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HIGH-WAVENUMBER ACOUSTIC RADIATION FROM
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The analysis of the radiation from an axisymmetric duct using the Geometrical Theory of
Di!raction and uniform asymptotics, presented in a companion paper, is extended to an
asymmetric, scarfed cylinder. The generic theory from the application to axisymmetric
cylinders is brie#y recapitulated and the geometrical calculations necessary for the analysis
of the scarfed cylinder are presented in detail. The scarfed cylinder is used as a model for
a novel technique of noise reduction in modern aeroengines in which the intake is directed a
little upward to try and direct noise radiation away from the ground. We do not carry out
a full parameter study, but preliminary results from this work suggest the technique has
signi"cant potential noise reduction bene"ts.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In aircraft engines, such as those used on commercial airliners, the fan generates
considerable noise, which propagates forward in the engine duct and radiates to the far "eld
from the intake. The geometry of the intake plays an important role in determining the
directivity of this radiation.
In the past few years, the aeroacoustics community has engaged in much discussion over

an innovative noise control technique called intake scar"ng. Rather than directly
controlling the noise levels generated by the fan, scar"ng attempts, by modifying the shape
of the engine intake, to redirect the noise away from the ground and certi"cation
microphone locations, and into the atmosphere. A scarfed intake may be thought of as an
ordinary intake with the opening face directed slightly upward; see Figure 1.
The asymmetry of the scarfed intake dramatically complicates numerical and analytical

investigations into both aerodyamic and noise e!ects, and the noise issue is further
complicated by the high frequencies and correspondingly small wavelengths typical of fan
noise. Static testing, which is in any case expensive, is problematic because the e!ect under
investigation is concerned with the speci"cation of the intake geometry and the customary
use of a bell-mouthed intake in static testing seriously compromises the applicability of any
results acquired.
Several attempts have been made to calculate numerically the radiation from

axisymmetric cylinders, but techniques based on "nite di!erence (see, for example, the paper
by Li et al. [1]), "nite element [2], in"nite element and boundary element [4] methods can
struggle with the typically high wavenumbers. In general, they are used to tackle
two-dimensional, axisymmetric problems. To date, no attempt has been made to tackle
asymmetric boundary conditions.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. A scarfed cylinder with scar"ng angle L.
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The Geometrical Theory of Di!raction (GTD) due to Keller [5, 6] describes di!raction
e!ects in high-wavenumber "elds. The use of the GTD in the context of acoustic radiation
from cylinders, "rst suggested by Chapman [7], provides an accurate and extremely
fast predictive tool and, in addition, a useful paradigm for the interpretation of
results.
In this paper, the GTD is applied to the problem of radiation from asymmetric cylinders.

The application of the GTD to the axisymmetric cylinder is discussed in detail in the
companion paper [8]. That paper contains a detailed discussion of the radiation from
a thin-walled axisymmetric cylinder when a single cut-on mode propagates in the duct
towards the aperture. The ray description of propagating duct eigenmodes, due to
Chapman [7], is used as input to a scattering problem, which is solved by using the GTD.
In the "rst instance a geometrical acoustics "eld is found, which consists of rays re#ected
from the inside wall of the duct; next a di!racted "eld is constructed, which is described by
Keller's theory and which consists of rays instigated on the edge by the incident rays. These
results had been previously presented by Hocter [9]. However, the GTD breaks down over
large regions near singularities at shadow and re#ection boundaries and caustics and is
inadequate to predict the entire "eld. The prediction of the phase and amplitude at the
peaks of the principal lobe, the region of highest radiated intensity, is particularly poor. To
overcome these shortcomings, uniform asymptotic transition "elds are employed to smooth
the singularities in an asymptotically consistent way.
Due to the nature of the GTD, the only substantial di!erence between its application to

the radiation from axisymmetric and asymmetric cylinders is in the details of the geometry
of the various ray "elds. Consequently, this paper begins with a very brief recapitulation of
the apposite points of the analysis of the radiation from an axisymmetric cylinder. These
expressions are then used in the speci"cation of the radiated "eld in the case of the
asymmetric cylinder and they di!er from the axisymmetric case only in some of the
geometrical quantities that appear in them. The derivation of these geometrical quantities is
the subject of section 3, whereafter the machinery is in place to calculate the radiated "eld.
The radiated "eld is analyzed to draw out some of the e!ects of scar"ng and evaluate and
explain its potential e$cacy.



