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Based on the moving least-squares (MLS) approach, an e$cient meshless method is
employed to generate the displacement functions for vibration analysis of elastic bodies. The
equation of motion is established by following the standard procedure and the boundary
conditions are imposed by applying penalty functions. As the displacement functions are
expressed in terms of weight functions, the accuracy will depend on the parameters of the
weight functions. Therefore, a parametric study is carried out to determine the best values
for these parameters. To demonstrate the accuracy, modal analyses of the beams and plates
with di!erent boundaries have been carried out. In addition, the responses of these
structures under dynamic excitation have been analyzed. The examples include simply
supported beams subjected to sudden excitations and simply supported plates subjected to
initial displacements.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Meshless method has been developed rapidly in the last 20 years [1}13]. The method is
attractive because it does not require element connectivity information. Therefore, it has the
following advantages: (1) it does not require mesh data; (2) one only has to consider nodal
displacements and boundary conditions; (3) compatibility is satis"ed automatically as the
"eld functions and their gradients are continuous.

The meshless method has found applications in both static as well as dynamic stress
analyses. Applications in static analyses include fracture problems [2, 4, 14}17], bending of
beams, plates and shells [4, 18}20], three-dimensional stress analyses [4, 17, 21, 22], contact
problems [23, 24] and large deformation [5, 13, 24}27]. For dynamic analysis, Lu et al. [28]
extended element-free Galerkin method for wave propagation and dynamic fracture.
Nagashima [29] used a node-by-node meshless approach to solve the eigenvalue problem
of structural vibration. Liu et al. [30] proposed the reproducing kernel particle methods for
free vibration of beams and plates. Ouatouati et al. [31] developed an approach for
integrating the boundary conditions using the concept of intermediate structure to solve
modal analysis problems.

One of the major di$culties in the implementation of the meshless methods is how to
impose the boundary conditions. Zhang et al. [32] have carried out a detailed study on
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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various schemes, namely direct collocation method, Lagrange multiple approach, modi"ed
variational principles, penalty methods and coupling "nite element, and assessed the
advantages of the various schemes. It has been concluded that the penalty method is simple
and it can give accurate results if appropriate penalty functions are chosen. In this paper,
vibration problems are analyzed further by the meshless method based on the moving
least-squares approach. The equation of motion of the system is obtained by following the
standard procedures and penalty functions are used to impose the essential boundary
conditons. An advantage of this method is that the sti!ness matrix remains symmetric and
positive-de"nite. In addition, the number of unknowns in the solution equations will not be
increased. As the accuracy of the method depends on the parameters of the weight functions,
parametric study has been carried out to determine their best values. Benchmark examples,
including free vibration and forced vibration of beams and plates, are analyzed to
demonstrate the validity and versatility of the method. The results obtained are in good
agreement with the analytical solutions.

2. MOVING LEAST-SQUARES METHOD APPROACH

One can express the approximate displacements of u (x) in the domain � as u�(x)
[4, 19, 33]:
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where a(x) are coe$cients, which are functions of the spatial co-ordinates x, p(x) are
complete polynomials, m is the number of terms of the polynomials. In the present study,
linear and quadratic polynomials are chosen for two-dimensional plane stress/strain and
plate bending problems, respectively, that is
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The local approximation of u�(x) can be written as [2]
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where x* represents the approximate of x in the local subdomain. It can be shown readily
that the solution of the displacement function can be obtained by carrying out least-squares
"t for the local approximation of the displacement function, that is
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where w (�x!x
�
� ) are the weight functions, x

�
are the co-ordinates of the jth node in the

domain of in#uence of x, u*(x
�
) are the displacements at node x

�
.

Minimizing J with respect to a
�
, we have

�J/�a
�
"0. (5)

One can show readily that

a(x)"A��(x)B (x)u*, (6)



VIBRATION ANALYSIS 263
where A(x) is an m�m matrix, B(x) is an m�n matrix, u* is an n-column vector. They are
de"ned as follows:
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Substituting equations (7a}7c) into equation (1), we can obtain
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where �
�
(x) represents the values of the shape function of node i at point x.

