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The semi-analytical approach to the non-linear dynamic response of beams based on
multimode analysis has been presented in Part I of this series of papers (Azrar et al., 1999
Journal of Sound and Vibration 224, 183-207 [1]). The mathematical formulation of the
problem and single mode analysis have been studied. The objective of this paper is to take
advantage of applying this semi-analytical approach to the large amplitude forced
vibrations of beams. Various types of excitation forces such as harmonic distributed and
concentrated loads are considered. The governing equation of motion is obtained and can be
considered as a multi-dimensional form of the Duffing equation. Using the harmonic
balance method, the equation of motion is converted into non-linear algebraic form.
Techniques of solution based on iterative-incremental procedures are presented. The
non-linear frequency and the non-linear modes are determined at large amplitudes of
vibration. The basic function contribution coefficients to the displacement response for
various beam boundary conditions are calculated. The percentage of participation for each
mode in the response is presented in order to appraise the relation to higher modes
contributing to the solution. Also, the percentage contributions of the higher modes to the
bending moment near to the clamps are given, in order to determine accurately the error
introduced in the non-linear bending stress estimated by different approximations. Solutions
obtained in the jump phenomena region have been determined by a careful selection of the
initial iteration at each frequency. The non-linear deflection shapes in various regions of the
solution, the corresponding axial force ratios and the bending moments are presented in
order to follow the behaviour of the beam at large vibration amplitudes. The numerical
results obtained here for the non-linear forced response are compared with those from the
linear theory, with available non-linear results, based on various approaches, and with the
single mode analysis.
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1. INTRODUCTION

The use of beams and plates is extensive in various engineering structures and they are often
subjected to dynamic loading. Dynamic loads are sometimes harmonic in nature or they
may be idealized as harmonic excitations. The steady state response under these loads is of
great importance in aerospace and mechanical engineering and other related fields. The
study of the free and the forced vibration of geometrically non-linear beams involves
obtaining solutions of the governing non-linear partial differential equations for which
exact solutions are not available. Numerical methods are the only alternative for obtaining
general solutions. Among the numerical methods available, the finite element method is
undoubtedly the most versatile. The only problem with this method is that its formulation is
quite laborious and it takes a large amount of computer storage. Despite the increase of
computer capacities, direct integration of a set of non-linear equations representing
a dynamic system often requires large computation time. Therefore, reduction techniques,
assuming that the unknowns (the displacements for example) can be represented by a linear
combination of several well-chosen functions, can be used. This permits considerable
reduction of the number of non-linear equations to be solved and an economic solution
with a reasonable accuracy. In linear vibration, the technique of modal analysis often
represents an appropriate and an efficient procedure. The use of eigenmodes leads to
a system of uncoupled differential equations that can be treated separately. For non-linear
vibration, multimode analysis leads to a coupled non-linear system involving the
contribution of various modes. Using the harmonic balance method, Benamar [2] and
Benamar, Bennouna and White [3-7] reduced the non-linear free vibration problem to a set
of non-linear algebraic equations. However, although the above model succeeded well in
analyzing the effect of large vibration amplitudes on the mode shapes of beams,
homogeneous and composite plates, it was restricted in a sense that only the free response
problem was considered in the formulation. In Part I of the present work [1],
a semi-analytical approach to the non-linear dynamic forced response problem was
presented. Attention was particularly focused on the mathematical formulation and
application of the model in a single mode analysis. The applicability of this method to the
forced vibration of beams and some quantitative results was reported by Azrar and
Benamar [8]. The objective here is the application of the non-linear forced vibration model
previously reported using a multimode response approach to various types of excitation
and boundary conditions, to present numerical results corresponding to each case, to
examine how far they deviate from the linear theory and from the single mode
approximation, and to discuss the range of validity of various assumptions.

In a survey of the literature on non-linear vibrations of beams, the most common
methodological approaches are discussed. The assumption generally used is separation of
time and space variables. Assuming that the non-linear deflection shape is proportional to
the fundamental mode shape and using Galerkin’s method, the governing dynamic
equations can be reduced to a single non-linear ordinary differential equation in time of
Duffing type. The latter equation may be treated by use of elliptical functions to obtain an
exact mathematical solution, by perturbation methods or by the harmonic balance method
to yield approximate solutions [1, 9-15]. A review of various formulations and assumptions
made for large amplitude free vibration of beams has been given by Singh et al. [16].
Another approach generally used is to assume that the dependence in time is harmonic.
Then, the harmonic balance method can be used to obtain a non-linear boundary value
problem in the spatial variable. This technique is widely used because it permits
transformation of the non-linear dynamic problem into a non-linear static one.
This facilitates use of the same numerical methods as in static analysis.
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A multiple-degree-of-freedom approach has been presented by Bennett and Esley [17].
Using three modes, the steady-state free and forced response and the stability of a beam
with clamped ends at large vibration amplitudes have been investigated. A multimode
analysis has been presented by Busby and Weingarter [ 18] using a finite element method
and an averaging approach leading to an approximate solution to the non-linear equation
under harmonic loading. This permitted the steady state response of beams using two
modes to be studied. The experimental results presented in references [17, 18] confirm
qualitatively the results of these analyses. In these two papers, the effectiveness of the
multimode approach in non-linear vibrations of beams has been demonstrated. Using the
Ritz method, an analytical solution for the non-linear free vibrations of beams has been
given by Lewandowski [19]. The classical finite element method can be used to obtain an
accurate solution of complex engineering problems. Most studies of non-linear vibrations of
structures using this approach have been carried out by combining the finite element
method and linearizing procedures [20-27]. Without linearizing functions, the problem of
non-linear vibration of beams is solved by incremental-iterative methods [28-30]. An
asymptotic numerical method for large amplitude vibrations has been developed by Azrar
et al. [31, 32]. This method has been developed and applied to various non-linear structural
problems by Potier-Ferry and co-workers. These studies have brought out the essential
features which affect the practicability of the coupling of perturbation methods and finite
element methods. A reduced basis technique has been presented by Noor et al. [33] for the
non-linear vibration analysis of composite panels. The method of multiple scales, largely
used by Nayfeh and co-workers, has been applied to obtain the non-linear modes of beams
[34]. A finite element time domain modal formulation for large vibration amplitudes and
non-linear random vibrations has been developed by Mei and co-workers. Applications of
this method to free vibrations of beams and plates are presented by Shi, Lee and Mei
[35,36]. Theoretical and experimental investigations have been conducted by Bennouna
and White [13] and Wolfe [37] in order to determine the effect of large vibration
amplitudes on the fundamental mode of a clamped-clamped beam and the effect of
non-linearity on the fatigue life of beam-like structures. Also, a careful investigation of the
harmonic distortion spatial distribution induced by the geometrical non-linearity has been
carried out. More recently, a comprehensive survey of the non-linear response of beams and
plates at large amplitudes of vibration has been presented by Chen et al. [38]. A series of
experimental investigations were conducted to understand the non-linear dynamic
behaviour. A multimodal fatigue model was developed and applied to the test data with
reasonable results. A comparison of finite element predicted non-linear beam random
response with experimental results is presented in reference [38]. The aforementioned
studies have contributed significantly to the understanding of the influence of geometrical
non-linearities occurring at large vibration amplitudes of beams and plates. For
deterministic forced vibration of beams, few studies have taken into account the effect of the
coupling between higher modes in the non-linear range.

The present study focuses on non-linear forced vibrations of beams using a multimodal
approach and taking into account the coupling between the higher vibration modes.
The mathematical formulation for the dynamic response of beams leading to a
multi-dimensional Duffing equation has been presented in reference [1] and is briefly
reviewed here. The use of the harmonic balance method permitted conversion of the
equation of motion into a non-linear algebraic model. Solution techniques based on
continuation methods have been presented. Various types of excitations such as uniformly
distributed and concentrated forces are considered. Numerical solution enabled the
non-linear frequency response function to be derived, giving not only the displacement at
the centre of the beam, as is usually the case, but the beam response spatial distribution
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across the whole span, depending on the level of excitation, and involving distortion of the
deflection shape, due to the non-linearity. Beams with various types of excitation
and boundary conditions, such as simply supported-simply supported, simply
supported—clamped and clamped-clamped have been considered. Numerical results are
presented and compared with available results and with the single mode analysis. Multiple
solutions corresponding to jump phenomena regions have been determined by a careful
selection of the initial interaction at each frequency. The non-linear deflection shapes in
various regions of the non-linear frequency response functions are presented for various
types of excitation showing the amplitude dependence of the deflected shape of the beam.
The axial force and the deflection moments are also presented for various amplitudes of
vibration. The percentage participation of each mode is presented in order to appraise the
relation to higher modes contributing to the solution. Also, the percentage contributions of
the higher modes to the bending moment near to the clamps are given, in order to determine
accurately the error introduced in the non-linear bending stress estimated via different
approximations. The non-linear mode shapes in various regions of the solution, the axial
force ratios and the moments are presented in order to follow the behaviour of the beam at
large amplitudes. The numerical results obtained are compared with available results and
with the single mode analysis.

2. REVIEW OF THE MATHEMATICAL FORMULATION

The problem of interest here is the non-linear forced vibration of beams. The non-linear
effect, produced by large transverse vibration amplitudes, is axial stretching of the
mid-plane of the beam. This effect is modelled by a non-linear strain-displacement
relationship of the van Karman type. The basis of our considerations is the non-linear
equation of motion obtained by a spatial discretization, in which the displacement function
is expanded as a series on the linear beam mode shapes. This leads to a system of ordinary
second order differential equations in the time domain involving the vector of the unknown
modal contributions and can be considered as a multi-dimensional form of the Duffing
equation. Assuming harmonic excitation, a non-linear algebraic model is obtained from the
multi-dimensional Duffing equation using the harmonic balance method.

