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The kinetic equations of planar multi-body systems with friction-a!ected sliding joints are
reformulated for the computation of closed-form solutions for the kinetic parameters. The
state of such systems is characterized not only by the position parameters and velocities, but
in addition, the modes of contact in the sliding joints must be speci"ed. Then the cases with
one or several sets of solutions, obtained for the same position parameters, velocities, active
forces and friction parameters, can be related to positions of the system with di!erent modes
of contact between sliders and guiding surfaces. They are physical unequivocal states and
can be interpreted as unique solutions for the kinetic problem with speci"ed con"guration of
the system. If no solutions exist, then the friction parameters considered are too large and
exceed limiting values, for which friction locking occurs.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Multi-body systems with determinate kinetic structure consisting of rigid parts and having
constraints with friction are considered. The equations for the computation of the kinetic
parameters, i.e. the generalized accelerations, the reaction forces in the constraints and the
kinetic friction forces and torques, are obtained from conditions of kinetic equilibrium for
the parts of the system, which are linear equations in the unknowns, in addition to the
kinetic friction laws which are non-linear equations in the unknowns. These non-linear
equations have signi"cant consequences on the computation and interpretation of the
solutions [1].
Whilst for systems without friction, when, for given active forces, position parameters and

velocities, one set of solutions is always obtained, for systems with friction cases without,
with one or with several sets of solutions can occur. This particularity for systems with
friction-a!ected constraints has been pointed out by Painleve& [2] and is known as
Painleve& 's paradox (see for example, reference [3]). Related to this, if no solutions are
obtained the mechanical model appear to fail, whilst, if several sets of solutions are
obtained, this appears to indicate ambiguity and inconsistency in the kinetic problem. For
more information on this matter, see, for example, reference [4].
For interpretation of the results for systems with friction it is necessary to know whether

solutions exist or not, and, if solutions exist, then all the sets of solutions have to be
determined.
The kinetic friction forces and torques are active forces. This implies a feedback

connection in the block-diagram representation of systems with friction, as shown in
Figure 1. As a consequence of this interaction and the non-linear friction laws, in general, no
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Block diagram representation of systems with friction-a!ected constraints.
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closed-form solutions can be established (see, for example, reference [5]). In this paper, it is
shown that for systems having only friction-a!ected sliding joints, closed-form solutions can
be determined. Therefore, a planar system with friction-a!ected sliders is considered here.
The kinetic equations are reformulated, and the equations for the computation of the

unknowns are put in the form of a linear algebraic system suitable for the application of
a trial-and-error method. The coe$cients and the absolute terms of these equations contain
the position parameters and velocities, the solutions for the system without friction, friction
parameters and quantities depending on the modes of contact in the sliding joints. The
modes of contact de"ne the possible orientations of the sliders within the guides, (see, for
example, reference [6]). For guides without clearances, only contact along one side of the
sliders can occur. In guides having small clearances contact at diagonally opposite corners
can occur. The modes of contact are clearly speci"ed by the signs of the normal reaction
forces acting in the areas of contact. In general, it is a priori not known which modes of
contact can occur. Therefore, the signs of the normal reaction forces are considered as trial
assumptions in order to "nd the modes of contact, for which solutions exist.
The idealized concepts &&rigid parts'' and &&sliding joints'' of a multi-body system are

applicable if the forces acting on the real bodies which they represent are not too large and
the resulting deformations are negligible in comparison to other deformations and/or
displacements relevant to the system. Therefore, the limits of applicability of the results are
determined by reasonable absolute values of the accelerations and forces acting on the parts
of the system.
The aims of this paper are to show that for system and friction parameter values leading

to reasonable absolute values of the accelerations and forces, the solutions for the kinetic
parameters represent physically meaningful unequivocal states, if the system is
characterized not only by position parameters and velocities but also by the modes of
contact in the sliding joints. If no solutions exist, the friction parameters considered are too
large and exceed the limiting values, when friction-locking occurs.

