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The application of the discrete Huygens' modelling has been discussed for acoustic wave
propagation problems, in which the scalar wave "eld problems have been focused. The
present paper extends the application of the modelling to the elastic wave propagation in
a homogeneous elastic medium in which two types of waves, the longitudinal wave and the
shear wave, are independent except at the boundary. Each wave can be treated like a scalar
wave until the two waves reach the boundary where they couple so as to satisfy the
displacement or stress boundary condition. We propose the approach con"ning ourselves to
the two-dimensional "eld. Some examples are demonstrated, whose solutions are compared
with the vectorial wave modelling and "nite di!erence modelling solutions whenever they
are available.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper is in a series of the discrete Huygens' modelling applied to acoustic problems
[1}3]. The discrete Huygens'modelling provides a physical model in which the propagation
process is directly traced following the mechanism Huygens explained for the propagation
of light. The process of the transmission and scattering is easily implemented on computer
in which the wave equation is not numerically solved. It can be proved that the di!erence
equation corresponding to the di!erential wave equation is derived from the transmission
and scattering process [3].
The discrete Huygens' modelling is a synonym of the transmission-line matrix modelling

(TLM), which has been extensively used for the electromagnetic wave propagation
problems [4}6]. In the present paper, the discrete Huygens' modelling is applied to the
wave propagation in a homogeneous elastic medium in two dimensions (x, z co-ordinates).
The stress wave "eld is expressed by the wave equations for two displacement components
u
�
and u

�
. This problem has been considered by Langley et al. [7], who developed a complex

vectorial element to incorporate the situation. In the present paper, we show that the use of
the simple elements for scalar waves as we have discussed for acoustic waves in view of the
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fact that two types of waves, the longitudinal wave and the shear wave, can independently
exist until they reach the boundary.
We experience in earthquake that a primary wave comes "rst and then comes the

secondary wave. This is exactly so for the waves in a homogeneous elastic medium, in which
the "eld can be expressed in terms of P and SV waves. Each wave can be treated like a scalar
wave to which the algorithm we have developed for the sound wave propagation can
directly be applied. The two waves couple only at the "eld boundary so as to satisfy the
displacement or stress boundary condition.
Some simple examples are considered to demonstrate the present technique in which the

solutions are compared with those of the other approaches such as the "nite di!erence and
the vectorial TLM approach.

2. EQUATIONS OF MOTION FOR ELASTIC WAVES

In the treatment to follow we con"ne ourselves to the two-dimensional x}z "eld, in which
the phenomena are independent of y direction. The wave equations are given for
displacements u

�
and u

�
as
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where � is the mass density of the medium, and � and � are Lamè's constants. The
displacements u

�
and u

�
are expressed in terms of the two displacement potentials � and

� de"ned as
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Substitution into equations (1) gives the two expressions
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The wave equations are now independent for � and �, respectively, and the propagation
velocities are given by
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where E and � are Young's modulus and Poisson's ratio. The P wave travels faster than the
SV wave. The velocity ratio is

c
�
c
�
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1!2�
2(1!�)

. (7)

3. DISCRETE HUYGENS' MODEL

3.1. ELEMENT

Equations (3) and (4) are the wave equations for the P and SV waves. Each of them is
expressed in terms of a potential wave. The scalar wave modelling which we presented in our
previous papers could be used [3]. Now the "eld is modelled by independent two-layered
networks, as shown in Figure 1, in which each consists of a series of the connection of the
elements with four and "ve branches. An element for the P wave is shown in Figure 2 in which
the scattering of the impulses are also shown. The scattering matrix is given by
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The relation between the incident and re#ected impulses about the node is de"ned by
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where � is the potential in the P wave network, ��
�
and ��

�
are incident and re#ected

impulses at branch n (n"1}4) of the element, and s is the re#ection coe$cient at the node
Figure 1. Two-layered network for two potential waves.



Figure 2. Scattering of impulses at the element node (P wave).

Figure 3. Element for SV wave and scattering of impulses at the node (SV wave).
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de"ned by
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where Z
�
is the characteristic impedance of the branch.

It should be noted that the propagation velocity in the network cN
�
is slower than that in

the free medium c
�
by a factor of 1/�2 (cN

�
"c

�
/�2).

A similar modelling is possible for the wave equation (4) of the SV wave, which
propagates slower than the longitudinal wave. A delay mechanism can be devised for the
element without violating the temporal synchronization. It is made simply by providing
a "fth branch as shown in Figure 3. � is the parameter which makes the propagation speed
slower. The scattering matrix is given by

�
�

�
�

�
�

�
�

�
�

�

"

1

�#4

!(�#2) 2 2 2 2�

2 !(�#2) 2 2 2�

2 2 !(�#2) 2 2�

2 2 2 !(�#2) 2�

2 2 2 2 �!4

�
�

�
�

�
�

�
�

�
�

�

. (11)

The relation between the impulses about the node is de"ned by
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where � is the potential in the SV wave network, ��
�
is the in-coming impulse to the

corresponding branch n and ��
�
is the re#ected impulse from the node to the corresponding

branch. The end of the "fth branch is closed, so that ��
�
"��

�
.