2.1. FORMULATION

In large amplitude vibrations of beams, the axial strain ¢ and the curvature K are defined
as

=2

= (M

2 2
v 1<aﬂw>’ W

oxX

where U and W are the axial and the transverse displacements respectively. The axial
resultant force N and the bending moment M are related to ¢ and K, respectively, by

N =ESe, M =EIK, )

where E, S and I are Young’s modulus, the area and the second moment of area of the
cross-section of the beam. The elastic strain energy V' of the beam is

y-l JL(NS + MK)dx. 3)
2 Jo
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For immovable beams, if one neglects the in-plane inertia, the non-linear stretching force
N can be written in terms of transverse displacement, W, alone [1, 19, 24]. The total strain
energy of the beam is given by the following formulation [1, 2]:

ES[ (Y(ow\* , | EI [(Y[*W)\?
V=— — | d — — | dx. 4
8L[L<6x> x:| +2 o<5xz> ) @
Neglecting the axial inertia, the kinetic energy is given by
1 L row\?
T=— — | dx. 5
s [ (%) B

The transverse displacement field, W, is assumed to have the form of the following series:

Wix,t)=

1

qi()wi(x), (©)

n
=1

in which w;(x) are the basic functions, chosen in the present work as the linear beam modes
of vibration. The modal coefficients ¢;(t), are time-dependent generalized co-ordinates.
Using these equations, discretization of the kinetic energy T and the total strain energy
V leads to:
T= %q.iq'jmijs (7a)
V = 3q:4ki; + 29:9;9x91bijua- (7b)

where the terms m;;, k;;, and b;,; are given as in references [1, 2, 5], by

L
my = pS j w0 w3 (6) i, (82)
0
L d%w,; d?w;
o EI| -
ki, L P dx (8b)
ES (Ldw; dw; L dw, dw
by = — i —* " dx. 8
i 4LL dx dx 7, dx dx (8¢)

Assume that the structure is excited by a force F(x, t) distributed over the range Q (Q is
the length of the beam or a part of it). The physical force F(x,t) excites the modes of
the structures via a set of generalized forces F;(t) depending on the expression for F, the
excitation point for concentrated forces, the excitation length for distributed forces, and the
mode considered. The generalized forces F;(t) are given by

Fi(t) = J F(x, t)w;(x)dx, 9)

in which w;(x) is the ith mode shape of the structure considered.
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Using Lagrange’s equation and the matrix formulation, the non-linear differential
equation governing the dynamic behaviour of the forced beams is

gmy, + qikie + 24:4;qkbijie = Foy 7 =1,n, (10
which can be written in a matrix form as

[MI{d} + [K]{a} + 2[B@]{qj = {F}, (11)

where [M], [K], [B], {q} and {F} are the mass matrix, the linear rigidity matrix, the
non-linear rigidity tensor, the vector of generalized parameters and the vector of generalized
forces respectively. It should be noticed here that the basic functions chosen in this paper,
which are the beam linear mode shapes, lead to diagonal mass and rigidity matrices, due to
orthogonality. This equation appears as a generalization of the non-linear case of the forced
response equation, which is very well known in linear modal analysis,

[M1{d} + [K1{q} = {F} (12)

to which the term 2[B(gq)] corresponding to the non-linear rigidity is added.

It appears that the model presented above and summarized in equation (11) can be
considered as a multi-dimensional form of the Duffing equation very often encountered in
the non-linear vibration analysis of structures. It is worth noting here that the theory
presented in references [1, 2] provides a means for calculating the cubic non-linearity
coefficient in the approximate one-dimensional Duffing equation (2) for beams with various
boundary conditions. This could allow numerical solutions to be obtained for engineering
purposes, which would be valid as far as the single mode assumption is valid.

2.1.1. Harmonic excitation

Due to the fundamental nature of harmonic excitation and because it has many practical
and theoretical applications, it will be the subject of this paper. Consider a beam excited
by a concentrated harmonic force F¢ applied at the point x,, and also the case of a
beam excited by a distributed harmonic uniform force F¢. The forces F¢ and F* are given
by

Fe(x,t) = F8(x — xo)cos(wt),  F4(x,t) = Fcos(wt), (13a,b)

in which § is the Dirac function. The corresponding generalized forced F§(t) and F{(t) for
each case are given by

F{(t) = Fw;(xo)cos(wt) = f§ cos(mt), (14a)

F4(t) = Fcos(wt) JL w;(x)dx = f4cos(wt). (14b)

0

The dynamic equation representing the forced vibration of beams is obtained by
introducing the generalized forces (14) into equation (11). Numerical solution of this
equation yields the steady state motion of beams for various excitations and boundary
conditions.
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2.2. REVIEW OF RESULTS USING THE SINGLE MODE APPROACH

The single mode assumption consists of neglecting all the co-ordinates except the single
“resonant” co-ordinate. Thus, it reduces the multi-degree-of-freedom system to
a single-degree-of-freedom model. This approach is very often used because it greatly
simplifies the theory and especially because the error introduced in the non-linear frequency
remains small [1]. Using this approach, the non-linear dynamic system governing the
motion is transformed into a non-linear differential equation of the Duffing type. An
approximate solution of the later equation is generally obtained by the use of the harmonic
balance method, by perturbation methods or the direct numerical integration. An exact
solution of this equation exists only in the free vibration case or when the excitation force
has a specified form of an elliptic function [9]. The amplitude-frequency relationships have
been presented in Part I, based on the exact solution of the above equation in the free
vibration case and results obtained by these relationships have been compared with
available results for the cases of S-S and C-C beams under various excitations [1]. In order
to obtain more practical formulae, the solution has been expanded into a power series. This
leads to a higher order polynomial representation of the frequency—amplitude relationship.
As clearly presented in reference [1], increasing order of the series does not increase the
validity of the solution because of the divergence beyond the radius of convergence. This
showed that extreme care must be taken in choosing the polynomial approximation given
by perturbation procedures. A mathematical technique based on Padé approximants has
been proposed in order to increase the range of amplitudes in which power-series
expansions can be used. Formulations of the frequency-amplitude relationships have been
proposed for very large amplitudes of vibration.

3. PRESENT ANALYSIS BASED ON THE MULTIMODE MODEL

3.1. GENERAL FORMULATION

Previous studies concerned with beams and plates [2, 4, 37] have shown that harmonic
distortion of the non-linear response of the structure excited harmonically occurs at large
transverse vibration amplitudes. However, the separation of harmonics carried out in the
above references on experimental measurements of the non-linear response at various
points of the structure considered and various excitation levels have shown that the higher
harmonic components remain very small, compared with the first-harmonic component of
the response. On the other hand, the comparison made in Part I of this series of papers
between the exact solution of the Duffing equation, obtained in terms of elliptical functions,
and that based on the assumption of a harmonic response, showed a very good agreement
in the non-linear frequency estimates for a large range of vibration amplitudes ([1], Figure
4). Based on these two observations, the non-linear frequency response function has been
assumed in the present paper, which is mainly concerned with the amplitude dependence of
the first-harmonic component spatial distribution, to be given by

qi(t) = a;cos(wt) fori=1-n. (15)

Introducing equation (15) into equation (11) and applying the harmonic balance method
leads to [1]

([K] — 0’ [M]){A} + 3[B(A)]{A} = {F}, (16)

{A} = {al, Ay, ... ,a,,}t.
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In order to obtain a non-dimensional formulation, the non-linear parameters have been
defined as follows:

w;(x) = Rwf <%> = Rwj(x*), x*= %, R?2 =1/S, w?/w** = EI/pSL* (17)

ku/k:l; = EIRZ/L3, mu/m:x; = pSRzL, bijkl/b:kjkl = EIRz/L3,

where ki, m, b and w* are the non-dimensional generalized parameters.

Note that in Part I [1], the deflection w(x) was assumed to be w(x) = hw*(x*) and in this
paper it is chosen to be w(x) = Rw*(x*) in which R is the radius of gyration. This
assumption is preferred here because it permits comparison with previously published
results without further manipulations. The modal functions wi(x*) are given in Appendix
A for each boundary condition case considered in this study. The dimensionless generalized
forces f¢* and f%* corresponding to the concentrated force at x, and the uniformly
distributed force on the whole beam, respectively, are given by

L3
i = Fe o wi(xE) = Fore“w! (x3), (18a)
dx d L3 ! % 3 S d ! * * £
fi* = ZIR w; (x*)dx* = Forc w; (x*)dx*. (18b)
0 0

Using the notation defined in equations (17) and (18), equation (16) gives the following
non-linear algebraic equation:

([K*] — 0** [M*]){A} +3[B*(A){A} = {f*}. (19)

Expression (19) is used below for numerical solutions of the non-linear dynamic response of
beams under various boundary conditions.
The 1-D non-linear frequency response function (1-DNFRF) is given by [1]

*2 * *
w 1 f
3 Y1111 o 1
—=1l+s——a -5 —, (20)
*2 ki, a
oy 11 11 a1

in which w}* = k¥, /m¥,. The dimensionless amplitude at the centre of the beam is given by

w(centre)
R

A=

=da; W>1k (%)

Using these notations, the following (I-DNFRF) is obtained:

w*? >1k111 A? F
— =143 T — (21)
w2 2k i1 A
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in which F is defined in the case of a uniformly distributed and a concentrated harmonic
force by

fo1\ Pl k1
F¢ = Forc* WliZ) J wi (x*)dx* F¢ = Forc© WI,EZ) wi(xg). (22)
i1 Jo 11

These formulations are developed and discussed in Part I [1] for

h
A=gant () =/ 12awi Q)

and reformulated here for A = a;wi (%) in order to avoid any confusion.

3.1.1. Numerical details: the continuation methods

To solve the non-linear governing equation of motion, incremental-iterative methods are
generally used. The non-linear response of structures can include limit points or bifurcation
points. The classical Newton-type method fails in the vicinity of these critical points, which
makes it impossible to trace the post-critical range of the solution. Analysis of the
non-linear forced vibration of structures requires solution of the equation of motion for
various values of parameters such as the frequency and the amplitude of the excitation. It is
well known that structures with certain types of non-linearities, such as cubic stiffness, can
exhibit multiple response behaviours in certain frequency ranges and the solutions
represent limit points. This can produce the jump phenomenon which is very well known in
non-linear forced vibration. Then, continuation methods have to be used to obtain the path
beyond critical points. Some continuation methods are well established and developed and
applied in structural engineering. The most popular are the load control, displacement
control and arc length methods [39-46]. Since the arc-length methods originally proposed
by Crisfield [43] are essential to follow the non-linear solution, a general form of these
procedures and their applicability to the problem considered here will be discussed briefly.
The governing equation of non-linear forced vibration of beams presented above is written
as

{G(A, %)} = [K*]- (A} — 0*?[M*]-{A} + 3[B*(A)]{A} — {f*} = (0}, (23

where G is the residual vector. This equation represents n relations between (n + 1)
unknowns (ay, d,, ds, ...,a,, ®*?). In order to solve this problem, an extra equation,
denoted by g(A, w*?) = 0, can be introduced to complete the system. A numerical solution
of the following extended system based on the Newtonian algorithm has to be carried out as
follows:

{GA, 0*)} = {0}, {g(A,0**)} =0. (24)

Iterative-incremental methods must be invariably used to solve the non-linear problem
(24). The solution path is followed incrementally proceeding from a known solution
(*A, 'w*?) to an adjacent configuration. Two strategies are usually followed to achieve
equilibrium. The first, called prediction, is a procedure from a known configuration to the
next; and the second, called correction, is an improvement of the predicted solution. These
configurations presenting the prediction-correction solution are generally performed
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following the Newton-Raphson procedure. This procedure is best introduced via
a truncated Taylor series in a neighbourhood of the solution (*A, '@w*?) given by

0G(A ‘™) 0G(A o)

G('A +4A, '0*? + Aw*?) = G('A, '0*?) + i T2

Aw*?* =0,
(25)
where 4A and Aw*? are the increments. This can be written in a matrix form as

IG(1A, 10*?)