2. DESCRIPTION OF THE SYSTEM

A multi-body planar system with n-degree-of-freedom consisting of b rigid parts, with
r friction-a!ected sliding joints and p hinge joints without friction is considered. The active
forces acting on the system are situated in the plane of motion. The generalized co-ordinates
are denoted by q"�q

�
, q

�
,2 , q

�
�. The linear and angular momenta of the parts and their

rate of change can be expressed with the help of the generalized co-ordinates q, velocities
q� "�q�

�
,q�

�
,2, q�

�
� and accelerations qK"�qK

�
,qK

�
,2, qK

�
�.

The normal contact forces at the sliders are distributed forces. When these forces are
considered as concentrated forces, denoted by F

��
, j"1, 2,2, r, and acting in the mass

centres of the sliders, respectively, then, in addition, couples with moments C
�
, j"1,2,2, r,
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must be considered. The reaction forces components in the hinges, situated in planes
perpendicular to the axis of the hinges, are denoted by H

�
and <

�
, j"1,2,2, p.

The relative positions of the bodies connected at the sliders are determined by the lengths
s
�
, j"1,2,2, r. These parameters can be expressed as functions of the generalized

co-ordinates q, and the relative velocities s�
�
, j"1,2,2, r, are functions of q and q� .

3. KINETIC EQUATIONS

The diwerential equations of motion for the model can be obtained from the equations for
the rate of change of linear and angular momenta established for every rigid part of the
system (Newton}Euler's equations). In general, they can be presented in the form

�
�
���

a
��
qK
�
#

�
�
���

(b
��
F

��
#c

��
C

�
)#

�
�
���

(d
��
H

�
#e

��
<

�
)"f

�
(q, q� , t)#

�
�
���

g
��
F

�
, i"1,2,2, 3b.

(1)

The coe$cients a
��
, b

��
, c

��
, d

��
, e

��
and g

��
can be functions of the generalized co-ordinates q.

When 3b"n#2r#2p, the multi-body system obtains a determinate kinetic structure.
If Lagrange's equations of the second kind are used for establishing n of the kinetic

equations (1), then these equations are free of the reactionsF
��
,C

�
, j"1,2,2 , r, andH

�
,<

�
,

j"1,2,2, p. The other independent equations of system (1) are conditions of kinetic
equilibrium for parts of the system.
For the kinetic friction forces F

�
in the sliders, the following idealized friction laws are

considered:

F
�
"(�

�
�F

��
�#F

��
)sign(s�

�
), j"1,2,2, r. (2)

Here, �
�
are the kinetic friction coe$cients in the sliders. The friction terms F

��
*0 are due

to pre-stressing or result from supplementary devices used to increase friction e!ects.

4. KINETIC EQUATIONS WITH INFLUENCE COEFFICIENTS

For systems with determined kinetic structures, equation (1) can be solved for the
accelerations and reactions. These kinetic parameters are presented as linear functions of
the kinetic friction forces F

�
, k"1,2,2, r, as follows:

qK
�
"qK

����
#

�
�
���

�
��
F

�
, (3)

F
��

"F
�����

#

�
�
���

�
��
F

�
, C

�
"C

����
#

�
�
���

�
��
F
�
, (4)

H
�
"H

����
#

�
�
���

	
��
F
�
, <

�
"<

����
#

�
�
���



��
F
�
. (5)

Here, qK
����

, i"1,2,2, n, F
�����

, C
����

, j"1,2,2, r, and H
����

, <
����

, j"1,2,2, p, are the
accelerations and reactions corresponding to the system without friction.
The coe$cients �

��
, �

��
, �

��
, 	

��
, and 


��
depend on the mass distribution of the system

and on the values of the generalized co-ordinates. These coe$cients do not depend on the
method applied for establishing the kinetic equations of the system.
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The coe$cients occurring in equations (3)}(5) characterize the weight of every
friction-a!ected sliding joint and the in#uence of the kinetic friction forces on the values of
the accelerations and reactions. These coe$cients can be considered as inyuence coezcients.
In particular, the "rst equation of system (4) shows that the normal reaction F

��
is

in#uenced not only by the friction force F
�
acting in the same slider, but all the friction

forces F
�
,k"1,2,2, r, that contribute to the value of F

��
. The in#uence coe$cients �

��
,

j, k"1,2,2 , r, are measures of these interactive in#uences. The coe$cients �
��
,

j"1,2,2 , r, have a particular meaning when systems with only one friction-a!ected
sliding joint are investigated.

