
Journal of Sound and <ibration (2002) 255(1), 43}59
doi:10.1006/jsvi.2001.4151, available online at http://www.idealibrary.com on
NON-LINEAR DYNAMIC ANALYSIS OF THE
TWO-DIMENSIONAL SIMPLIFIED MODEL OF AN ELASTIC

CABLE

Y. Y. ZHAO, L. H. WANG AND D. L. CHEN

¹he Department of Engineering Mechanics, Hunan University, Changsha, Hunan, 410082,
People+s Republic of China. E-mail: yyzhao@mail.hunu.edu.cn

AND

L. Z. JIANG

School of Civil and Architecture Engineering, Central South ;niversity, Changsha, Hunan, 410075,
People+s Republic of China

(Received 10 January 2001, and in ,nal form 5 September 2001)

The non-linear behavior of an elastic cable subjected to a harmonic excitation is
investigated in this paper. Using Garlerkin's method and method of multiple scales, the
discrete dynamical equations and a set of "rst order non-linear di!erential equations
are obtained. A numerical simulation is used to obtain the steady state response and stable
solutions. Finally the coupled dynamic features between the out-planar pendulation and the
in-planar vibration of an elastic cable are analyzed.
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1. INTRODUCTION

The cable is featured by its #exibility, lightness and light damping. For this superior
structure, cables are very e$cient structural members and hence have been widely used in
many long-span structures, including cable-supported bridges, guyed towers and
cable-supported roofs. So the dynamic study of the cable is of great engineering signi"cance.
Generally speaking, the non-linear feature results from material, large deformation and sag.
And the dynamic study of the cable is very complicated and remains a key research "eld of
mathematics, mechanics, and engineering. Yamaguchi, et al. [1] studied the time response
of a cable under harmonic excitation and they concluded that the dynamic of cable was
greatly in#uenced by geometric and physics parameters. A numerical hybrid method was
used by Yu and Xu [2] to formulate three-dimensional small-amplitude free and forced
vibration problems of an inclined sag cable equipped with discrete oil dampers. E!ects of
non-linearity on planar/non-planar dynamic motion of a sagged cable were investigated by
Hagedam and Shafer [3]. Rao and Iyengar [4] made a study of the internal resonance and
non-linear response under periodic excitation. The dynamic stability problem of a #ag sag
cable subjected to an axial periodic load was investigated by Takahashi [5]. Perkins [6]
studied the non-linear response of the model interactions under parametric and forced
excitation. To simplify the procedure of designing viscous dampers for stay cables in
bridges, Benito et al. [7] proposed a universal estimation curve that related the modal
damping ratio of the cable. Benedethni, et al. [8] conducted research in the non-linear
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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oscillation of a four-degree-of-freedom (d.o.f.) model of a suspended cable under multiple
internal resonance conditions. Taking geometric non-linearity into consideration, Zhao [9]
established three-dimensional dynamical equations of cables by applying the Newton's
method, and studied the dynamic features of cables.

In this study, a three-dimensional problem based on reference [9, 10] is reduced to
a two-dimensional one. And internal resonance of 1:1 is considered. Applying Galerkin's
method, the two-dimensional discrete dynamical equations are obtained, and the method of
multiple scales is used to reduce the di!erential equations to a set of "rst order di!erential
equations that are solved by Newton's method, and the "xed-point response curves are also
investigated. In the end, the coupled dynamic features between the out-planar pendulation
and the in-planar vibration of an elastic cable are analyzed.