K, 44 = — G('A, ') — ==

- Aw*?, (26)

where K, is the tangent matrix of a configuration 1 given by K, = dG('A, 'w*?)/0A
Following equation (23), the derivatives in equation (25) are given by

K, = K* — 1o*2M* + 3[B*('A, 'A,.) + B*('A,.,'A) + B*(.,'A, 'A)],

0G('A, 'w*?)

e =—M*-'A, (27)
(0)]

where

BITI(IA, 1A,.) = Z Z b;kjkllailaj, B;FI(IAJ»IA) = Z Z b;kjkllailak:

i=1j=1 i=1k=1

and

Bi(,'A'A) = Y Y biid'a;la.

j=1k=1

The latter formulations can be simplified by using the symmetry of the tensor b}%,;. Various
strategies of resolution proposed in the literature for non-linear static and dynamic
problems correspond to particular choices of equation g(A, w*?) = 0 [30, 40-49].

For the load control method, which is here termed frequency control, the additional
constraint equation is g(A, w*?) = w*?> — C = 0, where C denotes a fixed frequency level.
For displacement control, a value of one component of the vector A is specified; for example
a;, so that, g(A, w*?) = a; — a;. The displacement component, which should be controlled is
a; and a; is the value of the prescribed component of displacement. The frequency control
method or the displacement control method fails when a frequency limit or a displacement
limit exists. Using alternative increments of the amplitude of displacement or frequency,
permits successful determination of backbone curves of a complex shape. This alternating
method is presented in Appendix B and used here for computing the resonance curves. The
shortcoming in the latter method is the necessity for modification of the tangential matrix
during an iteration process.

Arc-length methods are intended to enable solution algorithms to pass limit points. For
these methods, various formulations of the constraint equation g(A, w*?) = 0 are possible.
The most popular methods keep a specific arc-length (s) constant, which is defined by
Euclidean norm of the general displacement and frequency. The simplest formulation can
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TaBLE 1

Frequency ratios of free vibration and the modal participation of a C-C beam at various
amplitudes. Case of three symmetric and three antisymmetric modes

Present Modal participation (%) Shi and Modal participation (%)
analysis p \ Mei [35] p A \
w(centre)/R  w*/w} a; as as w*jof a; as as
1-00003  1-02220 99-8598  0-124537 0-156724E — 01  1-0221 99-84 015 1-5E—-2
1-50004  1-04922 996889 0275959 0-351365E —01  1-0484 99-61 034 43E-2
2:00003 108578 99-4574  0-480423 0-621478E — 01  1-0854 99-59 033 79E -2
2:50002  1-13086 99-1723  0-731219 0-964637E — 01  1-1339 99-17 059 025
3-00001  1-18336 98-8415 1-02075  0-137769 1-1842 98:66 1117 016
3-50000  1-24224 98-4733  1-34102  0-185677 1-2439 98-12 1-5 0-30
4-00001  1-30652 98-:0761 168416  0-239731 1-3020 98-00 166 034
4-50002  1-37537 976579 2:04270  0-299409 1-3721 97-73 1-87 040
be written as
g(A, *?) = |4A|* + a(4 w*?)? = s* = constant, (28)

in which o is a scaling factor. The particular choice for the additional equation enjoys great
popularity in view of the wide range of applications. They are, however, not always
appropriate for all problems. The algorithms used for numerical results of this paper are
presented in Appendix B.

4. NUMERICAL RESULTS AND DISCUSSIONS

The non-linear free and forced vibration analysis is obtained by numerical solution of
equation (19). Various boundary conditions can be treated by a judicious choice of the
modal functions. For the cases studied, the chosen functions are given in Appendix A. As far
as the forcing is concerned, various types of excitation can be easily taken into account from
equation (18).

4.1. FREE VIBRATION

4.1.1. S-S beams

In the case of free vibration of simply supported beams, there is no interaction between
higher modes. This result is obtained by the algorithm presented here and also in previous
works using multimodal analysis [17, 18]. The same conclusion was also reached by Mei
et al. using a finite element time-modal formulation [35, 36]. Therefore, for a S-S beam,
single mode analysis will yield an accurate estimate of fundamental frequency and the
associated deformation shape.

4.1.2. C-C beams

For a clamped-clamped beam, there are interactions between various higher modes. In
order to appraise these interactions, the modal participation of each mode may be given by



TABLE 2

Frequency ratios of free vibration and modal participation of a C-C beam at various amplitudes with six symmetric modes and comparison with the
single mode analysis given by equation (21, F = 0)

4!

Present Modal participation (%) Single mode
analysis - A N analysis equation
w(centre)/R o*jof a, as as a, as apy (21, F =0)
1-00000 1-:02220 99-8545 0-124539 0-156749E — 01  0-363514E — 02 0-117244E — 02  0-464588E — 03 1:022231
1-50002 1-04922 99-6769 0-275996 0-351522E — 01  0-819018E — 02  0-264802E — 02  0-105081E — 02 1-049357
2-00002 1-08577 99-4360 0-480549 0:621992E — 01  0-145849E — 01  0-473135E — 02  0-188129E — 02 1-086196
2-50000 1-13084 99-1386 0-731523 0-965887E — 01  0-228311E — 01 0-743762E — 02  0-296475E — 02 1-131801
3-00002 1-18332 98-7926 102138 0-138029 0-329380E — 01  0-107838E — 01  0-431134E — 02 1185159
3-50001 1-24216 98-4061 134213 0-186149 0-449047E — 01  0-147859E — 01  0-593146E — 02 1245274
4-00001 1-:30639 97-9875 1-68594 0-240519 0-587214E — 01  0-194588E — 01  0-783559E — 02 1311218
4-50000 137515 97-5447 2-04540 0-300645 0-743632E — 01  0-248139E — 01  0-100333E — 01 1-382156
5-00002 1-44773 97-0850 2-41381 0-365982 0-917908E — 01  0-308588E — 01  0-125443E — 01 1-457359

TParticipation of mode i = IOOa,-/ > agl.
i=1
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TABLE 3

Bending moments and modal contributions at various amplitudes of free vibration of a C-C beam

Modal participation (%)*
A

r

N

w(centre)/R M*(0) M*(1/2) a,v? av’ asv’ auv: asv? ague

1-0001 28-501 —17-036 98-963 066708 020733 0-89408E — 01 0-46269E — 01  0-26718E — 01
1-5000 43-346 —25-387 9771 14621 0-45983 0-19922 0-10335 0-59764E — 01
2-0000 58-:892 —33:552 96-053 2-5085 0-80175 0-34959 0-18196 0-10543
2-:5000 75-337 —41-483 94-046 3-7500 1-2227 0-53742 0-28090 0-16317
3-0000 92-863 —49-147 91771 51272 1-7110 075923 0-39883 0-23235
3-5000 111-62 —56'520 89-306 6-5821 2:2543 10112 0-53424 031229
4-0000 13174 —63-593 86-719 80631 2-8405 1-2895 0-68564 0-40230
4-5000 15332 —70-362 84-072 9-5265 3-4577 1-:5903 0-85146 0-50166
5-0000 176:44 —176-840 81-416 10939 4-0955 1-9100 1-0303 0-60971
5-5000 201-17 —83-037 78-790 12-275 47440 2-2450 1-2206 072574
6-0000 22753 —88:974 76-225 13-518 5-3947 2-5921 14210 0-84911
7-0000 28526 —100-15 71-359 15692 66756 3-3106 1-8471 1-1154
8-0000 349-62 —110-55 66916 17444 7-8936 40439 2-2985 1-4036
9-0000 42047 —120-34 62921 18:807 9-0213 4-7750 2:7665 1-7094

10-000 497-55 —129-63 59-361 19-834 10-044 5-4900 3-2431 2-0283

n
TParticipation of the ith beam function to the curvature = 100aivi2/ > lag|v?.
i=1

SINVHE 40 dSNOdSHY DINVNAQ YVANIT-NON
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TaBLE 4

Bending moments of free vibration of a C-C beam at various amplitudes with various modal

analyses
M*(0)
r Al
w(centre)/R 1-D 2-D 3-D 4-D 5-D 6-D
1-0004 28218 28-408 28-457 28483 28496 28-504
1-5003 42-376 43-010 43-199 43-286 43-331 43-357
2:0004 56605 58083 58514 58737 58:829 58891
2:5001 70-904 73-730 74-594 75-018 75214 75-337
3-0003 85315 90-079 91-547 92-291 92:646 92:862
3-5003 99-826 107-18 109-50 110-68 111-26 111-63
4-0002 11445 125-07 128-52 130-31 13120 13174
4-5001 129-18 143-79 148-65 151-26 152-53 153-33
5:0003 144-05 163-34 169-96 173-57 175-34 176-45
5-5001 159-01 183-67 19241 19725 199-65 201-17
6:0000 174-08 20478 21599 222-38 225-52 227-53
6-:5003 189-27 22662 240-71 248-89 25295 255-58
7-0003 204-54 249-12 266-47 27676 28193 28528
7-5003 219-89 272-22 29325 30601 31241 316:62
8-0000 235-32 295-86 32099 336:56 344-42 349-62
8-5003 250-83 320-01 349-63 368:36 37791 384:26
9-:0000 266-38 344-55 379-10 401-39 412-82 420-47
9-5003 282-01 369-50 409-30 435-56 449-07 458-27
10-000 297-66 394-73 440-24 470-83 48667 497-55
TABLE 5