5. COMPUTATION OF THE SOLUTIONS

The kinetic equations can be presented in a form which suggests the application of
a trial-and-error method for the computation of the solutions. Substituting equation (2) in
the "rst equations of system (4) yields

�
�
���

[�
��
sign(F

��
)!�

��
�
�
sign(s�

�
)]�F

��
�"F

�����
#

�
�
���

�
��
F
��

sign (s�
�
), j"1,2,2, r, (6)

where �
��
is the Kronecker delta. The solutions F

��
, j"1,2,2 , r, of the kinetic problem are

also the solutions of the system of equations (6).
In reference [5], the equivalent equations for the same particular case are expressed in

terms of the kinetic friction forces F
�
, j"1,2,2 , r. Here, these equations are expressed in

terms of the unknown normal reactions F
��
, j"1,2,2, r, in order to emphasize the role of

these forces in the interpretation of the solutions.
The coe$cients of equations (6) contain the quantities sign(F

��
), j"1,2,2 , r, which can

have the values #1 or !1. Initially, the values of these quantities for which solutions exist
are unknown. Therefore, with the two types of objects #1 and !1, ordered sets of trial
assumptions

�sign(F
��

), sign(F
��

),2, sign(F
��
)� (7)

of size r, numbering 2� in total, are established. They characterize the modes of contact in the
sliding joints, i.e., the con"guration of the system. Equations (6) are free from the
accelerations indicating that the number of degrees of freedom of the system does not
determine the number of sets of solutions that exist.
For every set of trial assumptions (7), equations (6) can be solved and the corresponding

solutions of �F
��

�, j"1,2,2 , r, can be determined. If all the solutions are positive, they are
solutions of the problem and correspond to the given position parameters and velocities
and to the set of trial assumptions considered; i.e., for the modes of contact in the sliding
joints considered.
The requirement

�F
��

�*0, j"1,2,2, r, (8)

for the solutions of equations (6) can be considered as a selection criterion for choosing, from
among the sets of trial assumptions, those corresponding to the solutions of the kinetic
problem. The obtained solutions are closed-form solutions.
The absolute values �F

��
�, j"1,2,2 , r, which are the positive solutions of equations (6),

and the corresponding set of trial assumptions (7) determine the reaction forces at the sliders
F
��

"�F
��

�sign(F
��
), j"1,2,2 , r. Substituting into equations (2), the kinetic friction forces



MODES OF CONTACT AND UNIQUENESS OF SOLUTIONS 991
F
�
, j"1,2,2, r, are obtained and equations (3)}(5) yield the other unknowns of the

problem.
The properties of the model concerning structure geometry, mass distribution and

position parameters are characterized in the determinant D"det[d
��
] of the system of

equations (6) by the in#uence coe$cients �
��
, j, k"1,2,..., r. Together with the values of the

friction coe$cients �
�
, j"1,2,2, r, they are determinative in the prediction, if the system

with friction-a!ected sliders and the given modes of contact in the sliding joints has
solutions for the kinetic state parameters. With the values of the friction coe$cients tending
to the roots of the equation D"0, the solutions �F

��
�PR, j"1,2,2, r, and friction

locking occurs.
For a system having only a sliding joint &&j '' with friction, the solutions can be determined

from the equation

�F
��

�"
F

�����
#�

��
F
��
sign(sR

�
)

sign(F
��
)!�

�
�
��
sign(sR

�
)
. (9)