2. ANALYSIS OF THE TWO-DIMENSIONAL CABLE

2.1. THE SIMPLIFIED EQUATION

This study deals with the coupling of the out-planar pendulation and the in-planar
vibration of an inclined sag cable. The uniform cable is assumed to have small amplitude
vibration with respect to its static equilibrium position and have very small sag (Figure 1).
By setting the x- and y- co-ordinate in the static pro"le plane of the cable and taking the left
support of the cable as the origin of the Cartesian co-ordinate system, the partial di!erential
equations of the cable motion can be written as [9, 10] (not including the e!ect of viscous
damping)
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where N
�
is the static cable tension, u, w and v are axial, in-plane transverse and out-plane

transverse displacements of the cable respectively,E is Young's modulus,A is the area of the
cross-section, � is the density of the cable, y is the static equilibrium of the cable, s is the
Lagrangian co-ordinate in the unstrained cable pro"le, ( )

�
denotes partial di!erentiation
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For the development of an approximate theory for the cable, the following assumptions are
adopted: O(u)�O(w); O(u

�
)�O(w

�
); O(u

�
)�O(v

�
); O(u

�
)�O(y

�
); u

�
,w

�
, y

�
are all small with

respect to 1. Using the Taylor series expansion and retaining only the lower order
non-linear terms, we can obtain

dx

ds
+1!e!�

�
y�
�
, e"u

�
#y

�
w
�
!u�

�
#�

�
v�
�
#�

�
w�
�
. (3)



l

L

h

s

w
u

y

x

O

Figure 1. The three-dimensional model of the cable.
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Substituting equations (3) into equations (1) and using the Taylor series expansion, we
can obtain
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where the terms irrelative to time t have been ignored for the convenience of the study.
Introducing the non-dimensional time t* de"ned as
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where l represents the span of the cable and H
�
is the horizontal tension, we can obtain
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where the * notation has been disposed. In the following, the in-planar motion is reduced
for the sake of studying the coupling between out-planar pendulation and in-planar
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vibration. If we only consider the lower order transverse modes, no interaction will occur
between these transverse modes and the longitudinal modes, and the longitudinal inertia
u
��
can be neglected [11]. As a consequence from equation (6a), we can obtain
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where G(t)"P(t)/EA, with boundary conditions of cable u(0)"u(l)"0 applied, we can
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Substituting e"G(t)"e(t) derived from equations (3) and equations (8) into equations
(1), the two-dimensional equations reduced from three-dimensional ones can be realized as
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For the purpose of the analysis of equations (11), the Galerkin's procedure is introduced.
Based on hypothesis w(x, t)"q
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where the overdot indicates di!erentiation with respect to time t, c
�
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are the damping
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Substituting equation (13) into equations (12) and keeping up to cubic terms, we can obtain
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where the coe$cients are written in Appendix A.
For the convenience of the analysis of equations (14), the non-dimensional parameter � is

introduced, and the external excitation is noted as Q(t)"Q
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2.2. PERTURBATION SOLUTION

The approximate solution of equations (15) can be obtained by using the method of
multiple scales [12]. Let
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The solutions for equations (18) can be expressed as
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where cc indicates the complex conjugate of the preceding terms, and the functionA
�
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determined by the requirement that solutions to equations (21) do not contain secular
terms, or small-divisor terms caused by resonance. And the internal resonance conditions
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motion in planar is neither directly excited by external excitation nor indirectly excited by
internal resonance, it can be shown that the response amplitude of the motion in-planar dies
out due to the presence of damping.
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The above equations are known as the reduced equations. For steady state,
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!�

�
)t!�

�
"�t!�

�
, (30a)

�
�
¹

�
#�

�
"�

�
¹

�
#��

�
t!�

�
"�t!�

�
. (30b)
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Thus, the de#ections of the cable are given by

w(x, t)"a
�
cos(�t!�

�
)�

�
(x)#O(�), (31a)

v(x, t)"a
�
cos(�t!�

�
)�

�
(x)#O(�). (31b)

2.3. STABILITY EQUATIONS OF STEADY STATE RESPONSE

By directly perturbing the reduced equations, one can study the stability of the non-trivial
steady state solutions. But, as the reduced equations have the coupled terms a

�
�

�
and a

�
�

�
,

the perturbed equations will not contain perturbation ��

�
for trivial solutions and hence

the stability of the trivial state cannot be studied by directly perturbing equations (26).
Hence, to overcome this di$culty, introducing the transformations

p
�
"a

�
cos �

�
, q

�
"a

�
sin �

�
, i"2, 3 (32)

and carrying out trigonometric manipulations, one arrives at the following normalized
reduced equations:

�
�
[p


�
# (�

�
!�

�
)q

�
#�

�
p
�
]#

�
�
8

[(p�
�
!q�

�
)q

�
!2p

�
q
�
p
�
]!