Frequency ratios of free vibration of a C-C beam with various modal analyses

/oy,
8 A A
w(centre)/R 1-D 2-D 3-D 4-D 5-D 6-D
1-0000 1-:0222308 1-:0222 1-:0222 1-:0222 1-:0222 1-0222
1-5000 1-0493572 1-0493 1-0492 1-:0492 1-0492 1-:0492
2:0000 10861967 1-0860 1-0858 1-0858 1-0858 1-0858
2:50000 1-1318012 1-1313 1-1309 1-1309 1-1308 1-1308
3-0000 1-1851592 1-1842 1-1834 1-1834 1-1833 1-1833
3-5000 1-2452746 1-2438 1-2422 1-2423 1-2421 1-2422
4-0000 1-3112182 1-:3090 1-:3065 1-3065 1-3064 1-:3064
4-5000 1-3821561 1-3791 1-:3754 1-:3754 1-3751 1-3752
5-0000 1-4573591 1-4534 1-4481 1-4481 1-4477 1-4477
5-50000 1-5362010 1-5313 1-5240 1-5240 1-5234 1-5235
the following formulation, proposed by Mei et al. [35, 36]:
participation of mode i = 100q; / Y lal. (29)
i=1

This participation of each linear function to the first non-linear mode has been numerically
computed and discussed for various cases. Results presented in Table 1 were obtained for
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Figure 1. Linear and non-linear free vibration mode shapes of a fully clamped beam at amplitudes
Wipax/R = 2-5 and W,,,./R = 5.
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Figure 2. Non-linear free vibration bending moments of a fully clamped beam at amplitudes W,,../R = 1,
2 and 5.



TABLE 6

Frequency ratios of free vibration and modal participation of a clamped-simply supported beam at various amplitudes with six

symmetric—antisymmetric modes

Modal participation (%)
A

r

N

w(centre)/R o*/wf a, a, as a as ag

0-20000009 1-0020005 99-980065 0-15659098E — 01 0-29540117E — 02 0-86099379E — 03  0-32041186E — 03  0-14026947E — 03
0-40000008 1-:0079712 99:920567 0-62359038E — 01 0-11791534E — 01 0-34405702E — 02  0-12811647E — 02 0-56108295E — 03
0-60000001 1-0178227 99-822406 0-13928189 0-26439774E — 01 0-77285770E — 02  0-28808099E — 02  0-12624503E — 02
0-80000001 1-0314123 99-687041 0-24510999 0-46779827E — 01 0-13708292E — 01  0-51169309E — 02  0-22443700E — 02
1-0000025 1-0485538 99-516409 0-37809095 0-72650404E — 01 0-21356797E — 01  0-79861737E — 02 0-35068184E — 02
1-5000019 1-1054561 98:951675 0-81483595 0-16012771 0-47574786E — 01  0-17897759E — 01  0-78890931E — 02
2:0000047 1-1793264 98-225099 1-:3689008 0-27690899 0-83432634E — 01  0-31640582E — 01 0-14017824E — 01
2:5000027 1-2664137 97-382939 1:9996251 0-41830956 0-12816745 0-49079812E — 01  0-21878620E — 01
3-0000037 1-3635342 96-467971 2:6702803 0-57936731 0-18089441 0-70042332E — 01 0-31445107E — 01
3-5000039 1-4682112 95-515981 3-3511763 075520463 024064510 0-94317072E — 01  0-42675783E — 01
4-0000029 1-5786134 94-554767 4-0203797 094127884 0-30640363 0-12165791 0-55512529E — 01
4-5000026 1-6934189 93:604691 4-6629770 1-1335270 0-37713718 0-15178760 0-69880019E — 01
5-0000016 1-8116775 92:679911 52697421 1-3284349 045182275 0-18440293 0-85686027E — 01

TNote: See footnote to Table 2.
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TaABLE 7

Frequency vibration frequencies and axial force ratios for a clamped-simply supported beam at
various amplitudes

Present analysis Sarma et al. [24]  Lewandowski [19]  Qaisi
r Al r N r A Al [15]
w(centre)/R w/or, NL?/EI w/og, NL?*/EI w/wp NL?/EI w/og

0-20000009 1-0020005 0-11027037  1-0026 0-1103 1-0020 0-1103 —
0-40000008 10079712 0-44080026 10106 0-4407 1-0300 0-4408 —
0-60000001 1-0178227 099076169  1-0237 0-9902 10178 0-9908 —
0-80000001 1-0314123 1-7588248 1-0416 1-7569 1-0314 17588 —
1-0000025 1-0485538 2-7432395 1-0641 27387 1-0486 27433 1-0841
1-5000019 1-1054561 6-1362812 1-1378 6-1167 1-1054 6-1365 1-1775
2-0000047 11793264  10-829791 12319 107771 1-1793  10-8303 1-2920
2-:5000027 12664137  16-785058 1-3408  16:6787 12664  16-7863 1-4193
3-0000037 13635342 23969218 1-4605  23-7907 1-3635 239716 1-5534
3-:5000039 1-4682112  32-358081 1-5880  32-0941 1-4682  32-3620 1-6900
4-0000029 1-5786134  41-936638 1-7212  41-5779 1-5786  41-9428 1-8263
4-5000026 1-6934189  52:697774 1-8587  52:2454 1-6934  52:7063 1-9605
5-:0000016 1-8116775 64640254 19997 640989 1-8116  64-6515 2:0911

TABLE 8

Bending moments and modal contributions at various amplitudes of free vibration of a C-S
beam

Modal participation (%)’
A

r A
w(centre)/R M*(0) M*(1/2) avi a3 asv; auv: asvl agve

1-0000 21794 —12-478 97-845 12047 048296 0-24278 013854 0-86214E — 01
1-5000 33:500 —18710 95386  2-5453 1-0436  0-53022 0-30438 0-19015
2-:0000 46:101 —24930 92311 41689 17595  0-90655 0-52462 0-32940
2-:5000 59784 —31-128 88864 59131 25809 13522 079017 049921
3-0000 74680 —37-294 85255 76474 34619  1-8484 1:0921 069487
3-:5000 90-872 —43-421 81:641  9:2822 43644  2:3782 1-4223 091207
40000 10840  —49-501 78128 10-765 52586  2:9272 1-7736  1-1469
45000 12727  —55-533 74785 12:073 6-1231 34838  2:1396  1-3960
50000 14749  —61-521 71-646 13-201 69434  4-0384  2-5151 16563
5:5000  169-01 —67469 68726 14-160 77103 4-5836  2:8954  1-9250
6-:0000 19179  —73-387 66:028 14-962 84192 51138  3:2767  2:1998
6-:5000 21580  —79-284 63:545 15:627 9-0685 56247  3-6557 24786
7-0000 24096  —85172 61266 16173 9-:6587 61133 40296  2:7592
7-5000 26721  —91-:062 59178 16:616 10192 6:5776 43961  3-0400
8:0000 29449  —96:964 57265 16973 10-672 70166 47534 3:3195
85000 32272 —102-89 55513 17258 11-103 74298 51000  3-5962
9-0000 351-84 —108-85 53908 17483 11-488 7-8174 54350  3-8691
9:5000 38179 —114-84 524437 17-658 11-831 81799 57575 41372
10-000 412449 —120-88  51-:087 17791 12:137 85181 6:0671 43996

TNote: See footnote to Table 3.
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TABLE 9

Frequency ratios of free vibration of a C-S beam with various modal analyses

w/op
r A Al
w(centre)/R 1-D 2-D 3-D 4-D 5-D 6-D

1-0001 1-0489 1-0485 10486 1-0486 1-0486 1-0485
1-5000 1-1069 1-1054 1-1055 1-1055 1-1055 1-1054
2-0000 1-1835 11792 11795 11795 1-1794 1-1793
2-5000 1-2751 1-2662 1-2669 1-2668 1-2665 1-2664
3-0000 1-3789 1-3631 13644 1-3643 1-3637 1-3635
3-5000 1-4923 1-4677 1-4697 1-4695 1-4685 1-4682
4-0000 16132 1-5781 1-5810 1-5806 1-5790 1-5786
4-5000 1-7401 1-6930 1-6970 1-6964 1-6940 1-6934
5-0000 1-8718 1-8115 1-8168 1-8159 1-8126 1-8117
5-5000 2-0074 1-9329 1-9397 1-9385 1-9340 1-9327
6-0000 2-1460 2:0567 2-0652 2-0636 2-0577 2-0560
6-5000 2-2872 2:1825 2:1930 2-1909 2-1834 2-1812
7-0000 2:4305 2:3101 2:3227 2:3201 2-3107 2-3079
7-5000 2:5756 2:4392 2:4541 2:4511 2-4395 2:4361
8-0000 2-7221 2:5696 2:5871 2-5835 2-5696 2-5654
8-:5000 2-8698 2:7012 2:7213 2:7173 2-7008 2:6957
9-0000 3-0186 2-8338 2-8568 2-8522 2-8330 2-8269
9-5000 3-1684 2:9673 2:9934 2-9883 2-9660 2-9590
10-000 3-3189 3-1016 3-1309 31253 3-0999 3-0917

a C-C beam using the first six linear beam functions (three symmetric and three
antisymmetric). These results are in good agreement with Shi and Mei’s results. As may be
expected, due to the symmetry of the first non-linear mode, it was found that the
contributions of the antisymmetric beam functions are very small, compared with those of
the symmetric functions which confirm results obtained previously [17, 18, 24]. Therefore,
only the contributions of the symmetric beam functions have been given in Table 1. In
Table 2, results obtained using six symmetric beam functions are presented, the
contributions of each function and the corresponding non-linear frequency are given and
compared with the single mode prediction. The contributions of higher modes appear to be
relatively small. However, their effects on the curvatures, and hence on the non-linear
bending moment estimates may not be negligible, since they intervene via their second
derivatives, which involve multiplication by v7, the v;’s being the beam parameters given in
Appendix A. In order to examine the effect, another formula was used to estimate the
percentage of participation of a given beam function, to the curvature, as follows:

n

participation of the ith beam function to the curvature = 100a;v? / Y la;|v?.  (30)

i=1

Percentages of the participation to the curvature of the first non-linear mode obtained using
the new formula are summarized in Table 3. It can be seen that while the percentage of
participation of the first beam function to the first non-linear mode given in Table 2 remains
predominant and greater than 97-08% for values of the dimensionless amplitude w/R up to
5, its percentage of participation to the curvature is only 81-41% for w(centre)/R = 5 and
decreases to about 60% for w/R = 10, which correspond to w(centre)/h = 2-887. This
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Bending moments of free vibration of a C-S beam at various amplitudes with various modal analyses