Only assumptions for sign(F
��
) and sign(sR

�
) and values of �

�
yielding positive values of

equation (9) correspond to the solutions of the problem. For this particular case, equation
D"0 yields d

��
"sign(F

��
)!�

�
�
��

sign(sR
�
)"0. The element d

��
is the denominator of

equation (9). If it is of the form $(1!�
�
��

��
�), then with �

�
P1/��

��
�"�

��
the solution

�F
��

�PR and kinetic friction locking occurs.
In the case of multiple frictional contacts, i.e., at least, only one of the in#uence

coe$cients �
��
, jOk , is di!erent from zero, the determinant D"det[d

��
] has

non-vanishing elements not situated on the main diagonal, i.e., d
��

"!�
��

�
�
sign(sR

�
)O0,

jOk. In this case, the roots of equation D"0 are di!erent from the roots �
�
"�

��
of the

equations d
��

"0, j"1,2,2, r, obtained with the elements on the main diagonal and
corresponding to systems with only one friction-a!ected slider. In this case, friction locking
occurs for values �

�
O�

��
, j"1,2,2, r.

6. EXAMPLE

For illustration, the planar system presented in Figure 2 is considered. A homogeneous
bar of mass m, length l, angle of inclination 	 and mass centre S is hinged at the massless
upper block 1 and lower block A. The blocks can slide along two horizontal slots. The bar is
acted in S by the horizontal force P, by a linear elastic spring of sti!ness k, undeformed in
position q"0, and by a viscous damper with the damping coe$cient c. The scalar
parameters determining the positions of the sliders are s

�
"s

	
"q. The free body diagrams

of the bar and blocks are presented in Figure 3, which also indicates the positive directions
of the normal reactions, F

��
, F

��
and F

��
. The modes of contact of the upper block are full

contact with the lower guiding surface, i.e., F
��

'0, and full contact with the upper guiding
surface, i.e., F

��
(0. For the lower block the modes of contact are full contact with the

lower guiding surface (F
��

'0, F
��

(0), full contact with the upper guiding surface
(F

��
(0, F

��
'0) and, in addition, two diagonal tipping modes, F

��
'0, F

��
'0 and

F
��

(0, F
��

(0. For negative values of the normal reactions F
��

, F
��

and F
��

, the
direction lines of the friction forces F

��
, F

�
and F

�
change.

The kinetic parameters, obtained from conditions of kinetic equilibrium of the forces in
Figure 3, are presented with the notations in equations (3) (without index **i++ ) and the "rst
of equations (4) (with r"3) as follows: qK

���
"(P!kq!cqR )/m, and �

�
"�

�
"�

�
"!1/m.

For the normal reactions the values F
�����

"�
�
mg, F

�����
"!F

�����
"�

�
mg,

�
��

"!�
��

"!�
��

"!�
�
tan(	), �

��
"�

�
tan(	), �

��
"(h/2b) sign(F

��
)!�

�
tan(	),



Figure 2. A planar system with two friction-a!ected sliding joints.

Figure 3. The free body diagrams of the system in Figure 2 indicating the positive directions of the normal
reactions.
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�
��

"!(h/2b) sign(F
��

)!�
�
tan(	), �

��
"!�

�
tan(	), �

��
"(h/2b) sign(F

��
)#�

�
tan(	),

and �
��

"!(h/2b) sign(F
��

)#�
�
tan(	) are obtained. For a given position parameter q,

velocity qR and active force P, the force F"F
�
#F

�
#F

�
"P!kq!cqR !mqK yields the

acceleration qK .