�
�
4

(p�
�
#q�

�
)q

�

!

3�
�

8
q
�
(p�

�
#q�

�
)"0, (33a)

�
�
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�
!(�

�
!�

�
)p

�
#�

�
q
�
]#

�
�
8

[(p�
�
!q�

�
)p
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#2p

�
q
�
q
�
]#

�
�
4

(p�
�
#q�

�
)p

�

!

3�
�

8
p
�
(p�

�
#q�

�
)"0, (33b)

�
�
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�
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�
q
�
#�
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�
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[(p�
�
!q�

�
)q

�
!2p

�
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�
p
�
]!
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�
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!

3�
�

8
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(p�

�
#q�

�
)"0, (33c)

�
�
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�
!�

�
p
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#�

�
q
�
]#

�
�
8

[(p�
�
!q�

�
)p

�
#2p

�
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�
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�
]#

�
�
4

(p�
�
#q�

�
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�

#

3�
�

8
p
�
(p�

�
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�
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�
"0. (33d)

To determine which of the various possible solutions are stable, we perturb the steady
state solution. That is

p
�
"p

��
#�p

�
, p

�
"p

��
#�p

�
, q

�
"q

��
#�q

�
, q

�
"q

��
#�q

�
,

where the subscript 0 indicates the steady values and � indicates the perturbation values.
Substituting them into equations (32) and retaining linear terms in the perturbation, we
obtain

��p

�
, �q


�
, �p


�
, �q


�
��"[J

�
]��p

�
, �q

�
, �p

�
, �q

�
��, (34)

where T is the transpose and [J
�
] is the Jacobian matrix whose eigenvalues will determine

the stability and bifurcation of the system.
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3. NUMERICAL RESULTS AND DISCUSSION

An elastic cable which is simply supported is treated in the following numerical examples
with the following properties: f"0)25m, H

�
"3)5�10�N, �A"20)96 kg/m,

A"2)635�10��m�, h"50 m, ¸"100 m, E"1)95�10��N/m�, where the de"nition of
sag f, expression of the static equilibrium of the cable and static cable tension have been
given by reference [13]. To the simply supported cable, the mode shapes can be given by
�
�
(x)"sin(�x/ l), �

�
(x)"sin(�x/ l). The corresponding natural frequencies are

�
�
"0)314408 and �

�
"0)314159. The parameter � is taken as �"0)01. The values of other

required parameters expressed in Appendix A are calculated to be: l"111)8m,
	
�
"0)0611391, 


�
"0)0302985, �

�
"0)117431, 	

�
"0)0605974, �

�
"0)117431,

�
�
"0)117431. For given �

�
(i"2, 3), �

�
and f

�
are, respectively, the damping parameters,

the detuning parameters for external excitation and the excitation amplitude. The steady
state response of the system is obtained by solving equations (28) numerically using
Newton}Raphson's method. The stability and bifurcation of the trivial and non-trivial
responses are also studied from the eigenvalues of the Jacobian matrix. As the frequency (or
forced) response curves are found to be symmetrical about the �

�
-axis or f

�
-axis, only the

positive sides of the response curves are shown in Figures 2 and 3. The solid and dashed
lines stand for the stable and unstable branches. Here, the e!ects of damping, amplitude and
the frequency of the excitation on the system response are studied.
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Solutions of equations (28) can be classi"ed into two types, which are a
�
"0, a

�
O0 and

a
�
O0, a

�
O0. The steady state frequency}response curve for system with f

�
"0)85,

�
�
"0)2 and �

�
"0)2 is shown in Figure 2. In the trivial branch, pitchfork bifurcation

occurs at �
�
"0)512, and the trivial solution loses its stability via a pitchfork bifurcation.