M*(0) and M*(1/2)

N

w(centre)/R 2-D 3-D 4-D 5-D 6-D

1-0001 21-573 —12:529 21-693 —12:468 21748 —12455 21776 —12:474 21-794 —12:478
1-:5000 32:757 —18:876 33157 —18:675 33342 —18:630 33438 —18:694 33-500 —18710
2-0000 44-353 —25311 45287 —24-847 45723 —24-740 45951 —24-891 46:101 —24-930
2-5000 56-406 —31-841 58193 —30-963 59-045 —30:757 59-489 —31-050 59-784 —31-128
3-0000 68922 —38469 71936 —37-005 73-398 —36:653 74-166 —37-159 74-680 —37-294
3-5000 81-879 —45191 86-527 —42:957 88-830 —42-402 90-047 —43-204 90-872 —43-421
4-0000 92-230 —51-995 10194 —48-801 105-35 —47-985 107-16 —49-176 108-40 —49-501
4-5000 108-92 —58:870 118-14 —54-531 122-93 —53-383 125-50 —55:069 12727 —55-533
5-0000 12291 —65-808 13506 —60-138 141-54 —58-588 145-03 —60-883 147-49 —61-521
5-5000 13714 —72:795 152-64 —65622 161-11 —63-596 16573 —66:620 169-01 — 67469
6-0000 151-56 —79-825 170-80 —70-985 181-59 —68-406 187-53 —72:285 19179 —73-387
6-5000 166-14 —86-887 189-47 —76:232 202-90 —73-026 210-36 —77-888 215-80 —79-284
7-0000 180-83 —93974 20859 —81-371 224-98 —77-463 234-18 —83:437 24096 —85172
7-5000 195:62 —101-08 228-10 —86:412 24774 —81-729 258-89 —88:942 267-21 —91-062
8-0000 210-49 —108-20 24792 —91-363 271-11 —85-833 284:43 —94-413 294-49 —96:964
8-:5000 225-40 —11533 268-03 —96-235 295-03 —89:794 31074 —99-862 32272 —102-89
9-0000 240-35 —122:47 28835 —101-04 31943 —93-624 33773 —105-30 351-84 —108-85
9-5000 25532 —129-62 308-87 —105-78 34425 —97-336 365-34 —110-72 38179 —114-84

10-0000 270-31 —13677 329-53 —110-47 369-44 —100-94 393-51 —116:15 412-49 —120-88

SINVHE 40 dSNOdSHY DINVNAQ YVANIT-NON
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Figure 3. Linear and non-linear free vibration mode shapes of a clamped-simply supported beam at various

amplitudes. L, linear mode; 1, 2, 3, 4, non-linear mode shapes at amplitudes w(centre)/R =3, 5, 7 and 10
respectively.
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Figure 4. Non-linear free bending moments associated with the first non-linear mode shape of
a clamped-simply supported beam at various amplitudes: 1, w(centre)/R =1; 2, w(centre)/R =3; 3,
w(centre)/R = 5; 4, w(centre)/R = 7; 5, w(centre)/R = 10.

shows that the influence of higher modes increases with the amplitude of vibration and that
the consideration of the percentage of participation to the non-linear mode (i.e., equation
(29)) may lead to inaccurate conclusions. Considering now the bending moment at the
clamps, it appears from Table 4, in which results obtained using various approximations are
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Figure 5. Linear and non-linear free vibration second mode shapes of a clamped-simply supported beam at
various amplitudes. L, linear second mode; 1, 2, 3 and 4, non-linear second mode shapes at amplitudes
w(1/4)/R =3, 5, 7 and 10 respectively.
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Figure 6. Non-linear free second bending moments associated with the second mode shape of a clamped-simply
supported beam at various amplitudes 1, w(1/4)/R = 1; 2, w(1/4)/R = 3; 3, w(1/4)/R = 5; 4, w(1/4)/R =T, 5,
w(1/4)/R = 10.

listed, that the estimate of the non-dimensional bending moment at the clamps varies from
a value of 297-66 using the single mode approach, to 497-54 obtained using six symmetric
beam functions, which corresponds to a difference of about 40%. Also, the influence of the
number of beam functions used in the non-linear frequency estimates has been considered.
As may be seen from the numerical values listed in Table 5, it appears that, for a given
amplitude of vibration, the non-linear frequency estimate decreases when the number of



Frequency ratios of non-linear forced vibrations of a C-C beam under a harmonic concentrated force at the centre of the beam (For® = 200). Modal
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participation with six symmetric modes and comparison with the single mode analysis

(For®=200.D0).

Modal participation (%)*

r

N

Single mode analysis (21)

w(centre)/R o*/w}f a, as as a5 ay agy w(centre)/R w*/of
1-005353 0-1000000 96-39219 —2:874071 0-5100822 —0-1407441 0-5698181E — 01  —0-2593153E — 01 1-0 0-1928962
1-500927 0-6450033 97-75072 —1-740592 0-3633680 —0-8877219E — 01 0-3985901E — 01 —0-1668785E — 01 1-5 0:6552246
2-:000284 0-8177417 98:57255 —1-020286 0-3050060 —0-5823117E — 01 0-3245784E — 01  —0-1146226E — 01 2:0 0-8221617
2-:500852 0-9343069 99:19306 —0-4468246 0-2876531 —0-3529215E — 01 0-2944710E — 01  —0-7718413E — 02 2:5 09369499
3-000302 1-031101 99-58905 0-678134E — 01 0-2944021 —0-1518428E — 01 0-2897176E — 01  —0-4573171E — 02 3-0 1-033773
3-500347 1-120242 99-09354 0-5550099 0-3156096 0-4179276E — 02 0-3003896E — 01  —0-1619004E — 02 35 1-123735
4-000838 1-206412 98:56756 1-025542 0-3495403 0-2357336E — 01 0-3249186E — 01 0-1287302E — 02 4-0 1-211345
4-500776 1291557 98:03852 1-483981 03935817 0-4354710E — 01 0-3610522E — 01 0-4260943E — 02 4-5 1-298619
5-000225 1:376679 97-51002 1931526 0-4459033 0-6442957E — 01 0-4074151E — 01 0-7377538E — 02 50 1:386487
—5-000281 1514947 —9666279 —2-891753 —0-2879580 —0-1186933 —02120875E — 01 —0-1759812E — 01 —50 1-524941
—4-500031 1-453275 —97-05431 —2-:601457 —0-2101410 —0-1045837 —0-1381919E — 01 —0-1568881E — 01 —45 1-460924
—4-000338 1-398263 —97-41199 —2:339205 —0-1347016 —09306238E — 01—0-6814156E — 02  —0-1422664E — 01 —40 1-404005
—3-500208 1-351558 —97-72275 —2-118571 —0-608941E—01 —0-8447389E — 01—0-4549625E — 04 —0-1326006E — 01 —-35 1:355963
—3-000673 1-315708 —97-92974 —1-958816 0-125113E—01 —0-7936939E — 01 0-6690977E — 02  —0-1287480E — 01 —30 1-319287
—2:500924 1294311 —9791839 —1-887597 0-883801E—01 —0-7863952E — 01 0-1377245E — 01  —0-1322210E — 01 —2:5 1:297718
—2:000244 1-293513 —97-74815 —1-958049 0-1729352 —0-8425936E — 01 0-2195301E — 01  —0-1464926E — 01 —20 1-297573
—1-499999 1:325402 —97-29274 —2:275527 0-2805047 —0-1004443 0-3287201E — 01  —0-1791381E — 01 —1-50 1-331533
—1-000629 1-420321 —96-20075 —3-130726 04529746 —0-1391726 0-5119060E — 01  —0-2518677E — 01 —10 1-432725
—0-8007563 1-494452 —95-35081 —3-817971 0-5680137 —0-1688901 0-6365799E — 01  —0-3065426E — 01 —0-80 1:512764
—0-6005462 1:612104 —93-94598 —4-968149 0-7461758 —02171378 0-8308178E — 01  —0-3946856E — 01 —0-60 1:641878
—0-4007967 1-819032 —91-26941 —7-185005 1-066063 —0-3059553 0-1179550 —0-5561330E — 01 —0-40 1-877914
—0-3009815 1-994473 —88-78509 —9-264190 1-347756 —0-3846030 0-1485001 —0-6986182E — 01 —0-30 2-:088828
—0-2503182 2:119254 —86-89849 —10-85583 1-553040 —0-4418040 0-1706226 —0-8020222E — 01 —0-250 2:243612

TNote: See footnote to Table 2.
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Figure 7. Resonance curves for forced vibrations of a C-C beam under a harmonic concentrated force at the
centre of the beam (For® = 200). Comparison with linear solution and non-linear solutions obtained by the single
mode and the multimode approach.
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Figure 8. Linear and non-linear forced vibration mode shapes of a fully clamped beam under a harmonic
concentrated force at the centre (For® = 200) at various amplitudes. L, linear mode; a, b, c, d, e, non-linear mode
corresponding to decreasing frequency from: a, (w/wp =05, w(centre)/R = 1-2584); b, (w/wy = 1-2845,
w(centre)/ R = 4-4594); c, (w/w;, = 1-2884, w(centre)/R = — 2-2807); d, (w/w;, = 1-7, w(centre)/R = — 0-5); and e,
(w/wy, = 2, w(centre)/R = — 0-2984).