Figure 2. The co-ordinates x. �, R, �, � and the basis vectors e
�
, e� (�) and e

(
(�).
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2. THE FIELD RADIATED FROM AN AXISYMMETRIC CYLINDER

The co-ordinate systems shown in Figure 2 are employed, with cylindrical polar
co-ordinates x, �, � and spherical polar co-ordinates R, �, �. The unsteady velocity
potential u satis"es the Helmholtz equation � �u#k�u"0, where k"�/c,� is the angular
frequency of the sound "eld and c is the speed of sound, which is assumed to be constant. In
a semi-in"nite duct of radius a, lying along the negative x-axis, propagating eigenmodes
may then be written

u
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see Figure 1 in reference [8].
The "eld on rays re#ected from the inside wall of the duct is calculated by the laws of rays

theory and ordinary geometrical acoustics. The leading-order term is
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where aJ and �
��
are, respectively, the values of �� and � at �"a. The geometrical acoustics

"eld is cylindrically divergent and does not satisfy the radiation condition. In the far "eld, it
necessarily falls in the regions requiring the uniform asymptotic transition "elds, and these
"elds return the correct spherical divergence. Nevertheless, the expressions for the
geometrical acoustics "eld are required to construct the uniform transition "elds and so
must be calculated.
According to Keller's theory, each point on the edge of the cylinder is the vertex to a cone

of di!racted rays whose semiangle, �, is equal to the angle between the ray incident on the
edge and the tangent to the edge at that point. The leading-order term of the "eld on the
di!racted rays at a given observer location is

u
�
"A

i��
eik (si��#	) D (�� ; 
)

�j ����
, (9)

where A
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and s

i��
are, respectively, the amplitude and eikonal of the incident ray at the

point of di!raction. The di!raction coe$cient, D, is given by
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and �J measures the angle round the cone of di!racted rays from the vector that is
perpendicular both to the normal to the surface and to the tangent to the edge at the point
of di!raction and that points away from the edge. The angle 
 is the value of �� on the
continuation of the incident ray past the edge.
The length 	 is the distance along the ray to the observer location from the point of

di!raction. If �(
) describes points on the edge, points insoni"ed by the di!racted rays are in
the image of the di!racted ray transformation

x"�(
)#	v (
, �), (11)

where v is the propagation vector of the di!racted rays on the cones of di!racted rays and
�measures the angle round the cone from the binormal to the edge, which in the case of the
axisymmetric cylinder is the unit vector in the x direction. In the axisymmetric case, �� "�,
but in the asymmetric case �� O� and it becomes necessary to distinguish between them. The
quantity j in equation (9) is the geometrical divergence of the di!racted ray "eld and is the
determinant of the Jacobian of the di!racted ray transformation, equation (11).
To determine the di!racted "eld, the ray co-ordinates of a given observer location must

be calculated, i.e., the di!racted ray transformation, equation (11), must be inverted. It turns
out that, in the far "eld, there are exactly two or zero solutions to the ray tracing problem,
corresponding to there being either two or zero rays through any given point in the far "eld.
A caustic delineates the region into which no rays penetrate from the region in which all
points are insoni"ed by two di!racted rays. In this latter region, away from the non-uniform
regions discussed below, the "eld is given by the sum of the contributions from the two
di!racted rays and the leading-order terms can be written
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are, respectively, the amplitudes and eikonals of the two di!racted rays

that pass through that point. The �/2 phase retardation on the contribution from the &&#''
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di!racted ray arises because this ray has passed through the caustic surface. As mentioned
above, the in#uence of the geometrical acoustics "eld on the far "eld is only manifested
through its role in the construction of the transition "elds.
Uniform asymptotics are required near the caustic, where j"0, and near shadow and

re#ection boundaries, where �� "$
. The caustic transition "eld is the leading-order term
of a uniform asymptotic expansion valid in the caustic transition region near the caustic. It
is given on the insoni"ed side of the caustic by
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The GTD predicts zero amplitude inside the caustic surface in the region into which no rays
penetrate. The above expressions may be analytically continued inside the caustic to give
a "eld that decays exponentially to zero.
The shadow and re#ection transition "elds are the leading terms of a uniform asymptotic

expansion valid in the shadow and re#ection transition regions near the singularities in the
di!raction coe$cient. They are given by
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with k����
�
negative for !�/2(��(!
 and positive elsewhere and k����

	
negative for

!�/2(��(
 and positive elsewhere. The parameters �
�
and �

	
are zero on, respectively,

the re#ection and shadow boundaries. Where both k��
�
and k��

	
are large, the transition

expansions return the total "eld given by the GTD. See reference [10] for a detailed
discussion of the derivation of these quantities and their validity in the far "eld.
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3. THE SCARFED CYLINDER