An additional branch of stable non-trivial solution exists in the frequency}response curve.
With an increase in �

�
, a

�
increases rapidly, but a

�
increases slowly. From Figure 2, it can be

shown that when �
�
(0)512 only the stable trivial solution exists, so the in-planar

component of the motion would die out due to the presence of damping. It is also shown
from Figure 2 that the responses of equation (27) are similar to the response of the Du$ng
oscillator with a hardening spring, but there only exists one stable branch for the responses
of equation (27). It also shows that the internal resonance has an e!ect on the stability of the
solution. There exist two unstable branches for �

�
'2)7, and the saddle node bifurcation at

�
�
"1)81.
In the case of f

�
"0)45, �

�
"0)025 and �

�
"0)1, frequency}response curves are plotted

as shown in Figure 3, which is similar to Figure 2. However, it is obvious that the pitchfork
bifurcation and the saddle node bifurcation points move forward, and the amplitudes of the
motion are somehow decreased. The sag will lead to the result that a

�
is always smaller than

a
�
for a given �

�
. And a

�
and a

�
will "nally be equal to each other without sag [11].

The variations of the response amplitude a
�
and a

�
with the amplitude of the excitation

f
�
are shown in Figures 4 and 5, and there exists a critical value of f

�
, respectively, in them.

From Figures 4 and 5, it can be shown that when f
�
is larger than the critical value, the



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

f3

a 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

f3

a 3

Figure 4. Variation of the amplitude of the "rst mode with amplitude of the excitation: �
�
"0)8, �

�
"0)2,

�
�
"0)2.

NON-LINEAR DYNAMIC ANALYSIS 53
amplitude of the in-planar component begins to grow and the amplitude of the in-planar
component grows rapidly as f

�
changes slightly. After the amplitude of the in-planar arrives

at the largest value, it decreases gradually and dies out at last as f
�
increases.

Next, the predicted motion is described as the �
�

is varied slowly up. Referring to
Figure 2, starting with a negative value of �

�
, we expect to initiate out-planar motion. Then

as �
�
increases, the amplitudes of the two components of the motion move from P to A and

O to F. When �
�
"0)512, the amplitude of the in-planar component begins to grow, and as

�
�
increases, the two amplitudes increase. When �

�
"7)615 (not included in Figure 2), the

motion becomes unstable, and the jump phenomenon can be seen. The motion changes
from non-planar back to out-planar. Reversing the procedure, we start with a large value of
�
�
. Again, the initiative out-planar motion is expected. As �

�
decreases, the amplitude of the

two components move from C to D and from H to I; when �
�
"1)81, the non-planar

motion is expected and the jump phenomenon is seen again. As the �
�

decreases, the
amplitude of the in-planar component decreases. When �

�
"0)512, the in-planar

component is zero, and the motion is out-planar again.
In order to verify the analytic results, the equations of motions were numerically

integrated using a fourth order Runge}Kutta algorithm. In the following two cases, the
numerical results were in accordance with the theoretical predictions. The numerical
responses presented in the following are typical of the computed simulations and
correspond to the system with f

�
"0)85, �

�
"0)2 and �

�
"0)2, whose response curves were



0 1 2 3 4 5

0

1

2

3

4

f3

a
2

0 1 2 3 4 5

0

1

2

3

4

5

6

f3

a
3

Figure 5. Variation of the amplitude of the "rst mode with amplitude of the excitation: �
�
"1)5, �

�
"0)15,

�
�
"0)5.

2800 2850 2900 2950 3000
-4

-2

0

2

4  ×10 -2

q 2

t

(a)

2800 2850 2900 2950 3000
-6
- 4
-2
0
2
4
6

q 3

t

(b)

- 4 -2 0 2 4

-4

-2

0

2

4

q
2

q 3

(c)

-0.1 -0.05 0 0.05 0.1
-4

-2

0

2

4

q 3

q
2

(d)

Figure 6. Stable motion �
�
"0)7.