24 L. AZRAR ET AL.

12
11
10
9
8
£ 7
g
s 6
g
25
4
3
2
1
0 1 1 1 T
0 0.5 1-0 1-5 2:0 2-5 30
wlw,

Figure 9. Linear and non-linear solutions of a C-C beam under a harmonic concentrated forces at the centre
with the amplitudes For¢ = 200 and 500.
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Figure 10. The first, second and third resonance curves of a C-C beam under a concentrated harmonic force at
the centre (For® = 200).

functions increases, which agrees well with the result usually expected in the Rayleigh-Ritz
method, extended here to the non-linear case by use of Hamilton’s principle. Also, the error
introduced by the use of one beam function does not exceed 0-:8% for w/R = 5-5, which
leads to the conclusion that a simple formula based on the single mode approach may be
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Figure 11. Contribution of a; on the first, second and third resonance curves of a C-C beam under
a concentrated harmonic force at the centre (For® = 200).

— 5 1 Il 1 Il 1 Il 1 1 Il Il 1

0 50 100 150 200 250 300 350 400 450 500 550 600
)

Figure 12. Contribution of a, on the first, second and third resonance curves of a C-C beam under
a concentrated harmonic force at the centre (For® = 200).
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Figure 13. Contribution of a; on the first, second and third resonance curves of a C-C beam under
a concentrated harmonic force at the centre (For® = 200).
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Figure 14. Contribution of a4, as, ae on the first, second and third resonance curves of a C-C beam under
a concentrated harmonic force at the centre (For® = 200).

used for engineering purposes to estimate the non-linear frequency, while it may lead to
inaccurate results when used to estimate the non-linear curvatures or bending moments,
as explained above. The linear and the non-linear mode shapes at large amplitudes
are presented in Figure 1. The bending moments associated with the free vibration of a C-C
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participation with six symmetric modes and comparison with the single mode analysis

(For' = 1000.D0).

Modal participation (%)*

Single mode

1000.D0). p N analysis (21)
w(centre)/R o*/of a, as as a; ay ap, o*/of
2.2500981 0-26900446 97-508930 2:1585640 0-25169864 0-56097928E — 01  0-17690445E — 01 0-70186805E — 02  0-23663252
2:5000771 048927845 97-548453 2:1173660 025221026 0-56795480E — 01  0-18014832E — 01 0-71601627E — 02 0-47596153
3-0000008 0-73013345 97-504019 2:1402793 0-26680240 0:61356267E — 01  0-19688234E — 01 0-78551597E — 02 0-72519444
3-5000948 0-89416403 97-340662 2:2631985 029533098 0-69312347E — 01  0-22487656E — 01 0-90084398E — 02  0-89305168
4-0000531 1-0277860 97-093824 2:4545770 0-33470422 0-80081683E — 01  0-26251769E — 01 0-10561071E — 01  1-0296949
4-5000782 1-1460710 96-786903 2:6934397 0-38295271 0-93324841E — 01  0-30895386E — 01 0-12484629E — 01  1-1508946
5-0000837 1-2556773 96-436886 2:9645567 0-43862045 0-10880702 0-36365833E — 01 0-14763821E — 01  1-2635974
—5-0000775 1-6189098 —97-764720 —1-8341847 —0-29127315 —0-74352563E — 01 —0-25220114E — 01 —0-10249358E — 01  1-:6282238
—4-5000209 1-5735260 —98-345975 —1-3575139 —0-21558926 —0-54847656E — 01 —0-18560895E — 01 —0-75134217E — 02  1-5799216
—4-0000052 1-5383697 —98-942006 —0-86130116  —0-14261571 —036619718E — 01 —0-12437646E — 01 —0-50193448E — 02  1-5421786
—3-5000734 1-5163703 —99-558694 —0-34049695 —0-71820104E — 01 —0-19483399E — 01 —0-67742220E — 02 —0-27317532E — 02 1-5178525
—3-0000722 1-5117824 —99-776474 021660491  —0-18338702E — 02 —0-30615978E — 02 —0-14341186E — 02 —0-59178391E — 03  1-5110585
—2:5000607 1-5313089 —99-086509 0-82629658 0-68959129E — 01  0-13052094E — 01  0-37230449E — 02 0-14600117E — 02 1-5282043
—2:0000494 1-5867435 —98-266336 15452999 0-14575199 0-29989639E — 01  0-90546503E — 02 0-35679241E — 02 1-5804640
—1-5000593 1-7025648 —97-157226 2:5281512 0-24236504 0-50690737E — 01  0-15472900E — 01 0-60938164E — 02 1:6907222
—1-0000660 1-9442886 —95-195418 42846439 0-40047946 0-83772521E — 01  0-25611991E — 01 0-10074009E — 01  1-9186042
—0-80008291 2:1181989 — 93740751 55973602 0-51018036 0-10641367 0-32514160E — 01 0-12781103E — 01  2:0793940
—0-60008838 2:3924208 —91-202794 79053768 0-68834793 014279603 0-43570699E — 01 0-17114852E — 01  2-3258678
—0-40001078 2:9070751 —85-326414 13:329141 1-0407356 0-21334160 0-64902841E — 01 0-25464804E — 01  2:7563397
—0-30005862 3-4306551 —77-364293 20-841335 1-3938865 028163908 0-85385011E — 01 0-33461154E — 01  3-1290574
—0-25000802 3:9904127 —65:667535 32:175638 1:6827560 0-33384200 0-10078735 0-39442435E — 01 3-3981105

TNote: See footnote to Table 2.
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Figure 15. Linear and non-linear forced vibration deflection shapes of a fully clamped beam under a harmonic
distributed force (For! = 1000) at various amplitudes: L, Linear mode; 1, 2, 3, 4, 5, non-linear deflection
corresponding to decreasing frequency from w/w;, = 2 to 11, (w/w;, = 2, w(centre)/R = — 0:92696); 2, (w/w;, = 17,
w(centre)/R = — 1-:50806); 3, (w/w; = 1:50996, w(centre)/R = — 3-17709); 4, (w/w; = 1-:50665, w(centre)/R =
6-22885) and 5, (w/wy, = 1, w(centre)/R = 3-88990).

beam at various amplitudes are presented in Figure 2. This figure clearly shows
the influence of the non-linear effect especially at the centre and in the regions of the
clamps.

4.1.3. C-S beams

For the analysis of a clamped-simply supported beam, the modal functions are given in
Appendix A.3. The non-linear frequencies and the modal participations for various
amplitudes using three symmetric and three antisymmetric modes are given in Table 6. In
this case, due to the non-symmetry of the present problem, all symmetric and antisymmetric
modes contribute to the solution. Comparison with published results of the non-linear
frequencies and the axial forces for various amplitudes at the centre of the beam are
presented in Table 7. These results show good agreement with those from previous works.
In Table 8, the percentages of participation to the curvature of the first non-linear mode at
the clamped end and at the centre of the beam are presented. This table clearly shows that
the contributions of higher modes to the curvatures may be about 50% for a dimensionless
amplitude at the centre of 10 and about 30% for a dimensionless amplitude of
5 (corresponding to w(centre)/h = 1-443), which is very significant and cannot be neglected.
The influence of the number of beam functions on the non-linear frequency estimates is
presented in Table 9. It appears that for a C-S beam, the simple formula based on the single
mode approach gives a good approximation of the non-linear frequency. The bending
moments at the clamped end and at the centre of the beam obtained with various
multi-dimensional models are presented in Table 10. As the difference between the results
predicted by the various models is relatively higher, the multimodel analysis is necessary.
The linear and non-linear mode shapes at various amplitudes, normalized by the
displacement at the centre of the beam, are presented in Figure 3. The bending moments for



Frequency ratios of non-linear forced vibrations of a C-C beam under a harmonic concentrated force at a quarter span of the beam using three

TaBLE 13

symmetric and three antisymmetric modes and For® = 200. Modal participation and axial forces

(For® = 200.DO0).

Modal participation (%)’
A

r

N

w(centre)/R o*/wf a, a, as ay as ag NL?/EI
1-0003 0-71789 86-103 10-557 2:6151 0-38717 —0-14099 —0-19618 2:6303
1-5002 0-86345 90-067 7-4445 2-:0005 0-27741 —0-74802E — 01 —0-13576 56937
2:0001 0-95491 92-243 5-6394 1-7745 0-21852 —0-22341E — 01 —0-10231 99676
2:5004 1-0321 93-520 4-4445 1-7451 0-18162 0-28158E — 01 —0-80751E — 01 15-460
3-0000 1-1056 94-270 3-5915 1-8361 0-15615 0-80632E — 01 —0-65610E — 01  22-158
3-:5000 1-1793 94-712 29513 2:0084 0-13726 0-13681 —0-54353E — 01  30-076
4-0001 1-2546 94-943 2:4548 2:2373 0-12245 0-19728 —045660E — 01  39-211
4-5001 1-3319 95-022 2:0609 2:5055 0-11033 0-26209 —0-38764E — 01  49-565
5-0004 1-4112 94-992 1-7430 2:8002 0-10005 0-33109 —0-33180E — 01  61-147
—5-0000 1-4855 —95-738 1-8180 —1:9223 0-10267 —0-38480 —0-33664E — 01  60-723
—4-5000 1-4193 —95-879 2:1634 —1-4800 0-11356 —0-32502 —0-39428E — 01  49-205
—4-0001 1-3586 —95928 2:5978 —1-0292 0-12652 —0-27152 —0-46591E — 01 38910
—3-5001 1-3048 —95-851 3-1555 —0-56970 0-14246 —0-22527 —0-55687E — 01  29-829
—3-0001 1-2597 —95-592 3-8919 —0-097859 0-16296 —0-18748 —0-67573E — 01 21962
—2-5000 1-2260 —94-306 4-8676 0-39543 0-18942 —0-15853 —0-83104E — 01  15-306
—2-0001 1-2082 —92-318 62745 093250 0-22773 —0-14224 —0-10518 9-8654
—1-5000 1-2152 —89-308 85318 1-5864 0-28977 —0-14374 —0-13982 56363
—1-0000 1-2701 —83-824 12-826 2:5661 0-40648 —0-17554 —0-20262 2:6278
—0-80003 1-3205 —79:974 15911 31793 0-48703 —0-20420 —0-24494 17696
—0-60007 1-4076 —73-906 20-859 4-0701 0-60769 —0-25019 —0-30731 1-1150
—0-40004 1-5795 —62-768 30218 5-4844 0-79969 —0-32540 —0-40432 0-68601
—0-20004 2:0698 —34-662 56275 71678 1-0031 —0-39844 —0-49365 0-78690

fNote: See footnote to Table 2.
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Bending moments and modal contributions at various amplitudes of forced vibration of a C-C beam under concentrated harmonic force at a quarter

span (For® = 200)