A scarfed cylinder is shown in Figure 1 and the edge is given by

� (
)"!a� sin
 e
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), (23)

with�"tanL, whereL is the scar"ng angle in Figure 1. The tangent to � is t"d�/d� and
the normal, n, is given by dt/d�"�n, with �'0, where � is arc-length around the edge. The
binormal is b"t�n and relationships between the rate of change of b and n are given by
the Serret}Frenet formulae
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Referring to the di!racted ray transformation, equation (11), write
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If� (
) is the plane whose normal is t, then b and n are contained in� and � is the angle the
projection of v on� makes with b, measured away from n; see Figure 3. The cone angle, �, is
the angle between t and v and, by Keller's law of di!raction, is equal to the angle between u,
the incident ray direction vector, and t, so
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Furthermore, by using the Serret}Frenet formulae, it may be shown that
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Figure 3. A di!racted ray from a general curved edge with its incident ray.
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with

K"

� sin �!d�/d�
sin �

(28)

and d�/d� is found by di!erentiating equation (26).
To "nd �� and 
, the vector that is perpendicular to both the normal of the cylinder surface

and the tangent to the edge at the point of di!raction is required. IfN (
) is the normal to the
surface at the point of di!raction, the surface binormal is de"ned by B"t�N and N is
chosen so that B points away from the surface. The angle �� is the angle between the
projection of v on � and B, measured away from N. In the axisymmetric case, b"B and
n"N, but this is not the case with scar"ng. The amplitude and eikonal on rays incident on
the edge, required to calculate the di!racted ray amplitude and eikonals, are given by
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All that remains to determine the di!racted "eld is to calculate the ray co-ordinates of
a given observer location, i.e., to invert the di!racted ray transformation, equation (11).
Taking the inner product of equation (11) with t and noting that, for a given x, 	"�x!� �,
gives an implicit algebraic equation for 
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which is solved numerically. Based on experience with the di!racted ray "eld of
axisymmetric cylinder radiation, it is reasonable to expect to "nd two regions delineated by
a caustic; in one of which points are insoni"ed by two rays, i.e., there are two solutions of
equation (30); and no rays penetrate into the other, i.e., equation (30) has no solutions. This
indeed turns out to be the case, and the topology of the ray "eld with scar"ng, at least for
modest scar"ng angles, is identical to that of the axisymmetric case. Once values for 
 have
been determined for a given observation point, it is simple to calculate values for 	, �, �� ,

 and �.
To calculate the far-"eld velocity potential, simply employ equations (4)}(22) using the

geometrical quantities derived above.
Away from the shadow and re#ection boundaries and caustic, the various transition

expansions, when evaluated asymptotically, return the "eld predicted by the GTD. Where
the transition "eld di!ers from the "eld predicted by the GTD by an amount greater,
asymptotically, than the "rst neglected term of the GTD expansion, the transition
expansions are employed. Elsewhere, the "eld is given by equation (12). Encouraged by the
excellent agreement between the results obtained using the present theory and the exact
analytical results in the axisymmetric case (see Figures 7}9 in reference [8]), there is good
reason to suppose that the present theory is comparably accurate in predicting these "elds
and their interaction in the scarfed case.
However, there is a further class of rays in the scarfed case for which no account has yet

been made. These are rays di!racted in the "rst instance from the edge that are then
re#ected, possibly several and, in principle, arbitrarily many times, from the duct wall before
being radiated into the far "eld. These rays insonify a region between the two cones
�"�/2$L and carry a "eld comparable in magnitude to the di!racted "eld in that
region. Despite con"dence in the accuracy of our theory at predicting the primary di!racted
rays and the various transition "elds, there cannot be similar con"dence that the detail of
the "eld in that region is accurately rendered with the present theory.
Integral measures of the radiated "eld are dominated by contributions from the principal

lobe, which is accurately predicted in the axisymmetric case with the present theory and
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which would not be substantially modi"ed by this extra class of rays. Therefore, the results
pertaining to total radiated intensity ought to be adequate for the purpose of realistically
discussing the e!ects of scar"ng on the total upward and downward radiation of sound.

