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1. INTRODUCTION

Prediction of the modal characteristics of acoustic cavities with irregular shapes is an
important issue. In many respects, modal pressure (or mode shape) is one of the most
essential parameters to be known. First, the mode shape of acoustic cavities is usually used
in vibro-acoustic analyses of vibrating structures coupled to an acoustic enclosure [1]. In
these cases, the acoustic pressure inside cavities can be decomposed into a series using mode
shapes as base functions. Second, problems related to the acoustic intensity inside cavities
require an accurate prediction of the velocity of the particles, which is directly related to the
sound pressure distribution [2]. Third, accurate information on the mode shape gives rise to
many direct applications. For instance, Succi [3] noticed that the position of a minimum
resonant pressure in an automobile cabin can be changed, so as to improve the driver's and
the passengers' comfort. All these applications are based on an accurate prediction of the
modal sound distribution.

In our previous work [4], an integro-modal approach (IMA) was suggested to compute
the acoustic modal properties of irregular cavities, where the separation of variable
technique cannot be applied. This previous work mainly focused on predicting the natural
frequencies. No study in terms of the corresponding modal pressures was performed. It
consisted of handling the irregular-shaped enclosure as a multi-connected cavity system.
For each sub-cavity, rigid-wall modes were used as base functions for a modal expansion of
the sound "eld. The integral formulation ensured global continuity of the pressure between
adjacent sub-cavities. In di!erent studies, Pan [5}7] pointed out that using a rigid-wall
mode expansion for the sound "eld does not always describe correctly the particle velocity
or pressure gradient where absorptive or #exible part of the cavity boundary is assumed.
The convergence of the acoustic pressure may also be a!ected in the whole cavity. This
problem is likely to occur when the IMA is applied.

This issue is discussed in the present paper. Using a simple semi-circular cavity, the
performance of the original IMA in terms of prediction of the sound pressure distribution is
"rst discussed. Based on the problem observed, an improved IMA based on the use of
overlapped cavities is proposed. It can be shown that this technique can greatly improve the
accuracy of the prediction for the modal pressure and velocity distribution.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Irregular-shaped cavity

Figure 2. Discretization of the IMA. (a) Original approach, (b) improved approach with overlapped cavities.

400 LETTERS TO THE EDITOR
2. THEORETICAL DEVELOPMENT

Figure 1 shows a typical cavity comprising a regular-shaped part and an irregular-shaped
part. The original IMA handles the whole cavity as a sum of two or more connected
sub-cavities, regular or not, separated by a virtual membrane S

�
, as shown in Figure 2a. The

modal characteristics of regular sub-cavities were obtained analytically, while irregular ones
were treated using normal modes of their respective regular bounding cavities with rigid
walls. In both cases, rigid-walled modes were used as base functions for a modal expansion
of the sound "eld in the sub-cavity. An integral formulation ensured global continuity of the
pressure between adjacent sub-cavities. The method then yielded a truncated eigenvalue
system. The use of rigid-walled modes will therefore impose a systematic zero
pressure gradient over the junction area, leading inevitably to an error in the sound pressure
calculation. To overcome this obstacle, the present paper suggests lengthening the
bounding cavity so that its boundary does not cover the membrane surfaces S

�
, but

permitting a certain degree of overlapping. � is de"ned as the ratio of the additional length
to the original length (related to the original approach) of the bounding cavity in the
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direction normal to the separating membrane surfaces (Figure 2b). Whereas adjacent
bounding cavities were previously stuck together along their connecting surfaces in the
original approach, a slight overlap is allowed among them in the new approach, because of
which � is called the overlapping ratio.

In two-dimensional cases, the bounding cavity may be rectangular, circular, or of any
other shape as far its modal characteristics are known. To ensure good accuracy, the
selected bounding cavity must "t, as much as possible, the geometrical shape of its
corresponding enclosed sub-cavity. Rectangular bounding cavities are the easiest to handle
in practice. Taking it as an example, the following sections brie#y summarize the
formulation of the improved IMA.