Modal participation (%)
A

r

N

w(centre)/R w/wL M*(0) M*(1/2) avs a,v3 asvs auvs asv’ asve
0-70035 0-52251 33-989 —87148 54-288 25372 12218 3-0497 —1-7949 —3-2767
0-80014 0-60862 36-959 —10-407 57-282 23772 11-436 2-8389 —1-6365 —3:0349
1-0002 071782 42-866 —13-794 62-240 21-039 10217 2-:5004 —1-3603 —2:6435
1-5000 0-86339 57-650 —22-202 70-690 16:109 84858 19452 —0-78375 —1-9862
2-:0006 095500 72-826 —30-492 75903 12:788 7-8898 1-6059 —0-24469 —1-5686
2-5004 1:0321 88-595 —38:596 78-784 10321 7-9445 13667 031663 —1-2678
3-0000 1-1056 105-15 —46-497 80-035 8-4052 84238 11843 0-91348 —1-0382
3-5004 1-1794 122:67 —54-201 80-424 6-9068 9-2168 1:0411 1-:5509 —0-86007
4-0002 1-2546 141-19 —61-680 80-203 57159 10214 092403 2-2241 —0-71886
4-5002 13319 160-82 —68-960 79-551 47557 11-335 0-82505 2:9282 —0-60481
5-0001 14111 181-58 —76-050 78-:598 39759 12:520 0-73955 3-6551 —0-51173
5-4999 14923 20349 —82-978 77-444 3-3390 13720 0-66458 43973 —0-43510
—5-5000 1:5562 —181-18 87-948 —79-692 3-5396 —10-614 0-69500 —5-0088 —0-45012
—5-0000 14855 —15817 81-252 —81-260 4-2535 —88174 0-77842 —4-3584 —0-53252
—4-5000 14193 —136:30 74:390 —82-706 5-1442 —6-8992 0-87509 —37414 —0:63389
—4-0000 1-3586 —115-58 67-335 —83947 62667 —4-8669 0-98903 —3-1706 —0-75992
—3-5000 13048 —95987 60-064 —84-866 77016 —2-7254 1-1267 —2:6614 —0-91897
—3-0000 1:2596 —177-481 52-565 —85:300 9-5735 —0-47153 1-2990 —2-2323 —1-1239
—2-5000 1:2260 —59-981 44-832 —81-851 11-645 1-8545 1-4686 —1-8361 —1-3443
—2-0000 1-2082 —43-384 36-878 —76:583 14-348 4-1805 1-6876 —1-5746 —1:6263
—1-5000 12152 —27-522 28-723 —69-495 18:300 6:6706 2:0142 —1-4925 —2:0277
—1-0001 1-2701 —12-118 20-407 — 58704 24-758 9-7106 2:5428 —1:6404 —2:6446
—0-80002 13205 —59423 17-049 —52-389 28731 11-255 2-8500 —1-7850 —2:9905
—0-60007 1-4076 042428 13-686 —44-019 34-247 13-100 3-2333 —1-9885 —34115
—0-40004 1-5795 7-5403 10-339 —32:234 42777 15220 3-6686 —2-2299 —3-8700
—0-30000 1-7458 12:182 8:6964 —24-225 49-564 16085 3-8166 —2-3042 —4-0046

TNote: See footnote to Table 3.
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Figure 16. Linear and non-linear forced vibration deflection shapes of a fully clamped beam under a harmonic
concentrated force at L/4 at positive amplitudes. (For® = 200: L, linear mode; 1,2,3,4,5, correspond to the
numerical results given in Table 13 for w(centre)/R = 1,2,3,4 and 5 respectively.
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Figure 17. Linear and non-linear forced vibration deflection shapes of a fully clamped beam under a harmonic

concentrated force at L/4 at negative amplitudes. (For® = 200: L, linear mode, the other curves correspond to the
numerical results given in Table 13 for w(centre)/R variant from —5 to —0-2.

values of w(centre)/R of 1, 3, 5, 7 and 10 are given in Figure 4. For the second non-linear
mode, the linear and non-linear mode shapes and the bending moments at various
amplitudes at a quarter of the beam are presented in Figures 5 and 6. These figures
clearly show the influence of the non-linearity on the displacements and the bending
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Frequency ratios of non-linear forced vibrations of a C-S beam under a harmonic concentrated force at a quarter span of the beam using three
symmetric and three antisymmetric modes and For® = 200. Modal participation and axial forces

Modal participation (%)
A

r Al

w(centre)/R o*/wf a, a, as as as as NL?/EI
0-80005 0-19540 79-172 15762 39708 0-77078 —096319E — 01 —0-22744 1-:6201
1-0004 0-52536 82421 13-:346 3-3222 0-64843 —0-75528E — 01 —0-18639 2:5091
2.0001 097679 89-547 79770 19636 0-41548 —0-10699E — 01 —0-85862E — 01 10-183
3-0000 1-2426 91254 6:6199 1-6490 039946 0-44132E — 01 —0-33729E — 01 23-106
3-5000 1-3695 91-360 64936 1-6364 0-42480 0-73535E — 01 —0-11909E — 01 31457
4-0001 1-4964 91-191 6-5538 1-6776 0-46404 0-10487 091129E — 02 41-035
4-5000 1-:6239 90-835 67274 1-7554 0-51364 0-13815 0-29983E — 01 51-822
5-0000 1-7521 90-378 69685 1-8584 0-57115 0-17332 0-51075E — 01 63-810
—5-0004 1-8717 —95-099 —3-4788 —0-77616 —0-32785 —0-19628 —0-12202 65721
—4-5003 1-7631 —96-544 —24634 —0-47975 —0-23404 —0-16646 —0-11210 53-860
—4-0000 1-:6602 —98-176 —1-2820 —0-15806 —0-13917 —0-13983 —0-10513 43-162
—3-5000 1-5648 —99433 0-11208 0-19581 —0041909 —011632 —0-10124 33-635
—3-0000 1-4794 —97-456 1-7203 0-57373 0-056965 —0-094178 —0-98643 25269
—2:5000 1-4081 —95-096 3-5805 098729 0-15636 —0078210 —0-10160 18-070
—2-0000 1-3574 —92:223 5-8591 1-4725 0-26318 —0-069422 —0-11230 12:053
—1-549499 1-3391938 —88-8000 858425 2:03621 0-379123 —0:0692023 —0-132199 766795
—1-549398 1-3391938 —887991 8:58498 2:03636 0-378152 —0:0692032 —0-132205 7-66707
—1-5000 1-3395 —88-344 89474 21104 039276 —0069739 —0-13525 7-2468
—1-0001 1-3828 —82:093 13-9458 3-1109 0-58389 —0-084115 —0-18183 3-69429
—0-80008 1-4337 —78-090 17-169 37314 0-69899 —0096554 —0-21334 26381
—0-60000 1-5228 —72:251 21919 4-5988 0-85734 —0-11551 —0-25832 1-8025
—0-40002 1-6873 —62-830 29744 5-8733 1-0849 —0-14411 —0-32393 1-2121
—0-30008 1-8254 —55620 35912 67098 1-2296 —0-16235 —0-36538 1-0334
—0-20000 2:0335 —45-652 44-801 7-5892 1-3736 —0-17970 —0-40521 098348

TNote: See footnote to Table 2.
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Figure 18. Linear and non-linear forced vibration deflection shapes of a clamped-simply supported beam under

a harmonic concentrated force at L/4 at negative amplitudes. (For® = 200: L, linear mode, the other curves
correspond to the numerical results given in Table 15 for w(centre)/R variant from —5 to —0-2.

moments at large vibration amplitudes and that the effects are more pronounced at the
clamped end.

4.2. FORCED VIBRATION

The numerical solution of equation (19) has been carried out with the forces given by
equation (18). This permitted analysis of the effects of distributed forces and concentrated
forces on the non-linear frequency and the non-linear response. For a C-C beam, six
symmetric modes have been used for the analysis in the case of symmetric excitation. For
a concentrated force acting at the centre of the beam (For® = 200), the corresponding
numerical results are presented in Table 11. A comparison is made with the single mode
results and the contributions of higher modes are examined. It can be seen from these results
that the influence of various modes is not negligible except in the vicinity of the limit of
frequency which corresponds theoretically to the jump zone. This result is observed for
positive and for “negative” amplitudes. The linear and non-linear resonance curves
corresponding to a harmonic concentrated force at the centre of the C-C beam,
(For¢ = 200), are presented in Figure 7. These curves clearly show that the linear prediction
leads to incorrect results for large vibration amplitudes. The linear and non-linear deflection
shapes of the C-C beam at various zones of the frequency—amplitude curves are presented
in Figure 8. The curve “a” corresponds to the zone, 0 < w/w; < 1, ‘b’ and ‘¢’ correspond to
the jump zone and ‘d’ and ‘e’ correspond to negative amplitudes, 1-5 < w/w; < 2. For curve
‘e’, the influence of the second mode can be seen which can be also noted via the numerical
results presented in Table 11. When the frequency tends to the second resonant frequency,
the contribution of the second mode increases rapidly. The incremental procedure of the
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contribution of the second mode will permit determination of the second frequency
response curve. The first frequency response curves corresponding to various amplitudes of
the excitation (For® =200 and 500) are presented in Figure 9. A non-linear frequency
response curve, corresponding to large frequency ranges and involving the first, second and
third resonances corresponding to a harmonic concentrated force at the centre of a C-C
beam are given in Figure 10. These curves were obtained using the iterative-incremental
procedure presented in Appendix B for solving the non-linear algebraic model (19).
The corresponding contributions of the higher modes are presented in Figures 11-14.
All these curves represent a vectorial non-linear frequency response function A(w), in
which A" = {ay, a,,...,a,} is the vector defining the contributions of the basic functions
to the non-linear response for a given frequency and given values of the excitation
force.

The numerical results corresponding to a harmonic distributed force (For? = 1000), the
comparison with the single mode approach and the contribution in various modes are
presented in Table 12. The linear mode and the non-linear responses in various frequency
regions are presented in Figure 15. The case of a decreasing frequency from w/wj = 2 to 1 is
chosen because it presented a numerical snap-through at w/w;i = 1-5099. This jump
phenomenon may be seen in Figure 15 in the curves numbered 3 and 4. Curve number
3 coincides with the linear mode and curve 4 is associated with a higher amplitude.