3.2. ELEMENT CONNECTION

Each wave "eld consists of a network of the elements connected in both x and
z directions, over which impulses advance the distance �l for the duration �t or at the speed
�l/�t. The branch 1 of an element is connected to the branch 3 of another adjacent element
and so on, in which the incident impulses to the node (x

�
, z

�
) at the time t

	
correspond to the

re#ected impulses scattered from the surrounding elements at the previous time t
	��

. The
subscript k indicates the number of the steps corresponding to the time k�t.
One has the compatibility for the connection

	
��

�
(x

�
, z

�
)"

	��
��

�
(x

���
, z

�
),

	
��

�
(x

�
, z

�
)"

	��
��

�
(x

�
, z

�
�
),

(13)

	
��

�
(x

�
, z

�
)"

	��
��

�
(x

�
�
, z

�
),

	
��

�
(x

�
, z

�
)"

	��
��

�
(x

�
, z

���
).

This relation holds for every element over P wave network, which together with the
scattering algorithm (9) establishes the wave propagation. Similar expression is also valid
for the SV wave, expect the presence of the "fth branches with their other ends closed.
Subscripts p and q refer to the position of the element in x and z co-ordinates.
If the displacement solutions are required, they are obtained from the "nite di!erence

calculation of
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4. BOUNDARY CONDITIONS

There are three typical boundaries to be encountered in the practical situations, which
are the non-re#ective or absorbing boundary, the "xed boundary and the free boundary.
Here only "rst two cases are considered, as demonstrated in reference [7], in which
a vectorial element is developed for the elastic waves.

4.1. NON-REFLECTIVE BOUNDARY

Non-re#ective boundary is the boundary at which the waves coming into the boundary is
absorbed. This condition can be realized simply by terminating the boundary with the
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characteristic impedance at the end of the corresponding branches of the elements attached
to the boundary. The termination can independently be made for the P wave and the SV
wave, respectively, without coupling.

4.2. FIXED BOUNDARY

The displacements are "xed so the u
�
"u

�
"0 on the boundary. In our present

modelling, the condition must be prescribed in terms of the displacement potentials. The
"nite di!erence expressions of equation (14) must be zero at all times. That is
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which are applied to the elements attached to the boundary. When the boundary is set
parallel to the x-axis at z"z

�
as shown in Figure 4, ��
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With the help of equations (9) and (13), the impulses arriving to the node (x
�
, z

�
) from the

outer region are obtained for each element, which are
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Figure 4. Impulse transition over the "xed boundary.
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The right side are all the arriving impulses. Additional computation is required for
processing the boundary conditions.

5. VECTORIAL WAVE APPROACH MODELLING

A scalar wave approach is possible for each wave so that the discrete Huygens'modelling
developed in our previous papers can directly be applied at the expense of the additional
processing cost for the boundary. In the preceding sections, we presented how to
incorporate the coupling of the P and SV waves at the boundaries. Langley et al. [7]
developed an eight-branches element for modelling the vectorial wave propagation in the
two-dimensional elastic medium, in which the formulation is made directly for
the displacements. The modelling is very complicated though it could be applied to the
non-homogeneous elastic "eld. The scattering matrix consists of 8�8 components in which
the computation is more expensive, while our present approach requires only two 4�4
matrices with additional computation for processing the boundary conditions.
It should be noted that their modelling is formulated in such a way that the P and SV

waves are coupled within an element, while in our present modelling the two waves are
independent until they reach the boundary where they couple. In the examples to follow, the
simulations are compared with other approaches to demonstrate the validity of our
modelling.

6. SOME NUMERICAL VERIFICATIONS

6.1. WAVE PROPAGATION VELOCITY

We take a square "eld made of 200�l�200�l. The plane wave excitation is made over
one of the boundaries of the square "eld on the left-hand side at which a single shot sine
wave with duration 30�t is given. Other boundaries are treated to be non-re#ective. The
Poisson's ratio of the medium is taken to be �"0)3. The snap shot waveforms at the position
(50�l, 100�l ) are shown in Figure 5, in which the results of the FD-TD method using the
scalar wave modelling are also shown for the purpose of veri"cation. All three traces agree.
The ringing may be the e!ect due to the higher frequency spectra of the single shot.
The velocity ratio calculated from the time required for the transit of a certain length is

c
�
/c

�
"0)536, whose theoretical counterpart is c

�
/c

�
"0)5345. The agreement is reasonable.