7. NUMERICAL RESULTS

For numerical simulation the values 	"803, b/l"0)2, h/l"0)1, �
�
3[0, 0)8], and

�
�
"�

�
"0)1 are considered. The determinant of the system of equations (6) corresponding

to this case has the root �
�
"�H

�
between 0)4526 and 0)4527. The solutions obtained for the

normal reaction forces F
��
, j"1, 2, 3, with positive velocities are denoted by F �
�

��
and with

negative velocities by F�	�
��

.
The numerical results can be veri"ed with the help of kinetic equilibrium conditions; for

example, with the force equations: F!F
�
!F

�
!F

�
"0, F

��
#F

��
!F

��
!mg"0,

and the moment equations about point A: (F
�
!�

�
F) l sin(	)#(F

��
!�

�
mg) l cos(	)"0 and

�
�
(F

��
#F

��
)b!�

�
[F

�
sign(F

��
)!F

�
sign(F

��
)]h"0.

Figure 4 presents the results obtained with zero friction terms, i.e. F
��

"F
��

"F
��

"0,
and with qR '0. For �

�
)0)4526 unique solutions and for �

�
*0)4527, two sets of solutions

are obtained. Reasonable solutions exist for all the values of �
�
considered for the modes of

contact characterized by sign(F
��

)"#1, sign(F
��

)"#1 and sign(F
��

)"!1, i.e., the
upper and the lower sliders are in contact with the corresponding lower guiding surfaces.
These solutions are denoted by F�
�

�����
, j"1,2,3.

In addition, for �
�
*0)4527 solutions with decreasing absolute values exist, for which the

upper slider is in contact with the upper guiding surface and the lower slider touches the
lower guiding surface. These solutions are denoted by F�
�

�����
, j"1, 2, 3. If the upper limits

for the absolute values of the reaction forces are established due to rigidity considerations,
then the domain of �

�
-values which yield excessive absolute values, [�H

�
,�

��
], must be
Figure 4. The solutions F�
�
��

, j"1, 2, 3, of the kinetic problem for increasing values of the friction coe$cient �
�
,

with �
�
"�

�
"0)1, F

��
"0, j"1, 2, 3, and positive velocities.



Figure 5. The solutions F �	�
��

, j"1, 2, 3, of the kinetic problem for increasing values of the friction coe$cient �
�
,

with �
�
"�

�
"0)1, F

��
"0, j"1, 2, 3, and negative velocities.
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excluded. Thus, for this con"guration of the system only solutions corresponding to
�
�
'�

��
are meaningful.

The two sets of solutions occurring for �
�
*0)4527 and accepted for �

�
'�

��
do not

indicate ambiguity or inconsistency of the mechanical model, which takes into account
friction in the sliding joints, but they correspond to two di!erent modes of contact of the
sliders, i.e., for two di!erent con"gurations of the system.
For example, with �

�
"0)6, the "rst set of solutions is F�
�

�����
"0)2625mg,

F�
�
�

"0)1575mg, F�
�
�����

"0)3872mg, F�
�
�

"0)0387mg, F�
�
�����

"!0)3503mg,
F�
�
�

"0)0350mg, and F�
�"0)2313mg. The second set of solutions is
F�
�
�����

"!1)8754mg, F�
�
�

"1)1252mg, F�
�
�����

"1)5096mg, F�
�
�

"0)1510mg,
F�
�
�����

"!1)3658mg, F�
�
�

"0)1366mg, and F�
�"1)4128mg. These numerical results can
be easily proved.
Figure 5 shows the results obtained with zero friction terms and qR (0. In the domain

�
�
3[ 0, 0)1763], solutions exist for the modes of contact sign(F

��
)"#1, sign(F

��
)"#1,

sign(F
��

)"!1, with increasing values of F �	�
��

and with F�	�
��

and F�	�
��

tending to zero. In
the domain �

�
3[0)1764, 0)4526], solutions exist for the modes of contact sign(F

��
)"#1,

sign(F
��

)"!1, sign(F
��

)"#1, with increasing absolute values of F �	�
��

, j"1, 2, 3. From
rigidity considerations, a limit value of �

�
(�H

�
denoted by �

��
, ensuring reasonable

absolute values for the reaction forces, can be established and values of �
�
3(�

��
,�H

�
) must

be excluded. In the domain �
�
'�H

�
, no solutions are obtained for any of the possible modes

of contact. In this case, the system is jammed and kinetic friction locking occurs.