The partial derivatives of �
�
(x) can be de"ned as follows:
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where
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3. WEIGHT FUNCTIONS

It is obvious that the weight functions, w(�x!x
�
� ), will play an important role in the

performance of the method, and therefore, they must be chosen carefully. Such functions
should satisfy the following criteria [4]:

(1) they must be of compact support;
(2) they must not be negative over its support;
(3) they should decrease in magnitude as the distance from x to x

�
increases;

(4) their "rst and second partial derivatives must be non-singular.

In this paper, the weight functions are chosen as
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where d
�
"�x!x

�
� is the distance between the two points x and x

�
(Figure 1). Note that

point i is the center of the cell. For uniformly distributed nodes, c
�
is the maximum distance

berween point i and other nodes in the cell. As recommended by Belytschko et al. [34],
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where S
�
is the minimum set of points x

�
that construct a polygon in the neighborhood of the

point x
�
. c is a constant that controls the relative weights and is de"ned as follows:
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Figure 1. Illustration of the domain of in#uence.

264 Y. H. WANG E¹ A¸.
where � ("c/c
�
) is a multiplying parameter, whose best value can be determined

numerically.
In equation (12), d

�
is the size of the support for the weight function w (d

�
) and determines

the domain in#uence of node x
�
. The value should be chosen to ensure that the inverse of the

matrix A in equation (6) exists. If it is too small, the inverse matrix may not exist. On the
other hand, the computer time taken will be very long if d

�
is large. Parametric study will be

carried out to determine the optimum values for d
�
. It may be pointed that the present

method does not need any kind of &&background'' or shadow mesh for integration.
In equation (12), k is another parameter determining the in#uence of the weight functions

and its best value will be determined numerically in section 6.

4. DYNAMIC EQUATIONS

4.1. TWO-DIMENSIONAL ELASTIC BODY

The equation of motion for a structure is [35]

MuK (t)#Cu� (t)#Ku(t)"F (t), (14)

where uK (t), u� (t) and u(t) are the vectors of displacements, velocities and accelerations,
respectively, M is the mass matrix, C is the damping matrix, and K is the sti!ness matrix.
According to the equilibrium equations and boundary conditions of the elastic body, the
energy function can be obtained. Minimizing the energy function and imposing the
boundary conditions by adopting the penalty method, the sti!ness matrix can be written
as [36]
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and the positive direction of the x-axis.
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In equation (15), � is the shape function matrix for an n-degree problem
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B is the strain martrix

B"�
�
���

0 �
���

0 2 �
���

0

0 �
���

0 �
���

2 0 �
���

�
���

�
���

�
���

�
���

2 �
���

�
���
� , (17)

D is the elastic matrix. For plane stress problem,

D"

E

1!	� �
1 	 0

	 1 0

0 0
1!	

2 � . (18)

For plane strain problem, one can replace E by E/(1!	� ), 	 by 	/(1!	) in equation
(18). The penalty parameter must be chosen in such a way that the main component of the
second term of equation (15) is greater than the "rst term and such choice will ensure that
the boundary conditions will be satis"ed and the sti!ness matrix will not be singular. In this
study, � is taken to be 2)0�10
E, in which E is the modulus of elasticity.

The mass matrix M can be calculated by

M"��


��� d�, (19)

where 
 is the density of the material.
The damping matrix C can be expressed as a linear combination of mass and sti!ness

matrices as
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where �
�
and �

�
are constants.

It can be shown readily that the loading vector F (t) can be written as [19]
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where b is the body force vector, f(t) is the surface forces acting on the boundary �


of the

elastic body at time t, u� is the prescribed displacement vector on the boundary �
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is the nth concentrate force acting on the elastic body at x
�
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4.2. BENDING OF PLATE

The sti!ness matrix of the bending plate is
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where �
�
and �

�
are the simply supported and clamped boundaries respectively.
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For plate bending problems, � in equation (22) is the same as in equation (15). Note that
the expressions of the mass and damping matrices have the same forms as equations (19)
and (20).