In each sub-volume<, the interior pressure � satis"es the Green's integral equation with
associated boundary conditions on the enclosing surface S
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r and r
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are the observation and source points in the cavity respectively. The boundary

conditions over the #exible membrane are determined by continuity of the normal air
particle velocity and the structural velocity on the separating surface, noted as S

�
. Hence,
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where n is the normal to the surface of the boundary (positive outwards) and w is the #exural
displacement of the separatingmembrane. �

�
is the air density within the cavity. The #exible

portion of S refers only to the separating membrane between two adjacent sub-cavities.
Anywhere else on the remaining surface, the pressure gradient is zero.

Each sub-volume is treated separately. To construct the Green function G and the
solution, the initial sub-volume< is enclosed in a larger bounding volume<

�
(Figure 2b), of

standard geometry and with rigid walls S
�
. The modal characteristics (�

�
, �

�
) of <

�
are

obtained analytically to express the Green function G [8]. Using the same modal functions,
� can be expressed as follows:
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where c
�
is the speed of sound in air, �

�
the generalized mass of the nth normal mode of <

�
and a

�
the unknown coe$cients. Similarly, the #exural displacement of the vibrating

membrane w can be expanded in terms of in vacuo normal mode shapes �
�
de"ned over the

region S
�
:
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where m is the structural modal indices, q
�
(t) are the structural modal co-ordinates.

Assume

a
�
(t)"a

�
ei�t . (5)

Knowing the orthogonal properties of the base functions, and the boundary conditions, and
using the modal expansions in equations (1) and (2), the integral equation equation (1)
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becomes:
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where ¹n�,n is the spatial coupling coe$cient between the nth and the n�th acoustic modes of
the bounding cavity and ¸

��
, the spatial modal coupling coe$cient between the mth

structural mode and the nth acoustic mode.
Furthermore, by assuming a mass-less and sti!ness-free membrane, it was demonstrated

that the equation describing the #exural motion of the separating membrane is reduced to
the following [4]:
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where �	 and �� are the sound pressure at each side of the membrane. It can be noticed
that the above expression represents a global continuity of the pressure due to the integrals
involved and therefore indicates a pure opening between two adjacent sub-cavities.

The integrals are computed for a rectangular bounding cavity of dimensions
¸
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by the equation x"¸
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. The "rst sub-cavity will have the following modes and properties:
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Then the coupling coe$cient between nth mode and the n�th mode in equation (7) can be
calculated as
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If �"0, ¹n,n�"0, thus, the addition of � has the e!ect of coupling the acoustic modes of the
bounding cavities in their respective enclosed sub-cavities.

The #exural displacement of the #exible membrane can be represented by any set of
orthogonal functions provided that they are complete in the region of the membrane
surface. Assuming
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it can be shown that

¸
��

"!cos�
n
�
�

1#���
m((!1)n
#m

!1)

� (n�


!m�)

¸



if nOm;

¸
��

"0 if n


"m or n



"0. (12)



Figure 3. Lines of constant acoustic pressure amplitude (normalized to maximum value). - - - -, Theoretical
results; ***, original IMA results. (a) Mode (1, 0); (b) Mode (2, 0); (c) Mode (0, 1).
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The key relations for solving the internal acoustic distribution in the cavity are equations
(6) and (8). These coupled acoustic-structural equations form an eigenvalue system, ��

being the unknown eigenvalue. For each eigenvalue, there is a corresponding eigenvector
given by the coe$cients a

�
and q

�
, which can then be used to compute the acoustic pressure

distribution inside the cavity. All series expansions used in the calculations of G, � and
w have to be truncated, in order to implement a numerical procedure.

It should be pointed out that this formulation is more general than the original IMA
formulation in the sense that taking �"0 leads us back to the original approach.

3. NUMERICAL RESULTS USING A SEMI-CIRCULAR CAVITY

A simple semi-circular cavity is "rst used to test the method. Analytical solutions
available for this con"guration provide a good basis for comparison purposes. Actually, the
analysis for this simple model will mostly focus on the prediction of the modal pressure
distribution mainly in the vicinity of connecting surfaces. A semi-circular enclosure of
radius 1m is considered. An exact solution can be obtained by solving the Helmholtz
equation using the method of separation of variables in polar co-ordinates. Calculations
give lines of constant acoustic pressure amplitude in the semi-circular cavity for the "rst
three natural modes. The pressure amplitude has been normalized by its maximum value in
the cavity and the pressure variation between two successive lines is 0)15 units. Firstly,
a zero overlapping ratio was assumed with seven acoustic and membrane modes and seven
sub-divisions. In Figure 3(a)}3(c), theoretical results are designated by dotted lines and
original IMA results by solid lines. Agreement with analytical results is good especially for
the "rst degenerated mode (1, 0). This particular mode resembles the (1, 0) mode of
a rectangular cavity, with the exception of the lines of constant pressure being slightly
curved in this case and adjusting themselves to meet the homogeneous boundary conditions