MODES OF CONTACT AND UNIQUENESS OF SOLUTIONS 995
With �
�
(�

��
(�H

�
the system passes position q in the positive direction in the

con"guration sign(F
��

)"#1, sign(F
��

)" #1, sign(F
��

)"!1. In the negative
direction and for �

�
)0)1763, the system passes position q in the same con"guration, and

for �
�
3[ 0)1764,�

��
] in the con"guration sign(F

��
)"#1, sign(F

��
)"!1,

sign(F
��

)"#1. With �
�
'�

��
'�H

�
, only motion in the positive direction is possible. For

motion in the negative direction the system is jammed. For an oscillating system, motions in
both directions are expected. Therefore, for the system considered in Figure 3, only values of
�
�
(�

��
allow oscillatory motions.

With friction terms F
��

"0, F
��

"mg, and F
��

"0 and �
�
"�

�
"0.1, in the domain

�
�
3[ 0, 0)4526], as well for positive as for negative velocities, only one set of solutions exists.

In the domain �
�
3[0)4527, 0)4674], two sets and with �

�
*0)4675, three sets of solutions

are obtained for positive velocities. For negative velocities and �
�
*0)4527, two sets of

solutions exist.
In particular, with �

�
"0)5 and qR '0 the following three sets of solutions are obtained,

which correspond to three di!erent con"gurations of the system. The "rst set of solutions is
F�
�
��

"1)4357mg, F�
�
�

"0)7178mg, F�
�
��

"0)0213mg, F�
�
�

"1)0021mg, F�
�
��

"0)4570mg,
F�
�
�

"0)0457mg, and F�
�"1)7657mg. The upper slider touches the corresponding lower
guiding surface and the lower slider is in a diagonal contact mode, right below and left
above. The second set of solutions is F�
�

��
"1)4408mg, F�
�

�
"0)7204mg,

F�
�
��

"!0)4814mg, F�
�
�

"1)0481mg, F�
�
��

"!0)0406mg, F�
�
�

"0)0041mg, and
F�
�"1)7726mg. The upper slider touches the corresponding lower guiding surface and the
lower slider is in a diagonal contact mode, right above and left below. The third set of
solutions is F�
�

��
"!26)9574mg, F�
�

�
"13)4787mg, F�
�

��
"14)9276mg, F�
�

�
"2)4928mg,

F�
�
��

"!13)0298mg,F�
�
�

"1)3030mg, andF�
�"17)2745mg. The upper slider touches the
corresponding upper guiding surface and the lower slider is in contact with the lower
guiding surface. The kinetic equilibrium of these systems of forces can also be easily proved.

8. CONCLUSIONS

From the investigation of the kinetic problem of a multi-body planar system with
determinate kinetic structure and friction-a!ected sliders, the following facts emerge:

(1) The equations for the computation of the absolute values of the normal reactions in
the sliders can be presented in the form of a linear system of algebraic equations.

(2) Closed-form solutions for the kinetic parameters can be determined with the help of
a trial-and-error method.

(3) The possible sets of solutions correspond to the given position parameters, velocities,
active forces, friction parameters and to the speci"ed modes of contact in the sliding
joints. Every set of solutions can be assigned to a physically meaningful unequivocal
state of the system.

(4) For particular values of the kinetic friction coe$cients and particular modes of
contact in the sliding joints, solutions with in"nite absolute values of the kinetic
parameters occur (kinetic friction locking), whereas, for the same friction coe$cients
and other modes of contact, reasonable values for the kinetic parameters are
obtained.

(5) Only solutions with reasonable absolute values of the kinetic parameters are
meaningful.

(6) If no solutions of the problem exist, then the kinetic friction coe$cients considered
are extremely large and exceed limiting values, for which kinetic friction locking
occurs.
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