In equation (22), � is the shape function matrix for an n-degree problem as
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where D
�
is the #exural rigidity of the plate, and D

�
"Eh
/12(1!	� ), in which h is the

thickness of the plate.
The loading vector of the plate can be shown to be
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where q (t) is the transverse load per unit of the plate. Other symbols are the same as in
equation (21).

5. DYNAMIC ANALYSIS

5.1. FREE VIBRATION ANALYSIS

If the damping is neglected and the external forces are zero, equation (14) will degenerate
into the free vibration equation

MuK (t)#Ku(t)"0. (27)

The solutions of the above equation can be obtained by assuming

u (t)"X sin 
(t!t
�
), (28)

where X is the mode shape representing the amplitudes of the displacements, u(t), 
 denotes
the natural frequencies of vibration, t

�
is a constant determined by the initial conditions.

By substituting equation (28) into equation (27), we have

KX!
�MX"0. (29)

In the present study, the subspace iteration method is used to solve the eigenvalue
problem de"ned by equation (29).

5.2. FORCED VIBRATION RESPONSE

For forced vibration analysis, the solution of equation (14) can be obtained, in general, by
two methods: mode superposition and direct integration. In the present study, the latter



TABLE 1

Parameters adopted in the analysis

Cantilever beam Square plate Circular plate

Material parameters
E 20)0 GPa 20)0 GPa 20)0 GPa
	 0)3 0)3 0)3

 3)0�10
 kg/m
 3)0�10
 kg/m
 3)0�10
 kg/m


Geometrical parameters Length l"40 m Length a"4 m Radius a"2 m
Height h"0)8 m Thickness h"0)2 m Thickness h"0)2 m
Width w"0)4 m

Computation parameters
Number of cells 80 100 100
Number of nodes 123 121 81
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approach is adopted as it is more suitable for the dynamic problem with large number of
degrees of freedom. It involves the numerical integration of the equation of motion by
marching in a series of time steps �t using Wilson � method. Accelerations, velocities and
displacements at each step can be evaluated accordingly. As the algorithm is well
documented in standard textbooks [35, 37], readers may refer to them for detils of the
method.

6. EXAMPLES FOR MODAL ANALYSIS

As the accuracy of the results is e!ected by the choice of parameters of the weight
functions, a parametric study is carried out on these parameters, that is k, c/c

�
and d

�
/c

�
. The

in#uence of the parameters on the accuracy of the results for di!erent structures including
the cantilever beams, square and circular plates is assessed. The geometry and material
constants of the beams and plates as well as other pertinent parameters used in the analyses
are given in Table 1.

6.1. PARAMETERS c/c
�
AND d

�
/c

�

In the "rst case, k is kept to be constant and"2. c
�
is 1)0 and 0)4 m for the beam and plate

respectively. Varying c and d
�
, the "rst eight frequencies are computed. Figures 2}4 show

the variations of the non-dimensional frequencies (
�ml�/EI for the beam, 
�
a�h/D
�

for the plate, where m is the beam mass of unit length, I is the area moment of inertia of the
cross-section, 
 is the plate mass of unit area) with c/c

�
and d

�
/c

�
for di!erent structures, that

is, beams, square and circular plates. From the "gures, one can conclude that the
frequencies converge rapidly when c/c

�
*1)0 and d

�
/c

�
*4)0. The results also con"rm that

the computed frequencies agree very well with the analytical solutions.

