"0 for mOn and �
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Substituting solutions (17) into the initial conditions (3) yields
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Multiplying the above relations by the eigenfunctionX
�
, then integrating them with respect

to x form 0 to l, and applying the orthogonality condition (19) produces a system of
algebraic equations allowing one to determine the following formulas for the unknown
constants:
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It is seen that the free vibration analysis performed in the present paper for a beam}string
system is analogous to that for a double string [18], and simply supported double-beam
system [19].

4. NUMERICAL EXAMPLE

The theoretical analysis presented is illustrated by a numerical example, in which the
e!ect of a string tension force S

�
on the natural frequencies of the system is mainly

investigated. The in#uence of a beam #exural rigidity K
�
is also taken into account.

The following values of the parameters characterizing the physical and geometrical
properties of the beam}string system are used in the numerical calculations:
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Free vibrations of the system discussed are described by relations (17):
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Figure 3. The natural model shapes of vibration of an elastically connected complex beam}string system
corresponding to the "rst three pairs of natural frequencies of the system. The mode shapes for i"1 and 2 express
the synchronous (a

��
'0, �

��
) and asynchronous (a

��
(0, �

��
) free vibrations respectively.

TABLE 1

Natural frequencies of beam}string system �
��
(s��); K

�
"1�10
 (Nm�)

S
�

�
��

�
��

�
��

�
��

�
�


�
�


0 0)297 10)489 1)190 10)495 2)669 10)525
1000 0)595 10)911 2)042 12)365 3)497 13)946
2000 1)277 11)323 2)405 13)592 3)754 16)776
3000 1)499 11)724 2)614 14)939 3)879 19)218
4000 1)668 12)116 2)750 16)184 3)952 21)391
5000 1)803 12)498 2)846 17)345 4)000 23)367

TABLE 2

Natural frequencies of beam}string system �
��
(s��); K

�
"1�10� (Nm�)

S
�
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��

�
��

�
��

�
��
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�
�


0 0)941 10)492 3)737 10)565 7)896 11)250
1000 1)314 10)914 4)171 12)152 8)929 14)071
2000 1)565 11)325 4)396 13)610 9)151 16)817
3000 1)753 11)727 4)531 14)950 9)238 19)236
4000 1)901 12)118 4)621 16)191 9)284 21)401
5000 2)022 12)499 4)686 17)350 9)312 23)373
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TABLE 3

Natural frequencies of beam}string system �
��
(s��); K

�
"1�10
 (Nm�)

S
�

�
��

�
��

�
��

�
��

�
�


�
�


0 2)963 10)534 9)342 13)363 9)928 28)292
1000 3)123 10)948 10)881 13)672 13)682 28)296
2000 3)253 11)353 11)837 14)307 16)605 28)301
3000 3)356 11)750 12)289 15)273 19)083 28)307
4000 3)450 12)137 12)492 16)362 21)270 28)318
5000 3)526 12)516 12)596 17)453 23)244 28)355

TABLE 4

Natural frequencies of beam}string system �
��
(s��); K

�
"1�10� (Nm�)

S
�

�
��

�
��

�
��

�
��

�
�


�
�


0 8)447 11)642 9)966 39)487 9)994 88)883
1000 8)774 11)844 11)780 39)487 13)737 88)883
2000 9)020 12)074 13)350 39)488 16)659 88)883
3000 9)219 12)330 14)754 39)488 19)140 88)883
4000 9)380 12)606 16)036 39)488 21)335 88)883
5000 9)510 12)897 17)222 39)488 23)324 88)883

TABLE 5

Natural frequencies of beam}string system �
��
(s��); K

�
"1�10� (Nm�)

S
�

�
��

�
��

�
��

�
��

�
�


�
�


0 9)943 31)388 9)997 124)842 9)999 280)894
1000 10)427 31)388 11)807 124)842 13)741 280)894
2000 10)890 31)388 13)375 124)842 16)663 280)894
3000 11)330 31)388 14)777 124)842 19)143 280)894
4000 11)760 31)389 16)058 124)842 21)338 280)894
5000 12)172 31)389 17)243 124)842 23)326 280)894
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The general natural mode shapes of vibration X
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TABLE 6

Coe.cients of natural mode shapes a
��
; K

�
"1�10
 (Nm�)

S
�

a
��

a
��

a
��

a
��

a
�


a
�


0 1)00 !9)99 1)01 !9)87 1)08 !9)90
1000 0)92 !10)89 0)74 !14)15 0)56 !17)67
2000 0)85 !11)80 0)58 !17)31 0)38 !26)37
3000 0)79 !12)73 0)47 !21)16 0)28 !35)15
4000 0)73 !13)68 0)40 !25)02 0)23 !43)96
5000 0)69 !14)62 0)34 !28)95 0)19 !52)83

Figure 4. The natural frequencies of beam}string system �
��
(i"1, 2; n"1, 2, 3) as a function of string tension

force S
�
for a beam #exural rigidity K

�
"1�10
 Nm�.