Figure 4. Averaged sound pressure error inside the cavity versus di!erent � values.*�*, Mode (1, 0);*�*,
Mode (2, 0); *�*, Mode (0, 1).
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along the circular edge of the cavity. The lines outside the cavity have no physical
signi"cance, but they illustrate how the method works, i.e., approximates the acoustic
pressure using rigid-wall modes of rectangular sub-cavities. As expected, numerical
solutions reveal discontinuous slopes of the acoustic pressure lines across the connecting
panels. The generated error between the numerical and the analytical solutions is increased
in the vicinity of such areas and propagates eventually in the entire cavity. Figure 3(b)
corresponds to the second mode of order (2, 0). The numerical solution fails to give an
accurate approximation of the pressure amplitude near point &&A'' (speci"ed in Figure 3(b))
which is a singular point in polar co-ordinates, for this particular mode. When detail near
that point is required, one may increase the number of acoustics modes in the series
expansion. But according to the present approach, it is "rst suggested to use the technique
of overlapped cavities without increasing either the number of sub-cavities, or the number
of acoustic and membranemodes, Similar phenomena can be observed in Figure 3(c) for the
third mode. Again, improvement is needed to increase the accuracy of the method.

In order to investigate the in#uence of the non-zero overlapping ratio on the acoustic
pressure estimation for each point in the cavity, di!erent � values are "rst tested. To this
end, the average sound pressure inside the cavity is calculated. The error is calculated and
expressed in percentage compared to the analytical solution for the "rst three modes. Figure 4
shows the result. Since the original approach already gives acceptable results as shown in
Figure 3(a), using overlapped cavities cannot bring about any further improvement. For the
two other modes, however, optimal � value seems to be somewhere between 2 and 3%.
Beyond that, the bounding cavities are too distorted from the real sub-cavities to give
a reasonable approximation.

Using �"3%, detailed results on sound pressure distribution are given in Figure
5(a)}5(c). These three "gures can be compared to their zero-ratio equivalent given in Figure
3(a)}3(c). In Figure 3(a) the original approach already gives a good approximation of the
"rst mode. Figure 5(a) shows that overlapped cavities can still bring about further
improvement. While the predicted local pressure still agrees very well with the analytical
solution, the curving of the pressure amplitude lines is apparently much smoother
compared to Figure 3(a) (when �"0). The pressure gradient across the opening membranes
agrees more with the expected solution than the previous case.

The most compelling enhancement is achieved for the second mode, for which �"3%
leads almost to the exact resolution (Figure 5(b)). The agreement of the local pressure with



Figure 5. Lines of constant acoustic pressure amplitude (normalized to maximum value). - - - -, Theoretical
results; ***, improved IMA results with �"3%. (a) Mode (1, 0); (b) Mode (2, 0); (c) Mode (0, 1).
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exact distribution is excellent everywhere in the cavity, even near the singular point A.
Calculated lines of constant pressurematch with the theoretical lines along opening surfaces
and the rigid boundary of the cavity. The pressure gradient is fairly continuous. Looking at
the pressure distribution of the third mode (Figure 5(c)), again comparisons with the
zero-ratio resolution show reasonable improvement. It should be emphasized that the
original approach with �"0% would have required much more acoustic modes and
sub-cavities to obtain the comparable result. Thus, the bene"t of the overlapping technique
can be twofold: solving the problem of inhomogeneous condition across the #exural
membranes surface, and improving the convergence using minimum decomposition terms.

4. CONCLUSIONS

The technique based on the use of an overlapping ratio is e$cient to solve or at least to
attenuate the problem of gradient discontinuity between adjacent sub-cavities encountered
in the original IMA without altering the good accuracy in the frequency estimation.
Satisfactory results can be achieved with very limited number of acoustic modes in the series
expansion. To determine the optimal value of the overlapping rate, however, successive
numerical tests may be necessary.
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