6.2. PARAMETER k

In order to study the in#uence of k, c/c
�
and d

�
/c

�
are assumed to be 1)0 and 4)0

respectively. Figures 5}7 show the variations of the non-dimensional frequencies with k
for the cantilever beam and simply supported plates. In the "gures, the horizontal line



Figure 2. In#uence of c/c
�
and d

�
/c

�
on the frequencies of the cantilever (k"2).
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Figure 3. In#uence of c/c
�
and d

�
/c

�
on the frequencies of the simply supported square plate (k"2).
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represents the analytical solutions. One may conclude from the results and k has
considerable in#uence on the frequencies results. When k is K2, the curves attain minimum
values of frequencies. Such observations are di!erent from those in reference [31]. In Figure 5
of reference [31], the frequency curves of the beam have no minimum. The analytical



Figure 4. In#uence of c/c
�
and d

�
/c

�
on the frequencies of the simply supported circular plate (k"2).
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solution, which is represented by the horizontal line, intersects the curve at k"2. On the
other hand, the analytical solution of the plates intersects the numerical solution at two
points with k K2 and 5 (Figure 8 of reference [31]). Therefore, k does not correspond to the
minimum of the curve.



Figure 5. In#uence of k on the frequencies of the cantilever (c/c
�
"1)0, d

�
/c

�
"4)0).
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Compared with reference [31], the present method gives a direct way for determining k.
For a frequency*k curve, the minimum of the curve corresponds to the exact solution. This
is important for the cases when the analytical solution is not available early.



Figure 6. In#uence of k on the frequencies of the simply supported square plate (c/c
�
"1)0, d

�
/c

�
"4)0).
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6.3. RESULTS FOR DIFFERENT BOUNDARIES

In order to examine the in#uence of the boundaries, beams and plates with di!erent
supports have been considered. According to the above analysis, the following values are
taken for the parameters: k"2, c/c "1)0, d /c "4)0.
� � �



Figure 7. In#uence of k on the frequencies of the simply supported circular plate (c/c
�
"1)0, d

�
/c

�
"4)0).
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Tables 2}4 show the frequencies for the beams, square and circular plates with di!erent
boundaries. Both analytical solutions [38, 39] and present results are listed. From the
tables, it can be seen that the present method can yield accurate results.



TABLE 2

Non-dimensional frequencies of beams

Boundary conditions

Mode Beam C}F Beam C}C Beam C}S Beam S}S

Meshless Analytical Meshless Analytical Meshless Analytical Meshless Analytical
method method method method method method method method

1 3)526 3)516 22)637 22)374 15)512 15)416 9)871 9)870
2 22)168 22)039 62)419 61)675 50)260 49)970 39)472 39)478
3 62)058 61)695 122)352 120)903 104)837 104)253 88)772 88)826
4 121)568 120)903 202)201 199)860 179)211 178)270 157)731 157)914
5 200)873 199)859 301)934 298)556 273)303 272)031 246)270 246)740
6 299)872 298)556 421)473 416)991 387)046 385)531 354)309 355)306
7 418)497 416)991 560)740 555)165 520)354 518)771 481)752 483)611
8 556)651 555)165 719)639 713)308 673)114 671)750 628)469 631)655

TABLE 3

Non-dimensional values of the ,rst six frequencies of square plates

Frequency
Boundary Methods 1 2 3 4 5 6

Present 36)120 73)631 108)521 132)743 165)569 243)790
Analytical 35)988 73)393 108)160 132)250 164)866 243)148
Present 29)026 54)936 69)850 95)276 102)798 130)917

Analytical 28)944 54)745 69)322 94)576 102)212 129)050
Present 23)674 51)790 58)876 86)449 100)756 114)225

Analytical 23)649 51)667 58)645 86)118 100)200 113)210
Present 19)738 49)379 78)948 98)920 128)374 168)484

Analytical 19)739 49)348 78)957 98)696 128)369 167)703
Present 12)695 33)119 41)817 63)190 72)675 91)150

Analytical 12)688 33)063 41)693 63)012 72)403 90)611
Present 11)691 27)758 41)304 59)149 61)942 90)820

Analytical 11)683 27)762 41)204 59)075 61)858 90)288
Present 9)638 16)143 36)719 39)055 46)850 70)813

Analytical 9)629 16)128 36)724 38)938 46)745 70)745
Present 3)472 8)548 21)319 27)225 31)036 54)359

Analytical 3)474 8)591 21)298 27)154 31)036 54)178

274 Y. H. WANG E¹ A¸.
7. FORCED VIBRATION

Another important subject in vibration is the response of the system to external forces
and (or) initial displacements and the meshless method is also used to obtain the solutions
for two di!erent excitation cases.

