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C.-N. CHEN 2000 Journal of Sound and Vibration 230, 241-260. Dynamic equilibrium
equations of non-prismatic beams defined on an arbitrarily selected co-ordinate system.

I.®

In this paper, equation (31) and the text equation need a correction. As stated in
the paper, if two degrees of freedom used to represent ® and d®/d( are assigned to a node,
the EQD can adopt the Hermite polynomial as the interpolation functions to define the
weighting coefficients. For this model, the variable function is approximated by
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Then the following relation can be defined:
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Then the weighting coefficient D% , defined by Hermite polynomlals with the range of r and
s being 2Ny, can be formed by using the elements of D and D . The weighting
coefficients for higher order derivatives can similarly be calculdted The method of directly
substituting analytical functions r,({) into the EDQ defined equation (27) and the method
of nodal constraint starting from equation (29) can be used to calculate weighting
coefficients by adopting general analytical functions such as Chebyshev polynomials,
Bernoulli polynomials, Euler polynomials, etc. However, by using these two methods the
solution of linear algebraic systems is required.

Regarding the solution of free vibration problem by DQEM, the overall discrete
eigenvalue equation system considering kinematic boundary conditions can be
expressed as

(K] = o?[M]){D} = {0}, (33)

where [K] is the overall stiffness matrix, [M] the overall mass matrix and {D} the overall
model displacement vector. [K] is sparse. [M] is a diagonal matrix with zeros appearing
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on-diagonal. It is positive semidefinite. Equation (33) is a generalized eigenvalue problem
with infinite frequencies existing. Premultiplication of equation (33) by [K]_l leads to

([4] = Al){Dp} = {0}, (34)
where [4] = [K]'[M] and 1 = 1/w?. Equation (34) can be solved by using either an exact
solution technique or an approximate solution technique. If the order of the eigenvalue
system is large, the approximation algorithms which calculate the eigenpairs in descending
order can reduce the expense.

Some d.o.f. can be eliminated before solving equation (33). If no mass is attached to an
inter-element boundary or natural boundary, the displacement parameters associated with
it can be eliminated. Considering the non-existence of inertia forces for some component
equations existing in equation (33), the equation can be rewritten as

([[Kw] [Kab]] _w2lw¢a] [01D {{Da}}: {{0}} 35)
(K] [Kin] URNCIVARCAY RO

with [M,,] a diagonal matrix without zeros appearing on-diagonal. From the lower part of
equation (35), the following relation can be obtained:

{Dy} = [Kip] "' [Kpa]{Da}- (36)
The substitution of equation (36) into the upper part of equation (35) yields
([Kaa] — @ [Maa)){Da} = {0}, (37)
where
[Kaa] = [Kua) + [Kat)[Koo) ™' [Kpa)- (38)

Equation (37) can be treated and solved by the same procedure that transfers equation (33)
into equation (34). It can be solved by adopting the advantage of the diagonality of [M,,].
Defining [M,,] = [L]* and iDa} = [L]'{ Y}, substituting them into equation (37), and
then premultiplying by [L]™ ", the following eigenvalue problem can be obtained:

([H] = ?[I){Y} = {0}, (39)

where [H] = [L] '[K.][L]"". For economically solving a large eigenvalue problem, the
approximation algorithms which calculate the eigenpairs in ascending order can be used.