4. RESULTS

The far-"eld potential takes the form

u&� (�, �; ka)
eikR

kR
(31)

and it may be shown that �kRu � is a reasonable approximation to �"lim
��	
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;

see reference [10]. This distance acts in this problem as the Fresnel distance in the problem
of di!raction of a plane wave by an aperture, it delineates the near-"eld Fresnel di!raction
zone from the far-"eld Fraunhofer di!raction zone. These distances are also related to
the Rayleigh distance encountered in a class of radiation problems, which once again gives
an estimate of the distance where the transition from near- to far-"eld behaviour takes
place.
A full description of the directivity �kRu � in the axisymmetric case is given in the previous

paper [8]. Broadly, the quiet region into which no rays penetrate is delineated by a caustic,
which, in the axisymmetric case, is approximately located by an angle �"�

�
, where

sin �
�
"m/ka. The principal lobe, corresponding to the region of highest radiated intensity,

is located around �"�
��
. For larger polar angles, forward of the plane of the duct aperture

(x"0), there is a region insoni"ed by two di!racted rays. Behind this plane, one of the rays
is trapped in the duct and the far "eld is insoni"ed by a single di!racted ray up to a rearward
pointing caustic (Figure 4).
Figure 4. A plan view of two rays and the caustic cylinder, with �
��
, �� and � and a Chapman ray propagating

along the duct and forming part of a piecewise linear helix.



Figure 5. Contour plot of predicted directivity when a single mode, ka"40,m"20, n"3, propagates in a duct
with various scar"ng angles.
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Figures 5 and 6 show contour plots of the far-"eld directivity resulting from the
geometrical acoustics and primary di!racted "elds when a single mode propagates in the
duct towards the aperture, with scar"ng angle increasing in 103 increments from 0 to 303.
The "nal plot is shown together with directivity pro"les taken along certain meridional
planes. The mode used here has ka"40, m"20 and n"3 and is based on the blade
passing frequency and number of blades of a typical aeroengine. The ability to handle such
large values of ka is a particular feature of our asymptotic method and is crucial in practice.
In the contour plots, linear distance along a radius on the plot corresponds to polar

angle, 0(�(903, and the angle from the horizontal, measured anticlockwise, corresponds
to the azimuthal angle �. E!ectively, these "gures show the projection of the directivity onto
the hemisphere forward of the duct aperture. The directivity pro"les are for 0(�(1803
and, in addition, show the "eld behind the �"903 plane.
The e!ect of scar"ng in the forward region, broadly, is to move the caustic, and with it the

quiet region, upwards towards the principal lobe, which is intensi"ed above the horizontal
and attenuated below. Other features that become apparent as the scar"ng angle increases
are the loss of left}right symmetry and the increased extent of a region of low sound level
with no interference fringing below the horizontal. This latter feature arises as more rays are
obstructed by the duct wall extending below the horizontal and corresponds to the region,
now enlarged, below the horizontal, which is insoni"ed by only one di!racted ray. The
absence of left}right symmetry arises from the interaction between the rotational, but not
left}right re#ectional, symmetry of the incident duct mode and the left}right re#ectional,



Figure 6. Contour plot of predicted directivity when a single mode, ka"40, m"20, n"3, propagates in
a duct with a scar"ng angle of 303; together with directivity pro"les (plotted to the same scale) taken along selected
meridional planes.
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but not rotational, symmetry of the boundary geometry. In the rearward region, the
primary e!ects of scar"ng are the movement of the rearward quiet region and the increase in
the extent of the region insoni"ed by two di!racted rays above the horizontal and its
decrease below. The action of scar"ng on the rearward quiet region can be seen in the
directivity pro"le for �"2703, where the entire quiet region has slipped below the
horizontal. The movement of the point where one of the rays is trapped by the duct can
clearly be seen in the directivity pro"les of the upward azimuthal directions.
To evaluate the e!ectiveness of scar"ng in redirecting total sound power level, the square

of the modulus of the sound "eld, which is proportional to the radiated intensity, is