7.1. CANTILEVER BEAM WITH A SUDDENLY APPLIED LOAD

A simply supported beam having the same geometry, material parameters as given in the
previous section is studied. A loading P"10 kN/m is applied suddenly at the center of the



TABLE 4

Non-dimensional frequencies of circular plates

Frequency
Boundary
condition Method 1 2 3 4 5 6 7 8

Fixed Present 10)301 21)451 35)038 40)319 61)207 84)981 89)645 120)982
Analytical 10)214 21)271 34)869 39)766 60)824 84)622 89)076 120)122

Simply Present 5)002 14)017 25)813 30)011 48)838 70)596 74)613 104)092
supported Analytical 4)977 13)943 25)654 29)757 48)511 70)141 74)184 103)023

Figure 8. Displacement at the center of the simply supported beam.*� The proposed method; �* exact solution.
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beam. The displacement, velocity and acceleration at the center of the beam can be obtained
analytically [40]
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In the meshless method, Wilson � method is applied to solve the dynamic di!erential
equations. To obtain a stable solution, � is taken to be 1)4, and the time increment
�t"0)002 s.

Figures 8}10 show the variations of the displacement, velocity and acceleration at the
center of the beam obtained by the proposed method. The analytical solutions are also
presented in the "gures. One can conclude that the results obtained by the two methods
agree very well with each other.



Figure 9. Velocity at the center of the simply supported beam. *� The proposed method; �* exact solution.

Figure 10. Acceleration at the center of the simply supported beam.*� The proposed method; �* exact solution.
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7.2. SIMPLY SUPPORTED SQUARE PLATE WITH AN INITIAL DEFLECTION

The second example deals with the dynamic response of a simply supported square plate
subjected to an initial excitation. The geometrical and material parameters of the plate are
given in Table 1. The initial de#ection is w

�
(x, y)"0)01 sin �x/a sin �y/b. The initial

velocity and acceleration are zero. The analytical solutions for the de#ection, velocity and
acceleration at the square center are [41]

w (t)"0)01 cos ����
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1
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1
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#

1

b�� t�,
(31)

where mN is the mass of unit area of the plate.



Figure 11. Displacement at the center of the simply supported square plate.*� The proposed method; �* exact
solution.

Figure 12. Velocity at the center of the simply supported square plate. *� The proposed method; �* exact
solution.

Figure 13. Acceleration at the center of the simply supported square plate.*� The proposed method; �* exact
solution.
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Using �t"0)0001 s, and 500 time steps, the response of the plate is obtained numerically.
Figures 11}13 show the variations of the displacement, velocity and acceleration at the
center of the plate obtained by the proposed method and the analytical solutions. It can be
seen that the present results are satisfactory.
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8. CONCLUSIONS

The meshless method, based on the moving least-squares approach, is developed for the
dynamic analyses. The boundary conditions are imposed by the penalty method that is
a direct method for imposing the boundary conditions. Such an approach does not increase
the number of unknowns, and therefore, the computer time will not be very much increased.

A parametric study on the parameters de"ning the weight function has been carried out
and their best values are determined numerically.

The modal analysis of the free vibration and the dynamic response of the forced vibration
have been studied. The examples quoted in this paper show that the proposed meshless
method is an accurate and e$cient one. It is anticipated that the method can be extended to
the dynamic analysis of the other structures, such as shells and 3-D structures.
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