6.2. MODE CONVERSION

Here we again consider the square "eld ( 200�l�200�l ) in which the three boundaries
are non-re#ective and the "xed boundary is set on the right side as shown in Figure 6.
A single shot sine P wave is excited over the diagonal line. The displacements are depicted in
Figure 7 at various time steps, in which only the region corresponding to the shaded area in
Figure 6 is shown. The lines indicate the direction and the amplitude by their length. It is
seen that on the arrival of the wave front of the P wave to the "xed boundary, the re#ection
is taken place and the SV wave is simultaneously generated. The amplitude ratios to the
re#ected waves are

�
��

�� �"0)412 (0)42) �
��

�� �"1)082 (1)058),



Figure 5. Travelling of a single shot sine wave.
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where 
�� 
 is the amplitude of the incident P wave. 
�� 
 and 
�� 
 are the amplitudes
of the re#ected waves for the P wave and the SV wave respectively. The theoretical values
are given in parentheses. The results show the validity of the present approach and
modelling.

7. REFLECTIONS AT THE BOUNDARY

7.1. FIXED BOUNDARY

Here we again demonstrate what happens at the "xed boundary. We consider a square
"eld of 200�l�200�l, in which the boundary is "xed at the upper end as shown in Figure 8.
A single shot sine wave (both P and SV waves) of duration 300�t with a unit amplitude is
excited at the point (101�l, 151�l ). The process of the propagation is illustrated in Figure 9,
in which the displacement distributions at various time steps are shown. The P wave
omnidirectionally advances "rst and then comes the SV wave. When the P wave hit
the "xed boundary, the P wave is re#ected and the SV wave is generated.When the SV wave



Figure 6. Oblique incident modelling "eld.

Figure 7. Mode conversion at the "xed boundary.

DISCRETE HUYGENS' MODELLING APPROACH TO WAVE PROPAGATIONS 331
then hit the boundary, SV wave is re#ected with the generation of the P wave. Figure 10
shows the corresponding situation simulated by the vectorial wave modelling [7], in which
it is seen that the propagation is also omnidirectional but with somewhat square-like shape.
The waveforms obtained at the point (151�l, 101�l ) are shown in Figure 11. The ringing is
more pronounced in the waveforms based on the vectorial wave modelling.



Figure 8. Field with the "xed boundary.

Figure 9. Wave propagation and re#ection at the boundary in displacements (scalar wave modelling).
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Figure 10. Wave propagation and re#ection at the boundary in displacements (vectorial wave modelling).
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8. DISCUSSIONS

We have presented that the scalar wave approach is possible with the scalar TLM
modelling for the wave propagation in a homogeneous elastic medium. As demonstrated,
the scalar wave approach gives more realistic solutions. The approach can contribute to the
reduction of the computational resources by about a half with some additional cost for the
boundary condition processing. The displacement expressions are not always requested.
Comparison with other numerical methods will be discussed in the following. The most

popular numerical approaches to wave propagation problems are the FD-TD and FE
methods. As shown previously [1], the order of the errors of the present method is of the
same order as that of the FD-TD and FEMwith the "rst order trial function for an element
used. In these methods, the space can be discretized independent of the time discretization.
Though the discretization is thus chosen independently, a stable time step should be
examined. The present method is essentially stable.
In the FD-TD and FEM, a pre-processing stage is required which is to form the system

matrix or coe$cient matrix for the simultaneous di!erential equations of the second order
with respect to time. They are then to be solved by the time marching method such as
Newmark � scheme. In these methods, the computation is global in space in which the
solution of the simultaneous equations is required in each time step, while in the present



Figure 11. Displacement wave forms observed at (151�l, 101�l ).
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approach, the computation is local. The number of the operations required for the single
step of the computation is thus proportional to N, number of the nodes or the elements in
the present approach, while the FD-TD and FEM require the N� operations. However,
their system matrix is usually banded with the bandwidth = so that the number of the
operations is proportional to =N. The solution of the simultaneous equation is also
localized. As the bandwidth is about 6 for the square elements, their computational costs
will be more than 6 times compared with that of the present method.

9. CONCLUDING REMARKS

The discrete Huygens' modelling approach was extended to the wave propagation in
a homogeneous elastic medium. It was shown that the scalar wave approach was possible
by the use of the scalar TLM elements, in which the P and SV waves were treated
independently until they reached the boundary at which they couple. To show the validity
of the modelling and the approach, some numerical demonstrations were presented. The
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solutions were veri"ed in comparison with the solutions by the vectorial wave modelling
approach and "nite di!erence method. As in reference [7], the case of the free boundary
could not be included at the present stage. Both the solutions were found to be unstable.
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