54 Y. Y. ZHAO E¹ A¸.



.

2800 2850 2900 2950 3000
-6

-4

-2
0
2

4
6

t

q 3

(b)

2800 2850 2900 2950 3000
-4

-2

0

2

4

q 2

t

(a)

-2 -1 0 1 2 3

-3
-2
-1
0
1
2
3
4

-3
q2

q 3

(d)

-4 -2 0 2 4

- 4

-2

0

2

4

q
2

q 3

(c)

Figure 7. Stable motion �
�
"1)4.

NON-LINEAR DYNAMIC ANALYSIS 55
presented in Figure 2. Figures 6 and 7 present the response of the cable, one for �
�
"0)45,

the other for �
�
"1)4. A four-dimensional PoincareH map of the response was constructed by

sampling the dynamic at multiples of the period of the forcing function, and the projections
of PoincareH map in the q

�
}q

�
plane are indicated in Figures 6(c) and 7(c). As expected,

the periodic motion is represented by one point in the projection of the PoincareH map.
Figures 6(a) and 7(a) show the time history of the motion in-planar, which indicate that
there only exists the out-planar pendulation for �

�
(0)512 and the coupledmotion between

the out-planar pendulation and the in-planar vibration for �
�
'0)512.

4. CONCLUSIONS

The non-linear response of an elastic cable which is simply supported is studied using the
method of reduce and multiple scales. Besides, the stability and bifurcation of the trivial and
non-trivial branches for di!erent values of damping, amplitude and frequency of excitation
are analyzed. Pitchfork bifurcation and saddle node bifurcation are observed. Moreover,
the coupled dynamic features between the out-planar pendulation and the in-planar
vibration of an elastic cable are analyzed, which are veri"ed by numerical integrations using
a fourth order Runge}Kutta algorithm. Meanwhile, the sag's in#uence on the amplitude of
motion is analyzed in this paper.
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APPENDIX A

The coe$cients in equations (14) are given as follows:
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APPENDIX B

(1) The derivation of equations (4) from equations (1).
First, we derive equations (3) as follows:
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at the same time using the equation (1#�)����"1!�/2#3��/8#O(��) and the Taylor
series expansion and retaining the lower order non-linear terms, equation (B1) can be
expressed by
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which are equations (3). The derivation of equations (4) from equations (1) is listed as below.
As an explanation, here the detailed derivation of equation (1a) is given as follows: From
equation (1a) we can obtain

�
�x ��(N�

!EA)
dx

ds
#
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�1#y�
�

EA�(1#u
�
)�"�Au

��
. (B4)
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Substituting equations (B3) into equations (B4) and using the Taylor series expansion and
retaining the lower order non-linear terms, we can obtain
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Therefore, we can obtain
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where
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2 ��

is independent of time t, thus it can be dealt with by co-ordinates translation. For simplicity
in this paper, this term can be neglected. So we can obtain
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which is equation (4a). Similarly, the derivation of equation (4b) can be obtained from
equation (1b), with

!

1

�A
�
�x �N��1!

y�
�
2 �y��

being neglected. Also, equation (4c) can be derived from equation (1c) similarly.
(2) Equations (6) and equation (7) are obtained as follows:

Introducing the non-dimensional time tH de"ned as
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So u
��
can be written as
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Substituting equation (B11) into equation (B7), we can obtain
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If the * notation is disposed for the convenience of writing, we can obtain
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which is equation (6a). Similarly, equations (6b) and (6c) can be obtained.
If we only consider the lower order transverse modes, no interaction will occur between

these transverse modes and the longitudinal modes, and the longitudinal inertia u
��
can be

neglected. As a consequence from equation (B14), we can obtain
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if de"ning P(x, t)"(N
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�
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therefore, we can view P(x, t) as the function of time t, then
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which is the equation (7).
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