For the case of a harmonic concentrated force at a quarter span of the C-C beam
(For® =200), all symmetric and antisymmetric modes contribute significantly to the
solution, as may be expected, due to the excitation position. The numerical results for the
frequency ratios, axial forces and the contributions of the modes are presented in Table 13.
These contributions are greater than those obtained for symmetric excitations. The bending
moment at the clamped end and at the centre and the modal contributions are presented in
Table 14. The linear and the non-linear deflection shapes corresponding to several positive
amplitudes are presented in Figure 16. A significant difference can be observed between the
linear mode and the non-linear responses at large amplitudes. For negative amplitudes, the
non-linear response corresponding to the numerical results of Table 13 are given in
Figure 17. This clearly shows the evolution of the deformation of the beam with increasing
frequency.

The numerical results for a clamped-simply supported beam excited by a harmonic
concentrated force at a quarter span (L/4) are presented in Table 15. The response curves
corresponding to various negative amplitudes are presented in Figure 18. The evolution of
the deformation of the beam from the first to the second resonance is clearly shown in
Figures 17 and 18. For small amplitudes, the influence of the second mode is more
pronounced and the beam tends to vibrate following the second resonance.

The displacement at the beam centre can be predicted by the single mode analysis as
shown in Figure 7, but the non-linear responses of the whole of the beam and the bending
moments cannot be obtained with significant accuracy.

5. CONCLUSIONS

The semi-analytical approach to the non-linear dynamic response of beams based on
multi-mode analysis has been developed. The applicability of this method to the non-linear
forced vibration of beams with various types of excitations and boundary conditions is
established. This enabled the non-linear effect to be taken into account and the
contributions of higher modes to be established. Various types of excitations such as
harmonic distributed and concentrated forces have been considered. The cases of simply
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supported, clamped-clamped and clamped-simply-supported boundary conditions have
been investigated. Using the harmonic balance method, the dynamic equation of motion
can be converted into a set of non-linear algebraic equations. Numerical solution using
a continuation method enabled a vectorial non-linear frequency response function to be
obtained as a solution of the multi-dimensional Duffing equation. The validity of the
present formulation has been established through comparison of the present results with
existing alternative solutions. The non-linear frequencies and response curves in various
regions of the solution have been obtained for various types of excitations and boundary
conditions. The axial forces and the bending moments are presented and may be useful in
predicting the fatigue life of a beam subjected to a large amplitude vibration.

The present formulation and solution is general and simple. It provides a useful tool for
studying the non-linear forced vibration of structures. The method can be readily applied in
the study of the large amplitude vibration of plates and shells. Extensions can be made to
include more effects of interest such as structural damping.
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APPENDIX A

A.1. SIMPLY SUPPORTED BEAMS

The linear mode shapes of a simply supported beam are given by

wi(x) = Rsin(inx/L) = Rsin(inx*) = Rwi(x*).

Using equation (8) easily gives:

mi; = 9ij/2, di; Kronecker’s symbol,

klﬁ; = i2j2n46ij/2, ;kjkl = ijleC46ij6k1/4,

A.2. CLAMPED-CLAMPED BEAMS

The chosen basic functions w;(x) for a clamped-clamped beam are

ch(v;x/L) — cos(v;x/L)  sh(v;x/L) — sin(v;x/L)
ch(v;) —cos(v;)  sh(v;) —sin(v;)

wi(x) = (A.1)

The functions w;(x) were normalized in such manner that mj; = [ w¥(x)w} (x)dx = 8;;. The
constants v; obtained by numerically solving the equation ch(v;) cos(v;) = 1 are as follows:
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C-C Symmetric C-C Asymmetric
vy = 4730040744862704D0 v, = 0-78532046240958380D + 01
v3 = 10-99560783800167D0 v, = 0-14137165491257460D + 02
vs = 17-27875965739948 D0 ve = 0-20420352245626060D + 02
v7 = 23:56194490204046D0 vg = 0-26703537555508190D + 02
ve = 29-84513020910325D0 v1o = 0-32986722862692820D + 02
vy, = 36:12831551628262D0 01, = 0-39269908169872415D + 02

The coefficients of the 1-D NFRF in the case of C-C are given numerically by

T1 = 5005639, b¥;1; = 37-83861, wi(1/2) = 1-588146262.

A.3. CLAMPED-SIMPLY SUPPORTED

The chosen basic functions w;(x) for clamped-simply supported beams are also given by
equation (A.1). The constants v; for C-S beam obtained by numerically solving the equation
tg(v;) — th(v;) = 0 are as follows:

C-S Odd modes C-S Even modes

vy = 3:926602312047919D0 v, = 7-068582745628732d0
vy = 10-21017612281303D0 vy = 13:3517687777540d0
vs = 16:49336143134641D0 ve = 19-63495408493621D0

In this case ki; = 23772107, b¥;; = 33-134588, wi(1/2) = 1-44485645.

APPENDIX B: ALGORITHMS

The algorithms presented here were used for solving problem (24) in which the unknowns
are the frequency parameter w and the vector 4 = *{a,, a,, ...,a,}. These algorithms will
permit all the resonance curves to be determined automatically. In order to obtain the
desired resonance curves, @, can be chosen in the vicinity of a linear frequency.

B.1. STRATEGIES USED FOR SOLUTION

Ires indicates the resonance number, wr.., the Iresth linear fundamental frequency, and
n the number of the degree of freedom of the system. The algorithms ALGOR1, ALGOR2
and ALGOR3 will be given later.

Begin ALTERNATING-ALGORITHM
Set A[ 1=1[0], »=0, Ires =0
Choose Ny, N,, N3, 4w?, o, Aa,
Repeat
Set Ires = Ires + 1 and j =0
Repeat
Setj=j+1
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Set w? = w? + Aw?
Call routine ALGOR1(4, w?)
Return the vector A[ ] =(ay, as,...,a,)

Until (j = N1 or @ = &0 (ires+ 1) — OTres))
Set A[ 1=—A[ ]

Set ag = dgpes, k=0

Repeat -or - Repeat
Setk=k+1 Setk=k+1
Set a, = a, + Aa, Call ALGOR3(A4, w?,5)
Set w; = w Return A[ ] and o>
Call ALGOR2(4, 0?, a,, Aa,) Until(k = N;)
Return A[ ] and o? Until Ires = n

Until(k = N,) or (0; < w)
Until Ires = n

For more detail and applicability of Newton—-Raphson procedures, one can refer to the
papers of Riks [39, 40], Batoz et al. [41, 42], Crisfield [43, 44] and Wagner et al. [45].
Various formulations and applications to some non-linear structural problems are also
formulated by various authors [46-49].

B.2. ALGOR1: IMPOSED FREQUENCY

Begin ALGOR1(4, ?)
Choose &, kyyax
Set k=0
Repeat
Setk=k+1
If (k = k,,,,) then
Exit-No convergence-
Endif
Compute the residue G(A, w?)
If (|G(A, w?)| < &) then
Return
Endif
Compute the tangent matrix K, (A, w?)
Solve linear system K, 4A = — G(A, »?) for A[ ]
Set A=A + 4A
Until k = ko
Output A[ 1.

B.3. ALGOR2: IMPOSED DISPLACEMENT

Begin ALGOR2(A, w?, aq, Aaq)

choose &, kpux

0G(A, )
dw?

solve K;- 4AX = — G,,. for AX[ ]

compute K,(A, »?) and G,,: =
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Aa
set Aw? = 1
4X(q)

set A=A + Aw?4X and 0? = w? + Adw?
set k=0
repeat
setk=k+1
If (k = k,,,) then
exit — no convergence —
endif
compute K, (A, w?), G, and G(A, v?)
solve K, AXg = — G(A, w?) and K, 4Xy = — G, ,:(A, w?)
. AXg(q)
AXr(q)
set A = A + AXy + Aw?4Xf and 0? = w? 4+ Adw?
If (|G(A, ®?)| <€) then
return
endif
until k = k4
output A[ ] and w?.

set Aw? =

B.4. ALGOR3: ARC-LENGTH METHOD

Choose ¢, s and k..
Begin ALGOR3(4, w2, s)
set AP[ ]=A[ ]
compute K, and G,
solve K,  4X = — G, 2

s

JAX, AXD

set A=A + Adw?4X and 0? = w? + Aw?
k=0
repeat
setk=k+1
If (k = k,,,,) then
exit-no convergence-

endif

compute K, (A, 0?), G,.:(A, »?) and G(A, ?)
solve K, 4Xz = — G
solve K,  4Xy = — G, -
set V=4aXz + A — AP
Set a = {AXp, AXp D, b =2{AXp, V> and ¢ =V, V) — s?
solve a(4w?)? + bAw?®* + ¢ =0
choose Aw = absolute value of the smaller solution
set A = A + AXy + Adw?AXf, 0 = 0? + Aw?
If (|G(A, ®?)| < ¢) then
return
endif

set Adw? =

prediction

correction

prediction

correction
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output A[ ] and w?.

wy,

kij, mijs bij
K], [M], [B]
kij, miz, biju
w, o/

F(x,1), Q
{F(0)}

R

F4 F¢

S, fif
For*, For*
Kr

APPENDIX C: NOMENCLATURE

axial and transverse displacements at point x on the beam

axial strain, curvature

axial resultant force, bending moment

Young’s modulus of a beam, the thickness of the beam

mass per unit length of the beam

length, area and second moment of area of cross-section of the beam

transverse displacement at point x on the beam

stream energy

kinetic energy

generalized co-ordinate ¢;(t) = a; cos(wt)

the ith mode of the beam

column matrix of basic function contributions to the forced response
{A}t = [(ll, ,an]

the linear natural frequency corresponding to the one mode assumed

general term of the rigidity tensor, the mass tensor and the non-linearity tensors
rigidity, mass and non-linearity matrix respectively

non-dimensional rigidity tensor, mass tensor and non-linearity tensor respectively
frequency and non-dimensional frequency parameter respectively

exciting force, range of application of the exciting force

column matrix of generalized forces, {F(t)} = {f} cos(wt)

the radius of gyration

the distributed force and the concentrated force at x,

dimensionless concentrated and distributed forces

forcing coefficients

tangent matrix at a known solution (A, 'w*)
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