Figure 5. The natural frequencies of beam}string system �
��
(i"1, 2; n"1, 2, 3) as a function of string tension

force S
�
for a beam #exural rigidity K

�
"1�10� Nm�.
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where

a
��

'0, a
��

(0, k
�
"l��n�, i"1, 2.

The mode shapes corresponding to the "rst three pairs of natural frequencies are shown in
Figure 3. The mode shapes for i"1 and 2 express the synchronous (a

��
'0, �

��
) and



Figure 6. The natural frequencies of beam}string system �
��
(i"1, 2; n"1, 2, 3) as a function of string tension

force S
�
for a beam #exural rigidity K

�
"1�10
 Nm�.

Figure 7. The natural frequencies of beam}string system �
��
(i"1, 2; n"1, 2, 3) as a function of string tension

force S
�
for a beam #exural rigidity K

�
"1�10� Nm�.
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asynchronous (a
��

(0, �
��
) free vibrations of the system respectively. The natural

frequencies �
��
and mode shape coe$cients a

��
are evaluated from expressions (12, 13) and

(16) as functions of a string tension force S
�
for di!erent values of a beam #exural rigidity

K
�
. Results of the calculations of �

��
and a

��
(as an instance, only forK

�
"1�10
 Nm�) for

i"1, 2 and n"1, 2, 3 are presented in Tables 1}6 and in Figures 4}9.
Analyzing the e!ect of the string tension force on the natural frequencies of an elastically

connected beam}string system, the following conclusions can be drawn. In general, there is
an evident tendency to increase the natural frequencies �

��
(13) in the case of increasing the

tension force S
�
, but the in#uence of S

�
on the particular frequencies is di!erent and

strongly depends on the beam #exural rigidity K
�
. For small values of K

�
("1�10
;

1�10� Nm�) the e!ect of S
�
on the asynchronous frequencies �

��
is greater than on the

synchronous ones �
��

(see Tables 1 and 2, and Figures 4 and 5). The situation decidedly
changes in the case of large values ofK

�
("1�10�; 1�10�Nm�), then the frequencies �

��



Figure 8. The natural frequencies of beam}string system �
��
(i"1, 2; n"1, 2, 3) as a function of string tension

force S
�
for a beam #exural rigidity K

�
"1�10� Nm�.

Figure 9. The natural mode shape coe$cients of beam}string system a
��

(i"1, 2; n"1, 2, 3) as a function of
string tension force S

�
for a beam #exural rigidity K

�
"1�10
 Nm�.
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signi"cantly depend on S
�
, while all frequencies �

��
remain almost constants (they are

independent of S
�
, in principle) (see Tables 4 and 5, and Figures 7 and 8).

It is important to note, that for this interesting vibratory system, the possibility of
changing the natural frequencies by a variation of only the string tension forces exists. It is
of great worth that the structural parameters of the system need not be changed. This fact
can have signi"cance in practical applications of such mixed complex systems. Choosing
properly tension forces of a string one obtains desirable values of the system frequencies in
certain limited domains, which allows one to avoid resonance phenomena or to generate
a dynamic vibration absorption phenomenon, making it possible to suppress excessive
forced vibration amplitudes [1, 20, 23, 34].
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5. CONCLUSIONS

This paper deals with the undamped free transverse vibration theory of an elastically
connected complex beam}string continuous system. General solutions of the homogeneous
partial di!erential equations of motion are formulated by using the classical modal
expansion method. Two in"nite sequences of the natural frequencies �

��
and �

��
(�

��
(�

��
) corresponding to two sequences of mode shape functions expressing the

synchronous (a
��

'0, �
��
) and asynchronous (a

��
(0, �

��
) free vibrations of the system

are determined. The initial-value problem is also considered to "nd the "nal form of free
vibrations. An interesting feature of the beam}string system considered should
be emphasized, namely, its natural frequencies can be varied by a change of string tension
force only, without the necessity of variation of the other parameters characterizing the
physical and geometrical properties of the system. This possibility can be of great practical
importance. It is easy to show, that the nature of free vibrations for a beam}string, double
string [18], and of a simply supported double-beam system [19] is similar.
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