Figure 7. The change in integrated sound power level above and below the horizontal from unscarfed to scarfed
ducts with a single mode propagating in the duct.
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integrated between �"0 and 1203 for 0(�(1803 and 1803(�(3603, i.e., above and
below the horizontal. The range of � is chosen to include all the major e!ects of scar"ng on
the forward "eld and back to the plane of the aperture in the case of the greatest scar"ng
(303). The decibel change from the unscarfed case is plotted against scar"ng angle in
Figure 7. The mode used in this calculation is the same as was used in the production of the
contour plots.
The total integrated sound power level below the horizontal is decreased, apparently at

the expense of a comparable increase in sound power level above the horizontal. The
steepening of the lower curve is due to the intrusion into the range of integration of the
rearward quiet region.
Figure 8 shows the directivity patterns of modes with a variety of wavenumbers and with

di!erent radial orders. The increase in interference fringing can clearly be seen as ka is
increased from 20 to 60 in plots 1}3.
With well cut-onmodes, such as in plot 4 in Figure 8, the directivity is highest close to the

caustic and scar"ng is expected to have the least e!ect on such modes. Conversely, we
expect scar"ng to have its greatest e!ect on nearly cut-o! modes such as in plot 6 of
Figure 8.
Scar"ng is expected to be most e!ective where the polar mode angle, �

��
, is so large that

some of the edge is not insoni"ed by rays re#ected from the duct. These techniques as they
stand are unable to deal with this case, although slightly more sophisticated ray tracing
would quickly render these cases accessible so long as the re#ection transition region is
contained away from the face of the aperture.
Figure 9 shows the change in intensity integrated over 0(�(1203 above and below the

horizontal when various modes propagate in a duct scarfed by 303. As expected, scar"ng is
increasingly e$cacious as the mode is increasingly cut o!.

5. CONCLUSION

It is shown in the companion paper [8] that the Geometrical Theory of Di!raction, when
employed together with the necessary uniform asymptotic theory, provides extremely fast



Figure 8. Filled contour plot of predicted directivity when various modes are propagating in a duct with 303
scar"ng.
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and remarkably accurate predictions of both the amplitude and phase of the far-"eld
directivity of the radiation when propagating eigenmodes are incident on the end of
a semi-in"nite axisymmetric duct. This paper shows that the great advantage of the GTD is
not merely its speed and accuracy, but also its ability to cope with asymmetries in the
boundary con"guration. The di!erences in the calculation of the radiated "eld from
axisymmetric and asymmetric cylinders are entirely geometrical; even the problem of the
di!racted}re#ected rays is essentially one of ray tracing.
Although it is reasonable to suppose that the primary di!racted "eld and the uniform

asymptotic transition "elds account for the leading-order behaviour of the far-"eld
directivity and are su$cient to inform a discussion on the e!ects of scar"ng, there are
several issues outstanding that require further attention. The "rst is the ray tracing
associated with the di!racted}re#ected ray "eld, which will bring about changes in a small



Figure 9. Decibel change in integrated sound power level from unscarfed for various radial modes.
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region of the far "eld, as discussed in section 3. Although a full account of these rays will
certainly impact on the exact detail of the far-"eld directivity in these regions, they will not
a!ect the broad structure of the far "eld, nor a!ect the conclusions arrived at on the
qualitative e!ects of scar"ng. At present the theory breaks down when the scar"ng angle is
large enough that the caustic transition region overlaps with the re#ection transition region
although, as was shown in our previous paper [8], the onset of this di$culty can be
substantially reduced either, if appropriate, by looking far out into the far "eld, or by
exploiting the small size of the second terms in the asymptotic expansions of the uniform
transition expansions; see reference [10] for a full discussion. This di$culty can be resolved
by using a third type of uniform asymptotic expansion, based on the Airy}Fresnel function;
see reference [11]. At greater scar"ng angles, the re#ection transition zone is rescattered
from the cylinder edge. Methods of dealing with problems such as these are also presented
by Borovikov and Kinber [11]. Finally, for even greater scar"ng angles, not all of the lip is
insoni"ed by the incident mode, and the problem of the ray tracing of the
di!racted}re#ected rays must once again be addressed.
All these large scar"ng angle di$culties a!ect the modes which are closest to cuto!. These

modes are thought to respond most favourably to scar"ng and the results we acquire for the
better cut-on modes are the worst case and, therefore, the most pertinent. Conclusions
regarding the e$cacy of scar"ng are certain to be more favourable for the nearly cut-o!
modes than for the modes that can be treated by the method as it stands.
In order to evaluate the e$cacy of scar"ng, a number of di!erent modes and

wavenumbers should be studied in a large parameter study. The preliminary indications
are, however, most encouraging. Scar"ng appears to decrease the radiation directed
downwards at the expense of an increase in radiation directed upwards.
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